1
|
Reuther M, Rollet N, Debeaufort F, Chambin O. Orodispersible films prepared by hot-melt extrusion versus solvent casting. Int J Pharm 2025; 675:125536. [PMID: 40164416 DOI: 10.1016/j.ijpharm.2025.125536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
This study investigated the influence of solvent casting and hot-melt extrusion manufacturing methods on the physical, chemical, and functional properties of orodispersible films with the same composition and incorporating a poorly soluble active pharmaceutical ingredient (API). Both techniques produced films that met pharmaceutical standards for disintegration and dissolution times. Solvent casting, the most used method, yielded films with homogeneous distribution of plasticizer, smoother textures, and greater flexibility. In contrast, hot melt extrusion, a solvent-free process, resulted in slightly brittle films due to uneven plasticizer integration, highlighting the impact of manufacturing parameters on film structure. Despite these differences, both methods exhibited similar chemical stability under varying humidity conditions, with API recrystallization occurring at higher humidity, particularly in films prepared by solvent casting. Increased humidity significantly reduced tensile strength, as water acted as a plasticizer, promoting API recrystallization and weakening the structure. Stability tests revealed that hot melt extrusion films retained their structural and chemical integrity over 12 months when stored in impermeable packaging bags. This study confirms the suitability of hot melt extrusion for industrial-scale ODF production, offering advantages such as a solvent-free process, reduced environmental impact, and adaptability for modern pharmaceutical manufacturing, provided formulation and process parameters could be carefully optimized.
Collapse
Affiliation(s)
- Mathieu Reuther
- AdhexPharma, 42-44 Rue de Longvic, 21300 Chenôve, France; Univ. Bourgogne Franche-Comté, L'Institut Agro, Université Bourgogne Europe, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Nicolas Rollet
- AdhexPharma, 42-44 Rue de Longvic, 21300 Chenôve, France
| | - Frédéric Debeaufort
- Univ. Bourgogne Franche-Comté, L'Institut Agro, Université Bourgogne Europe, INRAE, UMR PAM 1517, 21000 Dijon, France; Université Bourgogne Europe, IUT-Dijon-Auxerre, Dpt BioEngineering, 7 blvd Docteur Petitjean, 20178 Dijon Cedex, France
| | - Odile Chambin
- Univ. Bourgogne Franche-Comté, L'Institut Agro, Université Bourgogne Europe, INRAE, UMR PAM 1517, 21000 Dijon, France; Université Bourgogne Europe, Faculty of Health Sciences, Dpt of Pharmaceutical Technology, Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
2
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
3
|
Wojtyłko M, Lamprou DA, Froelich A, Kuczko W, Wichniarek R, Osmałek T. 3D-printed solid oral dosage forms for mental and neurological disorders: recent advances and future perspectives. Expert Opin Drug Deliv 2024; 21:1523-1541. [PMID: 38078427 DOI: 10.1080/17425247.2023.2292692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/05/2023] [Indexed: 11/10/2024]
Abstract
INTRODUCTION 3D printing (3DP) applications in medicine are intensively investigated, creating an opportunity to provide patient-tailored therapy by delivering a drug with an accurate dose and release profile. Moving away from the 'one size fits all' paradigm, it could be beneficial for treating mental and neurological disorders, improving the efficiency and safety of the therapy. The aim of this critical review is to assess recent advances and identify gaps regarding 3DP in this important and challenging field, by focusing on recent research examples. AREAS COVERED Applications of the 3DP techniques for solid dosage forms in mental and neurological disorders have been covered and discussed, together with recent advantages, limitations, and future directions. EXPERT OPINION The personalize treatment, which is considered as the most significant advantage of the 3DP technique, can be beneficial in mental and neurological disorders therapy, where the dose should be adjusted to the patient. Printing of medicines enables creating the structure modifications and thus controlling the drug release or combining multiple drugs into one tablet, simplifying the dose regimen. Medications printed on-demand, in health-care facilities, could address the special needs of pediatric patients and help avoid interruptions in the supply chain. Despite promising advances, the described methods have limitations and need further investigation before being scaled-up to an industrial manufacturing environment. There is also a need to establish protocols for the preparation and registration of 3DP dosage forms.
Collapse
Affiliation(s)
- Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wiesław Kuczko
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Radosław Wichniarek
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Kalosakas G. Drug polymer conjugates: Average release time from thin films. Int J Pharm 2024; 662:124506. [PMID: 39053679 DOI: 10.1016/j.ijpharm.2024.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release tav as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: tav=(1/12)⋅(L2/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant. The former term dominates in a diffusion-controlled release, while the latter one in a reaction-controlled delivery. The crossover regime is exactly described by their sum. The obtained result for the average release time is verified by direct numerical integration through the drug release profiles of the analytical solution. The value of fractional drug release at the characteristic average time is between 60-64%. These results can be used for the design of polymer-drug conjugates with a desired delivery time scale, as well as for the experimental determination of the values of microscopic parameters D and k in a conjugated system of interest.
Collapse
Affiliation(s)
- George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Rio, Greece.
| |
Collapse
|
5
|
Hales D, Bogdan C, Tefas LR, Cornilă A, Chiver MA, Tomuță I, Casian T, Iovanov R, Katona G, Ambrus R, Iurian S. Exploring Vacuum Compression Molding as a Preparation Method for Flexible-Dose Pediatric Orodispersible Films. Pharmaceuticals (Basel) 2024; 17:934. [PMID: 39065784 PMCID: PMC11280104 DOI: 10.3390/ph17070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, solid dosage forms have gained interest in pediatric therapy because they can provide valuable benefits in terms of dose accuracy and stability. Particularly for orodispersible films (ODFs), the literature evidences increased acceptability and dose flexibility. Among the various available technologies for obtaining ODFs, such as solvent casting, hot-melt extrusion, and ink printing technologies, the solvent-free preparation methods exhibit significant advantages. This study investigated Vacuum Compression Molding (VCM) as a solvent-free manufacturing method for the preparation of flexible-dose pediatric orodispersible films. The experimental approach focused on selecting the appropriate plasticizer and ratios of the active pharmaceutical ingredient, diclofenac sodium, followed by the study of their impacts on the mechanical properties, disintegration time, and drug release profile of the ODFs. Additional investigations were performed to obtain insights regarding the solid-state properties. The ODFs obtained by VCM displayed adequate quality in terms of their critical characteristics. Therefore, this proof-of-concept study shows how VCM could be utilized as a standalone method for the production of small-scale ODFs, enabling the customization of doses to meet the individual needs of pediatric patients.
Collapse
Affiliation(s)
- Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetology, Iuliu Hatieganu University of Medicine and Pharmacy, 12 Ion Creangă St, 400002 Cluj-Napoca, Romania
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Maria-Andreea Chiver
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eotvos u. 6, 6720 Szeged, Hungary; (G.K.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eotvos u. 6, 6720 Szeged, Hungary; (G.K.); (R.A.)
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 41 Victor Babeș St, 400002 Cluj-Napoca, Romania; (D.H.); (L.R.T.); (A.C.); (M.-A.C.); (I.T.); (T.C.); (R.I.); (S.I.)
| |
Collapse
|
6
|
Shah S, Patel P, Ferguson A, Bagwe P, Kale A, Adediran E, Singh R, Arte T, Pasupuleti D, Uddin MN, D’Souza M. Buccal Administration of a Zika Virus Vaccine Utilizing 3D-Printed Oral Dissolving Films in a Mouse Model. Vaccines (Basel) 2024; 12:720. [PMID: 39066358 PMCID: PMC11281521 DOI: 10.3390/vaccines12070720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Over the years, research regarding the Zika virus has been steadily increasing. Early immunization for ZIKV is a priority for preventing complications such as microencephaly and Guillain-Barré syndrome (GBS). Unlike traditional vaccination approaches, oral dissolving films (ODFs) or mucoadhesive film technology is an emerging, exciting concept that can be used in the field of pharmaceuticals for vaccine design and formulation development. This attractive and novel method can help patients who suffer from dysphagia as a complication of a disease or syndrome. In this study, we investigated a microparticulate Zika vaccine administered via the buccal route with the help of thin films or oral dissolving films (ODFs) with a prime dose and two booster doses two weeks apart. In vitro, the ODFs displayed excellent physiochemical properties, indicating that the films were good carriers for vaccine microparticles and biocompatible with the buccal mucosa. In vivo results revealed robust humoral (IgG, subtypes IgG1 and IgG2a) and T-cell responses (CD4+/CD8+) for ZIKV-specific immunity. Both the Zika MP vaccine and the adjuvanted Zika MP vaccine affected memory (CD45R/CD27) and intracellular cytokine (TNF-α and IL-6) expression. In this study, ZIKV vaccination via the buccal route with the aid of ODFs demonstrated great promise for the development of pain-free vaccines for infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Martin D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (S.S.); (P.P.); (A.F.); (P.B.); (A.K.); (E.A.); (R.S.); (T.A.); (D.P.); (M.N.U.)
| |
Collapse
|
7
|
Chacko IA, Ramachandran G, Sudheesh MS. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv Transl Res 2024; 14:841-857. [PMID: 37957474 DOI: 10.1007/s13346-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.
Collapse
Affiliation(s)
- Indhu Annie Chacko
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India.
| |
Collapse
|
8
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
9
|
Kim DH, Park JS, Jeong MY, Yang IG, Kim W, Shim SB, Kim HS, Park HY, Ho MJ, Kang MJ. Novel bioequivalent oral disintegrating tablet of aripiprazole prepared by direct compression technique with shortened disintegration time. Pharm Dev Technol 2024; 29:62-73. [PMID: 38190194 DOI: 10.1080/10837450.2024.2301780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Herein, we aimed to formulate a novel oral disintegrating tablet (ODT) of aripiprazole (ARP) capable of rapid disintegration using a direct compression technique. Different ODTs were fabricated with directly compressible excipients, and their disintegration time, wettability (water absorption ratio and wetting time), and mechanical properties (hardness and friability) were evaluated. The optimized ODT comprised F-Melt® type C, Prosolv® SMCC HD90, and Na croscarmellose (10 mg of ARP in a 130 mg tablet). The ODT with 3.1-5.2 kp hardness exhibited rapid disintegration (14.1-17.2 sec), along with appropriate mechanical strength (friability < 0.24%). In a bioequivalent study in Korean healthy subjects (randomized, single-dose, two-period crossover design, n = 37), the novel ODT offered the equivalent pharmacokinetic profile to that of a conventional immediate release tablet (Otsuka, Abilify®, Japan), despite different disintegration and dissolution profiles. The 90% confidence intervals of the geometric mean test to reference ratios considering the area-under-the-curve and maximum plasma drug concentrations were 1.0306-11051 and 0.9448-1.1063, respectively, satisfying FDA regulatory criteria for bioequivalence. The novel ART ODT was physicochemically stable under the accelerated storage condition (40 °C, RH75%) for 24 weeks. Therefore, the novel ARP-loaded ODT is expected to be an alternative to oral ARP therapy, providing improved patient adherence.
Collapse
Affiliation(s)
- Do Hwan Kim
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| | - Wookyung Kim
- Shin Poong Pharm, Simin-daero, Anyang-si, South Korea
| | - Seung Bo Shim
- Shin Poong Pharm, Simin-daero, Anyang-si, South Korea
| | - Hye Seon Kim
- Shin Poong Pharm, Simin-daero, Anyang-si, South Korea
| | | | - Myoung Jin Ho
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, Korea
| |
Collapse
|
10
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
11
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
12
|
Ehtezazi T. Special Issue for "3D Printing of Drug Formulations". Pharmaceuticals (Basel) 2023; 16:1372. [PMID: 37895843 PMCID: PMC10609759 DOI: 10.3390/ph16101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional printing (3DP) is rapidly innovating the manufacturing process and provides opportunities that have never been seen before [...].
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecar Sciences, Centre for Natural Product Discovery, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
13
|
Ye H, He Y, Li H, You T, Xu F. 3D-Printed Polylactic Acid/Lignin Films with Great Mechanical Properties and Tunable Functionalities towards Superior UV-Shielding, Haze, and Antioxidant Properties. Polymers (Basel) 2023; 15:2806. [PMID: 37447452 DOI: 10.3390/polym15132806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Three-dimensional (3D) printing is regarded as a novel technique to realize the customized production of films. However, the relative lack of printable materials with excellent mechanical properties and tailored functionalities seriously restricts its wide application. Herein, a promising multifunctional 3D printing filament was fabricated by incorporating lignin into the polylactic acid (PLA) matrix and firstly applied to film production. The results indicate that lignin was an excellent mechanical reinforcement of the PLA matrix, especially for toughening. Only 0.5% lignin doping improved the toughness by 81.8%. Additionally, 3D-printed films with 0.5-5% lignin exhibited excellent ultraviolet (UV)-blocking capability of 87.4-99.9% for UVB and 65.6-99.8% for UVA, as well as remarkable antioxidant properties, ranging from 24.0% to 79.0%, and high levels of haze, ranging from 63.5% to 92.5%. Moreover, the prepared PLA/lignin (P/L) films based on 3D printing achieved the customization of film production and have potential applications in the fields of packaging, electronic products, medical care, and so forth. Overall, this work not only enriches the 3D printing composites with tailored multifunctionality but also brings the promising potential for the production of customized films.
Collapse
Affiliation(s)
- Haichuan Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yuan He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Shandong Key Laboratory of Paper Science & Technology, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
14
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Orodispersible Films-Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020361. [PMID: 36839683 PMCID: PMC9965071 DOI: 10.3390/pharmaceutics15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orodispersible Films (ODFs) are drug delivery systems manufactured with a wide range of methods on a big scale or for customized medicines and small-scale pharmacy. Both ODFs and their fabrication methods have certain limitations. Many pharmaceutical companies and academic research centers across the world cooperate in order to cope with these issues and also to find new formulations for a wide array of APIs what could make their work profitable for them and beneficial for patients as well. The number of pending patent applications and granted patents with their innovative approaches makes the progress in the manufacturing of ODFs unquestionable. The number of commercially available ODFs is still growing. However, some of them were discontinued and are no longer available on the markets. This review aims to summarize currently marketed ODFs and those withdrawn from sale and also provides an insight into recently published studies concerning orodispersible films, emphasizing of utilized APIs. The work also highlights the attempts of scientific communities to overcome ODF's manufacturing methods limitations.
Collapse
|
16
|
Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1040052. [PMID: 36704231 PMCID: PMC9871616 DOI: 10.3389/fmedt.2022.1040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Three-dimensional (3D) printing or Additive manufacturing has paved the way for developing and manufacturing pharmaceuticals in a personalized manner for patients with high volume and rare diseases. The traditional pharmaceutical manufacturing process involves the utilization of various excipients to facilitate the stages of blending, mixing, pressing, releasing, and packaging. In some cases, these excipients cause serious side effects to the patients. The 3D printing of pharmaceutical manufacturing avoids the need for excessive excipients. The two major components of a 3D printed tablet or dosage form are polymer matrix and drug component alone. Hence the usage of the 3D printed dosage forms for disease treatment will avoid unwanted side effects and provide higher therapeutic efficacy. With respect to the benefits of the 3D printed pharmaceuticals, the present review was constructed by discussing the role of 3D printing in producing formulations of various dosage forms such as fast and slow releasing, buccal delivery, and localized delivery. The dosage forms are polymeric tablets, nanoparticles, scaffolds, and films employed for treating different diseases.
Collapse
Affiliation(s)
- L. R. Jaidev Chakka
- College of Pharmacy, TheUniversity of Texas at Austin, Austin, TX, United States,Correspondence: L. R. Jaidev Chakka
| | - Shanthi Chede
- College of Pharmacy, University of Iowa, Iowa, IA, United States
| |
Collapse
|