1
|
Hvass L, Müller M, Staudt M, García-Vázquez R, Gustavsson TK, Shalgunov V, Jørgensen JT, Battisti UM, Herth MM, Kjaer A. Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines. Mol Pharm 2025; 22:1911-1919. [PMID: 40081392 PMCID: PMC11979891 DOI: 10.1021/acs.molpharmaceut.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (18F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar 18F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all 18F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their in vivo pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of -1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.
Collapse
Affiliation(s)
- Lars Hvass
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias K. Gustavsson
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
de Roode KE, Rossin R, Robillard MS. Toward Realization of Bioorthogonal Chemistry in the Clinic. Top Curr Chem (Cham) 2025; 383:12. [PMID: 40042792 PMCID: PMC11882664 DOI: 10.1007/s41061-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.
Collapse
Affiliation(s)
- Kim E de Roode
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Herth MM, Hvass L, Poulie CBM, Müller M, García-Vázquez R, Gustavsson T, Shalgunov V, Clausen AS, Jørgensen JT, Hansson E, Jensen H, Aneheim E, Lindegren S, Kjaer A, Battisti UM. An 211At-labeled Tetrazine for Pretargeted Therapy. J Med Chem 2025; 68:4410-4425. [PMID: 39963966 DOI: 10.1021/acs.jmedchem.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Pretargeted radioimmunoimaging has been shown to enhance tumor-to-background ratios by up to 125-fold at early time points, leading to more efficient and less toxic radionuclide therapies, particularly with shorter half-lives such as astatine-211 (211At). The tetrazine ligation is the most utilized bioorthogonal reaction in these strategies, making tetrazines ideal for 211At labeling and controlling the biodistribution. We developed a 211At-labeled pretargeting agent for alpha-radionuclide therapy, achieving a radiochemical yield of approximately 65% and purity over 99%. Our results showed higher tumor-to-blood ratios within the first 24 h compared to directly labeled monoclonal antibodies. This suggests that pretargeted therapy may deliver better tumor doses than conventional methods, although the deastatination observed will need to be addressed in future tetrazine developments.
Collapse
Affiliation(s)
- Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias Gustavsson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Anne S Clausen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ellinor Hansson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Holger Jensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Emma Aneheim
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Sture Lindegren
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Versteegen RM, Rossin R, Filot IAW, Hoeben FJM, van Onzen AHAM, Janssen HM, Robillard MS. Ortho-functionalized pyridinyl-tetrazines break the inverse correlation between click reactivity and cleavage yields in click-to-release chemistry. Commun Chem 2024; 7:302. [PMID: 39702778 DOI: 10.1038/s42004-024-01392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The bioorthogonal tetrazine-triggered cleavage of trans-cyclooctene(TCO)-linked payloads has strong potential for widespread use in drug delivery and in particular in click-cleavable antibody-drug conjugates (ADCs). However, clinical translation is hampered by an inverse correlation between click reactivity and payload release yield, requiring high doses of less reactive tetrazines to drive in vivo TCO reactions and payload release to completion. Herein we report that the cause for the low release when using the highly reactive bis-(2-pyridinyl)-tetrazine is the stability of the initially formed 4,5-dihydropyridazine product, precluding tautomerization to the releasing 1,4-dihydropyridazine tautomer. We demonstrate that efficient tautomerization and payload elimination can be achieved by ortho-substituting bis-pyridinyl-tetrazines with hydrogen-bonding hydroxyl or amido groups, achieving a.o. release yields of 96% with 18-fold more reactive tetrazines. Applied to on-tumor activation of a click-cleavable ADC in mice, these tetrazines afforded near-quantitative ADC conversion at a ca. 10- to 20-fold lower dose than what was previously needed, resulting in a strong therapeutic response.
Collapse
Affiliation(s)
- Ron M Versteegen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Ivo A W Filot
- Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Freek J M Hoeben
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | | | - Henk M Janssen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Staudt M, Hvass L, Müller M, García-Vázquez R, Jo̷rgensen JT, Shalgunov V, Battisti UM, Kjær A, Herth MM. Development of Polar BODIPY-Tetrazines for Rapid Pretargeted Fluorescence Imaging. ACS OMEGA 2024; 9:42498-42505. [PMID: 39431101 PMCID: PMC11483389 DOI: 10.1021/acsomega.4c06570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Polar BODIPY-tetrazine dyes were developed and clicked in vivo to a preaccumulated trans-cyclooctene-modified anti-TAG72 monoclonal antibody CC49 (CC49-TCO). The in vivo click performance was evaluated using an in-house developed ex vivo blocking assay. All tested polar BODIPY structures exhibited excellent in vivo binding, confirming that the turn-on tetrazine dyes successfully clicked in vivo to pretargeted CC49-TCO. Fluorescence imaging showed high tumor-to-muscle ratios of 4:1. This proof-of-concept study indicates that the pretargeting concept based on turn-on probes could be used for cancer treatments, such as photodynamic or -thermal therapy.
Collapse
Affiliation(s)
- Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jo̷rgensen
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
8
|
Bohrmann L, Poulie CBM, Rodríguez-Rodríguez C, Karagiozov S, Saatchi K, Herth MM, Häfeli UO. Development of a 99mTc-labeled tetrazine for pretargeted SPECT imaging using an alendronic acid-based bone targeting model. PLoS One 2024; 19:e0300466. [PMID: 38626058 PMCID: PMC11020896 DOI: 10.1371/journal.pone.0300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 04/18/2024] Open
Abstract
Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.
Collapse
Affiliation(s)
- Lennart Bohrmann
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | | | - Stoyan Karagiozov
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| |
Collapse
|
9
|
Poulie CBM, Shalgunov V, Elvas F, Van Rymenant Y, Moon ES, Battisti UM, De Loose J, De Meester I, Rösch F, Van Der Veken P, Herth MM. Next generation fibroblast activation protein (FAP) targeting PET tracers - The tetrazine ligation allows an easy and convenient way to 18F-labeled (4-quinolinoyl)glycyl-2-cyanopyrrolidines. Eur J Med Chem 2023; 262:115862. [PMID: 37883899 DOI: 10.1016/j.ejmech.2023.115862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Small-molecular fibroblast activation protein inhibitor (FAPI)-based tracer have been shown to be promising Positron Emission Tomography (PET) 68Ga-labeled radiopharmaceuticals to image a variety of tumors including pancreatic, breast, and colorectal cancers, among others. In this study, we developed a novel 18F-labeled FAPI derivative. [18F]6 was labeled using a synthon approach based on the tetrazine ligation. It showed subnanomolar affinity for the FAP protein and a good selectivity profile against known off-target proteases. Small animal PET studies revealed high tumor uptake and good target-to-background ratios. [18F]6 was excreted via the liver. Overall, [18F]6 showed promising characteristics to be used as a PET tracer and could serve as a lead for further development of halogen-based theranostic FAPI radiopharmaceuticals.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Euy-Sung Moon
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Frank Rösch
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Pieter Van Der Veken
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
10
|
Xu M, Ma X, Pigga JE, Zhang H, Wang S, Zhao W, Deng H, Wu AM, Liu R, Wu Z, Fox JM, Li Z. Development of 18F-Labeled hydrophilic trans-cyclooctene as a bioorthogonal tool for PET probe construction. Chem Commun (Camb) 2023; 59:14387-14390. [PMID: 37877355 PMCID: PMC10785124 DOI: 10.1039/d3cc04212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the development of a hydrophilic 18F-labeled a-TCO derivative [18F]3 (log P = 0.28) through a readily available precursor and a single-step radiofluorination reaction (RCY up to 52%). We demonstrated that [18F]3 can be used to construct not only multiple small molecule/peptide-based PET agents, but protein/diabody-based imaging probes in parallel.
Collapse
Affiliation(s)
- Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Jessica E Pigga
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - He Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Huaifu Deng
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Anna M Wu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California, 91010, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Joseph M Fox
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
11
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
12
|
Adhikari K, Dewulf J, Vangestel C, Van der Veken P, Stroobants S, Elvas F, Augustyns K. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS OMEGA 2023; 8:38252-38262. [PMID: 37867688 PMCID: PMC10586181 DOI: 10.1021/acsomega.3c04597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Background: The pretargeted imaging strategy using inverse electron demand Diels-Alder (IEDDA) cycloaddition between a trans-cyclooctene (TCO) and tetrazine (Tz) has emerged and rapidly grown as a promising concept to improve radionuclide imaging and therapy in oncology. This strategy has mostly relied on the use of radiolabeled Tz together with TCO-modified targeting vectors leading to a rapid growth of the number of available radiolabeled tetrazines, while only a few radiolabeled TCOs are currently reported. Here, we aim to develop novel and structurally diverse 18F-labeled cis-dioxolane-fused TCO (d-TCO) derivatives to further expand the bioorthogonal toolbox for in vivo ligation and evaluate their potential for positron emission tomography (PET) pretargeted imaging. Results: A small series of d-TCO derivatives were synthesized and tested for their reactivity against tetrazines, with all compounds showing fast reaction kinetics with tetrazines. A fluorescence-based pretargeted blocking study was developed to investigate the in vivo ligation of these compounds without labor-intensive prior radiochemical development. Two compounds showed excellent in vivo ligation results with blocking efficiencies of 95 and 97%. Two novel 18F-labeled d-TCO radiotracers were developed, from which [18F]MICA-214 showed good in vitro stability, favorable pharmacokinetics, and moderate in vivo stability. Micro-PET pretargeted imaging with [18F]MICA-214 in mice bearing LS174T tumors treated with tetrazine-modified CC49 monoclonal antibody (mAb) (CC49-Tz) showed significantly higher uptake in tumor tissue in the pretargeted group (CC49-Tz 2.16 ± 0.08% ID/mL) when compared to the control group with nonmodified mAb (CC49 1.34 ± 0.07% ID/mL). Conclusions: A diverse series of fast-reacting fluorinated d-TCOs were synthesized. A pretargeted blocking approach in tumor-bearing mice allowed the choice of a lead compound with fast reaction kinetics with Tz. A novel 18F-labeled d-TCO tracer was developed and used in a pretargeted PET imaging approach, allowing specific tumor visualization in a mouse model of colorectal cancer. Although further optimization of the radiotracer is needed to enhance the tumor-to-background ratios for pretargeted imaging, we anticipate that the 18F-labeled d-TCO will find use in studies where increased hydrophilicity and fast bioconjugation are required.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jonatan Dewulf
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | | | - Sigrid Stroobants
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Filipe Elvas
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
13
|
Beaufrez J, Guillouet S, Seimbille Y, Perrio C. Synthesis, Fluorine-18 Radiolabeling, and In Vivo PET Imaging of a Hydrophilic Fluorosulfotetrazine. Pharmaceuticals (Basel) 2023; 16:ph16050636. [PMID: 37242419 DOI: 10.3390/ph16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of 18F-fluorotetrazines, suitable for the radiolabeling of biologics such as proteins and antibodies by IEDDA ligation, represents a major challenge, especially for pre-targeting applications. The hydrophilicity of the tetrazine has clearly become a crucial parameter for the performance of in vivo chemistry. In this study, we present the design, the synthesis, the radiosynthesis, the physicochemical characterization, the in vitro and in vivo stability, as well as the pharmacokinetics and the biodistribution determined by PET imaging in healthy animals of an original hydrophilic 18F-fluorosulfotetrazine. This tetrazine was prepared and radiolabelled with fluorine-18 according to a three-step procedure, starting from propargylic butanesultone as the precursor. The propargylic sultone was converted into the corresponding propargylic fluorosulfonate by a ring-opening reaction with 18/19F-fluoride. Propargylic 18/19F-fluorosulfonate was then subject to a CuACC reaction with an azidotetrazine, followed by oxidation. The overall automated radiosynthesis afforded the 18F-fluorosulfotetrazine in 29-35% DCY, within 90-95 min. The experimental LogP and LogD7.4 values of -1.27 ± 0.02 and -1.70 ± 0.02, respectively, confirmed the hydrophilicity of the 18F-fluorosulfotetrazine. In vitro and in vivo studies displayed a total stability of the 18F-fluorosulfotetrazine without any traces of metabolization, the absence of non-specific retention in all organs, and the appropriate pharmacokinetics for pre-targeting applications.
Collapse
Affiliation(s)
- Jason Beaufrez
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Stéphane Guillouet
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| | - Yann Seimbille
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Cécile Perrio
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| |
Collapse
|
14
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
15
|
Radjani Bidesi NS, Battisti UM, Lopes van de Broek S, Shalgunov V, Dall AM, Bøggild Kristensen J, Sehlin D, Syvänen S, Moos Knudsen G, Herth MM. Development of the First Tritiated Tetrazine: Facilitating Tritiation of Proteins. Chembiochem 2022; 23:e202200539. [PMID: 36333105 PMCID: PMC10100488 DOI: 10.1002/cbic.202200539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/μmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.
Collapse
Affiliation(s)
- Natasha Shalina Radjani Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Sara Lopes van de Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anne-Mette Dall
- Novo Nordisk A/S, Smørmosevej 17-19, Bagsvaerd, 2880, Copenhagen, Denmark
| | | | - Dag Sehlin
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Stina Syvänen
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
16
|
Cook BE, Archbold J, Nasr K, Girmay S, Goldstein SI, Li P, Dandapani S, Genung NE, Tang SP, McClusky S, Plisson C, Afetian ME, Dwyer CA, Fazio M, Drury WJ, Rigo F, Martarello L, Kaliszczak M. Non-invasive Imaging of Antisense Oligonucleotides in the Brain via In Vivo Click Chemistry. Mol Imaging Biol 2022; 24:940-949. [PMID: 35655109 DOI: 10.1007/s11307-022-01744-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.
Collapse
Affiliation(s)
| | | | - Khaled Nasr
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | - Pei Li
- , Biogen, Cambridge, MA, 02142, USA
| | | | | | - Sac-Pham Tang
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | | | | | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | | | | |
Collapse
|
17
|
Lopes van den Broek S, Shalgunov V, García Vázquez R, Beschorner N, Bidesi NSR, Nedergaard M, Knudsen GM, Sehlin D, Syvänen S, Herth MM. Pretargeted Imaging beyond the Blood-Brain Barrier-Utopia or Feasible? Pharmaceuticals (Basel) 2022; 15:1191. [PMID: 36297303 PMCID: PMC9612205 DOI: 10.3390/ph15101191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Pretargeting is a promising nuclear imaging technique that allows for the usage of antibodies (Abs) with enhanced imaging contrast and reduced patient radiation burden. It is based on bioorthogonal chemistry with the tetrazine ligation-a reaction between trans-cyclooctenes (TCOs) and tetrazines (Tzs)-currently being the most popular reaction due to its high selectivity and reactivity. As Abs can be designed to bind specifically to currently 'undruggable' targets such as protein isoforms or oligomers, which play a crucial role in neurodegenerative diseases, pretargeted imaging beyond the BBB is highly sought after, but has not been achieved yet. A challenge in this respect is that large molecules such as Abs show poor brain uptake. Uptake can be increased by receptor mediated transcytosis; however, it is largely unknown if the achieved brain concentrations are sufficient for pretargeted imaging. In this study, we investigated whether the required concentrations are feasible to reach. As a model Ab, we used the bispecific anti-amyloid beta (Aβ) anti-transferrin receptor (TfR) Ab 3D6scFv8D3 and conjugated it to a different amount of TCOs per Ab and tested different concentrations in vitro. With this model in hand, we estimated the minimum required TCO concentration to achieve a suitable contrast between the high and low binding regions. The estimation was carried out using pretargeted autoradiography on brain sections of an Alzheimer's disease mouse model. Biodistribution studies in wild-type (WT) mice were used to correlate how different TCO/Ab ratios alter the brain uptake. Pretargeted autoradiography showed that increasing the number of TCOs as well as increasing the TCO-Ab concentration increased the imaging contrast. A minimum brain concentration of TCOs for pretargeting purposes was determined to be 10.7 pmol/g in vitro. Biodistribution studies in WT mice showed a brain uptake of 1.1% ID/g using TCO-3D6scFv8D3 with 6.8 TCO/Ab. According to our estimations using the optimal parameters, pretargeted imaging beyond the BBB is not a utopia. Necessary brain TCO concentrations can be reached and are in the same order of magnitude as required to achieve sufficient contrast. This work gives a first estimate that pretargeted imaging is indeed possible with antibodies. This could allow the imaging of currently 'undruggable' targets and therefore be crucial to monitor (e.g., therapies for intractable neurodegenerative diseases).
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocío García Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Natasha S. R. Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dag Sehlin
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, University of Uppsala, Dag Hammarskjölds väg 20, 75185 Uppsala, Sweden
| | - Stina Syvänen
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, University of Uppsala, Dag Hammarskjölds väg 20, 75185 Uppsala, Sweden
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Andersen IV, García-Vázquez R, Battisti UM, Herth MM. Optimization of Direct Aromatic 18F-Labeling of Tetrazines. Molecules 2022; 27:molecules27134022. [PMID: 35807267 PMCID: PMC9268649 DOI: 10.3390/molecules27134022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.
Collapse
Affiliation(s)
- Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
19
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|