1
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
2
|
Hiew TN, Solomos MA, Kafle P, Polyzois H, Zemlyanov DY, Punia A, Smith D, Schenck L, Taylor LS. The importance of surface composition and wettability on the dissolution performance of high drug loading amorphous dispersion formulations. J Pharm Sci 2025; 114:289-303. [PMID: 39349295 DOI: 10.1016/j.xphs.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
One of the limitations with an amorphous solid dispersion (ASD) formulation strategy is low drug loading. Hydrophobic drugs have poor wettability and require a substantial amount of polymer to stabilize the amorphous drug and facilitate release. Using grazoprevir and hypromellose acetate succinate as model drug and polymer, respectively, the interplay between particle surface composition, particle wettability, and release performance was investigated. A hierarchical particle approach was used where the surfaces of high drug loading ASDs generated by either solvent evaporation or co-precipitation were further modified with a secondary excipient (i.e., polymer or wetting agent). The surface-modified particles were characterized for drug release, wettability, morphology, and surface composition using two-stage dissolution studies, contact angle measurements, scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Despite surface modification with hydrophilic polymers, the hierarchical particles did not consistently exhibit good release performance. Contact angle measurements showed that the secondary excipient had a profound impact on particle wettability. Particles with good wettability showed improved drug release relative to particles that did not wet well, even with similar drug loadings. These observations underscore the intricate interplay between particle wettability and performance in amorphous dispersion formulations and illustrate a promising hierarchical particle approach to formulate high drug loading amorphous dispersions with improved dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marina A Solomos
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prapti Kafle
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hector Polyzois
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashish Punia
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
3
|
Park JW, Lee SW, Lee JH, Park SM, Cho SJ, Maeng HJ, Cho KH. Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability. Gels 2024; 10:837. [PMID: 39727594 DOI: 10.3390/gels10120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.2). Among the various molecular weights of polyethylene glycols (PEGs) and surfactants, PEG 200 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the solubilizer and precipitation inhibitor for ATR, respectively. PEG 200 demonstrated very high solubility for ATR (>60%, w/w), and the combined use of TPGS and PEG 200 formed an organogel state and suppressed ATR precipitation, showing 15-fold higher dispersion solubility in buffer solution at pH 1.2 compared to the formulation with PEG 200 alone. The optimal SGF composition (ATR/PEG 200/TPGS = 10/60/30, w/w) exhibited an over 95% dissolution rate within 2 h at pH 1.2, compared to less than 50% for the original commercial product. In a transmission electron microscope analysis, the SGF suppressed ATR precipitation and revealed smaller precipitated particles (<300 nm) compared to the control samples. In the XRD analysis, the SGF was physically stable for 100 days at room temperature without the recrystallization of ATR. In conclusion, the SGF suggested in this work would be an alternative formulation for the treatment of dyslipidemia with enhanced solubility, dissolution, and physical stability.
Collapse
Affiliation(s)
- Jin Woo Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea
| | - Sa-Won Lee
- Department of Pharmaceutical Engineering, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea
| | - Jun Hak Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea
| | - Sung Mo Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea
| | - Sung Jun Cho
- Department of Anesthesiology, National Medical Center, 245 Eulji-ro, Seoul 04564, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoei-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea
| |
Collapse
|
4
|
Triboandas H, Bezerra M, Almeida J, de Castro M, Santos BAMC, Schlindwein W. Optimizing extrusion processes and understanding conformational changes in itraconazole amorphous solid dispersions using in-line UV-Vis spectroscopy and QbD principles. Int J Pharm X 2024; 8:100308. [PMID: 39687500 PMCID: PMC11647160 DOI: 10.1016/j.ijpx.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This paper presents a comprehensive investigation of the manufacturing of itraconazole (ITZ) amorphous solid dispersions (ASDs) with Kolllidon® VA64 (KVA64) using hot-melt extrusion (HME) and in-line process monitoring, employing a Quality by Design (QbD) approach. A sequential Design of Experiments (DoE) strategy was utilized to optimize the manufacturing process, with in-line UV-Vis spectroscopy providing real-time monitoring. The first DoE used a fractional factorial screening design to evaluate critical process parameters (CPPs), revealing that ITZ concentration had the most significant impact on the product quality attributes. The second DoE, employing a central composite design, explored the interactions between feed rate and screw speed, using torque and absorbance at 370 nm as responses to develop a design space. Validation studies confirmed process robustness across multiple days, with stable in-line UV-Vis spectra and consistent product quality using 30 % ITZ, 300 rpm, 150 °C and 7 g/min as the optimized process conditions. Theoretical and experimental analyses indicated that shifts in UV-Vis spectra at different ITZ concentrations were due to conformational changes in ITZ, which were confirmed through density functional theory (DFT) calculations and infrared spectroscopy. This work offers novel insights into the production and monitoring of ITZ-KVA64-ASDs, demonstrating that in-line UV-Vis spectroscopy is a powerful tool for real-time process monitoring and/or control.
Collapse
Affiliation(s)
- Hetvi Triboandas
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mariana Bezerra
- GlaxoSmithKline, David Jack Centre, Harris Lane, Ware, Hertfordshire SG12 0GX, UK
| | | | - Matheus de Castro
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | | |
Collapse
|
5
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
6
|
Smith-Craven MM, Dening TJ, Basra AK, Hageman MJ. Enhanced Dissolution of Amphotericin B through Development of Amorphous Solid Dispersions Containing Polymer and Surfactants. J Pharm Sci 2024; 113:2454-2463. [PMID: 38701896 DOI: 10.1016/j.xphs.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal therapy; however, its poor solubility limits its administration via intravenous infusion. A promising formulation strategy to achieve an oral formulation is the development of amorphous solid dispersions (ASDs) via spray-drying. Inclusion of surfactants into ASDs is a newer concept, yet it offers increased dissolution opportunities when combined with a polymer (HPMCAS 912). We developed both binary ASDs (AmB:HPMCAS 912 or AmB:surfactant) and ternary ASDs (AmB:HPMCAS 912:surfactant) using a variety of surfactants to determine the optimal surfactant carbon chain length and functional group for achieving maximal AmB concentration during in vitro dissolution. The ternary ASDs containing surfactants with a carbon chain length of 14 ± 2 carbons and a sulfate functional group increased the dissolution of AmB by 90-fold compared to crystalline AmB. These same surfactants, when added to a binary ASD, however, were only able to achieve up to a 40-fold increase, alluding to a potential interaction occurring between excipients or excipient and drug. This potential interaction was supported by dynamic light scattering data, in which the ternary formulation produced a single peak at 895.2 dnm. The absence of more than one peak insinuates that all three components are interacting in some way to form a single structure, which may be preventing AmB self-aggregation, thus improving the dissolution concentration of AmB.
Collapse
Affiliation(s)
- Mikayla M Smith-Craven
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Anil K Basra
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
7
|
Zeneli E, Lange JJ, Holm R, Kuentz M. A study of hydrophobic domain formation of polymeric drug precipitation inhibitors in aqueous solution. Eur J Pharm Sci 2024; 198:106791. [PMID: 38705420 DOI: 10.1016/j.ejps.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Despite the widespread use of polymers as precipitation inhibitors in supersaturating drug formulations, the current understanding of their mechanisms of action is still incomplete. Specifically, the role of hydrophobic drug interactions with polymers by considering possible supramolecular conformations in aqueous dispersion is an interesting topic. Accordingly, this study investigated the tendency of polymers to create hydrophobic domains, where lipophilic compounds may nest to support drug solubilisation and supersaturation. Fluorescence spectroscopy with the environment-sensitive probe pyrene was compared with atomistic molecular dynamics simulations of the model drug fenofibrate (FENO). Subsequently, kinetic drug supersaturation and thermodynamic solubility experiments were conducted. As a result, the different polymers showed hydrophobic domain formation to a varying degree and the molecular simulations supported interpretation of fluorescence spectroscopy data. Molecular insights were gained into the conformational structure of how the polymers interacted with FENO in solution phase, which apart from nucleation and crystal growth effects, determined drug concentrations in solution. Notable was that even at the lowest polymer concentration of 0.01 %, w/v, there were polymer-specific solubilisation effects of FENO observed and the resulting reduction in apparent drug supersaturation provided relevant knowledge both from a mechanistic and practical perspective.
Collapse
Affiliation(s)
- Egis Zeneli
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz CH-4132, Switzerland; Institute of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | | | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz CH-4132, Switzerland.
| |
Collapse
|
8
|
Trenkenschuh E, Blattner SM, Hirsh D, Hoffmann R, Luebbert C, Schaefer K. Development of Ternary Amorphous Solid Dispersions Manufactured by Hot-Melt Extrusion and Spray-Drying─Comparison of In Vitro and In Vivo Performance. Mol Pharm 2024; 21:1309-1320. [PMID: 38345459 DOI: 10.1021/acs.molpharmaceut.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Producing amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is favorable from an economic and ecological perspective but also limited to thermostable active pharmaceutical ingredients (APIs). A potential technology shift from spray-drying to hot-melt extrusion at later stages of drug product development is a desirable goal, however bearing the risk of insufficient comparability of the in vitro and in vivo performance of the final dosage form. Hot-melt extrusion was performed using API/polymer/surfactant mixtures with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as the polymer and evaluated regarding the extrudability of binary and ternary amorphous solid dispersions (ASDs). Additionally, spray-dried ASDs were produced, and solid-state properties were compared to the melt-extruded ASDs. Tablets were manufactured of a ternary ASD lead candidate comparing their in vitro dissolution and in vivo performance. The extrudability of HPMCAS was improved by adding a surfactant as plasticizer, thereby lowering the high melt-viscosity. d-α-Tocopheryl polyethylene glycol succinate (TPGS) as surfactant showed the most similar solid-state properties between spray-dried and extruded ASDs compared to those of poloxamer 188 and sodium dodecyl sulfate. The addition of TPGS, however, barely affected API/polymer interactions. The in vitro dissolution experiment and in vivo dog study revealed a higher drug release of tablets manufactured from the spray-dried ASD compared to the melt-extruded ASD; this was attributed to the different particle size. We could further demonstrate that the drug release can be controlled by adjusting the particle size of melt-extruded ASDs leading to a similar release profile compared to tablets containing the spray-dried dispersion, which confirmed the feasibility of a technology shift from spray-drying to HME upon drug product development.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach/Riß, Germany
| | - Simone M Blattner
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach/Riß, Germany
| | - David Hirsh
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Ragna Hoffmann
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach/Riß, Germany
| | | | - Kerstin Schaefer
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach/Riß, Germany
| |
Collapse
|
9
|
Roche A, Sanchez-Ballester NM, Bataille B, Delannoy V, Soulairol I. Fused Deposition Modelling 3D printing and solubility improvement of BCS II and IV active ingredients - A narrative review. J Control Release 2024; 365:507-520. [PMID: 38036003 DOI: 10.1016/j.jconrel.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the field of pharmaceutical research and development, Fused Deposition Modelling (FDM) 3D printing (3DP) has aroused growing interest within the last ten years. The use of thermoplastic polymers, combined with the melting process of the raw materials, offers the possibility of manufacturing amorphous solid dispersions (ASDs). In the pharmaceutical industry, the formulation of an ASD is a widely used strategy to improve the solubility of poorly soluble drugs (classified by the Biopharmaceutical Classification System (BCS) as class II and IV). In this review, an analysis of studies that have developed a FDM printed form containing a BCS class II or IV active substance was performed. The focus has been placed on the evaluation of the solid state of the active molecules (crystalline or amorphous) and on the study of their dissolution profile. Thus, the aim of this work is to highlight the interest of FDM 3DP to induce the amorphisation phenomenon of Class II and IV active substances by forming an ASD, and as result improving their solubility.
Collapse
Affiliation(s)
- Agnès Roche
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Noelia M Sanchez-Ballester
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| | - Bernard Bataille
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Violaine Delannoy
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Ian Soulairol
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
10
|
Yu M, Oberoi HS, Purohit HS, Fowler CA, Law D. Design of Redispersible High-Drug-Load Amorphous Formulations: Impact of Ionic vs Nonionic Surfactants on Processing and Performance. Mol Pharm 2023; 20:5827-5841. [PMID: 37876176 DOI: 10.1021/acs.molpharmaceut.3c00684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Amorphous solid dispersions (ASDs) are an enabling formulation approach used to enhance bioavailability of poorly water-soluble molecules in oral drug products. Drug-rich amorphous nanoparticles generated in situ during ASD dissolution maintain supersaturation that drives enhanced absorption. However, in situ formation of nanoparticles requires large quantities of polymers to release drugs rapidly, resulting in an ASD drug load <25%. Delivering directly engineered drug-rich amorphous nanoparticles can reduce the quantities of polymers significantly without sacrificing bioavailability. Preparation of 90% drug-load amorphous nanoparticles (ANPs) of <300 nm diameter using solvent/antisolvent nanoprecipitation, organic solvent removal, and spray drying was demonstrated previously on model compound ABT-530 with Copovidone and sodium dodecyl sulfate (anionic). In this work, nonionic surfactant d-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or TPGS) was used to prepare ANPs as a comparison. Characterization of ANPs by dynamic light scattering, filtrate potency assay, scanning electron microscopy, and differential scanning calorimetry revealed differences in surface properties of nanoparticles afforded by surfactants. This work demonstrates the importance of understanding the impact of the stabilizing agents on nanoparticle behavior when designing a high-drug-load amorphous formulation for poorly water-soluble compounds as well as the impact on redispersion.
Collapse
Affiliation(s)
- Mengqi Yu
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Hardeep S Oberoi
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Hitesh S Purohit
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Craig A Fowler
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Devalina Law
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
11
|
Mukesh S, Mukherjee G, Singh R, Steenbuck N, Demidova C, Joshi P, Sangamwar AT, Wade RC. Comparative analysis of drug-salt-polymer interactions by experiment and molecular simulation improves biopharmaceutical performance. Commun Chem 2023; 6:201. [PMID: 37749228 PMCID: PMC10519957 DOI: 10.1038/s42004-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na+/K+ salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.
Collapse
Affiliation(s)
- Sumit Mukesh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Goutam Mukherjee
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Nathan Steenbuck
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Carolina Demidova
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Faculty of Chemistry, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector-67, Mohali, Punjab, 160062, India.
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany.
| |
Collapse
|
12
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
13
|
Patel H, Palekar S, Patel A, Patel K. Ibrutinib amorphous solid dispersions with enhanced dissolution at colonic pH for the localized treatment of colorectal cancer. Int J Pharm 2023; 641:123056. [PMID: 37207861 DOI: 10.1016/j.ijpharm.2023.123056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Colorectal cancer (CRC) is the second most leading cause of cancer-related deaths worldwide. Ibrutinib (IBR), the first in class bruton tyrosine kinase (BTK) inhibitor has promising anticancer activity. In this study, we aimed to develop a hot melt extrusion based amorphous solid dispersions (ASD) of IBR with enhanced dissolution at colonic pH and assess the anticancer activity against colon cancer cell lines. Since colonic pH is higher in CRC patients compared to healthy individuals, Eudragit® FS100 was used as pH dependent polymeric matrix for colon enabled release of IBR. Poloxamer 407, TPGS and poly(2-ethyl-2-oxazoline) were screened as plasticizer and solubilizer to improve the processability and solubility. Solid state characterization and filament appearance confirmed that IBR was molecularly dispersed within FS100+TPGS matrix. In-vitro drug release of ASD showed >96% drug release within 6 h at colonic pH with no precipitation for 12 h. Contrary, crystalline IBR showed negligible release. ASD with TPGS showed significantly higher anticancer activity in 2D and multicellular 3D spheroids of colon carcinoma cell lines (HT-29 and HT-116). The outcomes of this research suggested that ASD with a pH dependent polymer is a promising strategy to improve solubility and an effective approach in colorectal cancer targeting.
Collapse
Affiliation(s)
- Henis Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Siddhant Palekar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
14
|
Jia X, Chen J, Cheng H, Pan X, Ke Y, Fu T, Qiao H, Cui X, Li W, Zou L, Cheng J, Li J. Use of surfactant-based amorphous solid dispersions for BDDCS class II drugs to enhance oral bioavailability: A case report of resveratrol. Int J Pharm 2023; 641:123059. [PMID: 37196879 DOI: 10.1016/j.ijpharm.2023.123059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
This paper aimed to improve in vitro dissolution/solubility as well as inhibit intestinal metabolism and thus enhance oral bioavailability for a BDDCS class II drug by constructing surfactant-based amorphous solid dispersions using resveratrol (RES) as a model drug. After preliminary screening of polymers and surfactants, and subsequent prescription optimization, two optimized spray-drying RES-polymer-surfactant ASDs were obtained and exhibited a significant increase in solubility of RES by 2.69-3.45-fold compared to crystalline RES, and by 1.13-1.56-fold compared to corresponding RES-polymer ASDs, maintaining a higher concentration in the dissolution process. A metabolism study using everted sacs showed that two optimized ASDs reduced the concentration ratio of RES-G to RES to 51.66%-52.05% of crystalline RES on the serosal side of the rat everted intestinal sac at 2 h. Consequently, these two RES-polymer-surfactant ASDs achieved significantly higher exposure of RES in the plasma with significant enhancements in Cmax (2.33-2.35-fold higher than crystalline RES, and 1.72-2.04-fold higher than corresponding RES-polymer ASDs), and in AUC 0-∞ (3.51-3.56-fold higher than crystalline RES, and 1.38-1.41-fold higher than corresponding RES-polymer ASDs). These advantages of the RES-polymer-surfactant ASDs in oral absorption of RES were attributed to solubilization by ASDs and metabolic inhibition by UGT inhibitors. The introduction of surfactants including EL and Lab to ASDs plays an important role in inhibiting glucuronidation and further improving solubility. This study demonstrated that such surfactant-based amorphous solid dispersions may serve as a new approach to increase the oral absorption of BDDCS class II drugs.
Collapse
Affiliation(s)
- Xiaoshun Jia
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Xinxin Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Wen Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, 138 Xianlin Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
15
|
Xi Z, Fei Y, Wang Y, Lin Q, Ke Q, Feng G, Xu L. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
17
|
Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
19
|
Enteric Polymer-Based Amorphous Solid Dispersions Enhance Oral Absorption of the Weakly Basic Drug Nintedanib via Stabilization of Supersaturation. Pharmaceutics 2022; 14:pharmaceutics14091830. [PMID: 36145578 PMCID: PMC9506478 DOI: 10.3390/pharmaceutics14091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The pH−induced crystallization of weakly basic drugs in the small intestine limits oral bioavailability. In this study, we investigated the solubilization and inhibitory effects on nintedanib in the presence of enteric polymers (HPMCAS LG, HPMCAS MG, Eudragit L100 55, and Eudragit L100). These polymers provided maintenance of supersaturation by increasing the solubility of nintedanib in PBS 6.8 in a concentration-dependent manner, and the improved ranking was as follows: Eudragit L100 > Eudragit L100 55 > HPMCAS MG > HPMCAS LG. After being formulated into amorphous solid dispersions (ASDs) by a solvent evaporation method, the drug exhibited an amorphous state. The pH shift dissolution results of polymer-ASDs demonstrated that four polymers could effectively maintain the drug supersaturation even at the lowest ratio of nintedanib and polymer (1:1, w/w). Eudragit L100−ASD could provide both acid resistance and the favorable mitigation of crystallization in GIF. In comparison to the coarse drug, the relative bioavailability of Eudragit L100−ASD was 245% after oral administration in rats, and Tmax was markedly delayed from 2.8 ± 0.4 h to 5.3 ± 2.7 h. Our findings indicate that enteric ASDs are an effective strategy to increase the intestinal absorption of nintedanib by improving physiologically generated supersaturation and subsequent crystallization.
Collapse
|
20
|
Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm 2022; 625:122120. [PMID: 35987321 DOI: 10.1016/j.ijpharm.2022.122120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Amorphous solid dispersion formulations (ASD) are increasingly being used as a formulation strategy to improve bioavailability of poorly soluble drugs. One of the limitations of ASDs, in particular for high glass transition temperature (Tg) compounds, is the drug loading threshold (termed the limit of congruency, LoC) below which rapid, complete and congruent release of drug and polymer is achieved. In this study, several ionic and non-ionic surfactants were added to atazanavir-copovidone ASDs with the main goal of increasing the limit of congruency. Atazanavir (ATZ) is a relatively high Tg compound with a LoC of 5 % drug loading (DL). Surface normalized dissolution studies revealed that addition of 5 % w/w of surfactant, sodium dodecyl sulfate (SDS) or cetrimonium bromide (CTAB), to the binary copovidone-based ASD doubled the LoC (from 5 to 10 % DL), resulting in a more than 30-fold increase in total release compared to the corresponding binary ASD. Moreover, addition of 5 % of Span®80 increased the LoC to 15 % DL. ASD Tg was found to decrease upon addition of surfactants and water sorption extent was found to increase. We speculate that surfactants act as plasticizers, which may facilitate polymer release from ASDs containing a high Tg drug, providing a possible explanation for the observed enhancement in drug release from ternary ASDs and the increase in LoC.
Collapse
|
21
|
Butreddy A. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic. Eur J Pharm Biopharm 2022; 177:289-307. [PMID: 35872180 DOI: 10.1016/j.ejpb.2022.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Amorphous solid dispersions (ASDs) are a proven system for achieving a supersaturated state of drug, in which the concentration of drug is greater than its crystalline solubility. The usage of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) in the development of ASDs has grown significantly, as evidenced by the fact that majority of commercially approved ASD formulations are based on HPMCAS. HPMCAS has been widely utilized as a solubility enhancer and precipitation inhibitor or stabilizer to achieve supersaturation and inhibit crystallization of drugs in the gastrointestinal tract. The characteristics of HPMCAS ASDs such as less hygroscopic, strong drug-polymer hydrophobic interactions, high solubilization efficiency, greater potential to generate, maintain drug supersaturation and crystallization inhibition outperform other polymeric carriers in ASD development. Furthermore, combining HPMCAS with other polymers or surfactants as ternary ASDs could be a viable approach for enhancing oral absorption of poorly soluble drugs. This review discusses the concepts of supersaturation maintenance or precipitation inhibition of HPMCAS in the ASD formulations. In addition, the mechanisms underlying for improved dissolution performance, oral bioavailability and stability of HPMCAS ASDs are explored.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
22
|
Characterizing the Physicochemical Properties of Two Weakly Basic Drugs and the Precipitates Obtained from Biorelevant Media. Pharmaceutics 2022; 14:pharmaceutics14020330. [PMID: 35214062 PMCID: PMC8879660 DOI: 10.3390/pharmaceutics14020330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Generally, some weakly basic insoluble drugs will undergo precipitate and redissolution after emptying from the stomach to the small intestinal, resulting in the limited ability to predict the absorption characteristics of compounds in advance. Absorption is determined by the solubility and permeability of compounds, which are related to physicochemical properties, while knowledge about the absorption of redissolved precipitate is poorly documented. Considering that biorelevant media have been widely used to simulate gastrointestinal fluids, sufficient precipitates can be obtained in biorelevant media in vitro. Herein, the purpose of this manuscript is to evaluate the physicochemical properties of precipitates obtained from biorelevant media and active pharmaceutical ingredients (API), and then to explore the potential absorption difference between API and precipitates. Precipitates can be formed by the interaction between compounds and intestinal fluid contents, leading to changes in the crystal structure, melting point, and melting process. However, the newly formed crystals have some advantageous properties compared with the API, such as the improved dissolved rate and the increased intrinsic dissolution rate. Additionally, the permeability of some precipitates obtained from biorelevant media was different from API. Meanwhile, the permeability of rivaroxaban and Drug-A was decreased by 1.92-fold and 3.53-fold, respectively, when the experiments were performed in a biorelevant medium instead of a traditional medium. Therefore, the absorption of precipitate may differ from that of API, and the permeability assay in traditional medium may be overestimated. Based on the research results, it is crucial to understand the physicochemical properties of precipitates and API, which can be used as the departure point to improve the prediction performance of absorption.
Collapse
|
23
|
Anane-Adjei AB, Jacobs E, Nash SC, Askin S, Soundararajan R, Kyobula M, Booth J, Campbell A. Amorphous Solid Dispersions: Utilization and Challenges in Preclinical Drug Development within AstraZeneca. Int J Pharm 2021; 614:121387. [PMID: 34933082 DOI: 10.1016/j.ijpharm.2021.121387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
The poor aqueous solubility of many active pharmaceutical ingredients (APIs) dominates much of the early drug development portfolio and poses a major challenge in pharmaceutical development. Polymer-based amorphous solid dispersions (ASDs) are becoming increasingly common and offer a promising formulation strategy to tackle the solubility and oral absorption issues of these APIs. This review discusses the design, manufacture, and utilisation of ASD formulations in preclinical drug development, with a key focus on the pre-formulation assessments and workflows employed at AstraZeneca.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Esther Jacobs
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Samuel C Nash
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Ramesh Soundararajan
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Mary Kyobula
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - Jonathan Booth
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
24
|
Lee JH, Park C, Weon KY, Kang CY, Lee BJ, Park JB. Improved Bioavailability of Poorly Water-Soluble Drug by Targeting Increased Absorption through Solubility Enhancement and Precipitation Inhibition. Pharmaceuticals (Basel) 2021; 14:ph14121255. [PMID: 34959655 PMCID: PMC8707685 DOI: 10.3390/ph14121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system. Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ changed from a crystalline state to an amorphous state during the HME process, as determined using DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an in vitro method. In the in vivo study that was carried out in rats, the AUC0-48h of the commercial formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL-1, and the bioavailability of the SD pellet (2969.7 ± 720.6 ng·h·mL-1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results of the in vivo test in beagle dogs revealed that the AUC0-24h of the SD-1 pellet (which was designed to enhance drug release into gastric fluids) was 3.37 ± 3.28 μg·h·mL-1 and that of the SD-2 pellet (which was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 μg·h·mL-1. The AUC of the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ would exist in a supersaturated state in the area of drug absorption. These results indicated that the absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability of ITZ could be improved by inhibiting precipitation in the absorption area.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kwon-Yeon Weon
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea;
| | - Chin-Yang Kang
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
- Bioavailability Control Lab, Sahmyook University, Seoul 01795, Korea
- Correspondence: ; Tel.: +82-2-3399-1624
| |
Collapse
|
25
|
Kapourani A, Tzakri T, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X 2021; 3:100086. [PMID: 34151251 PMCID: PMC8193146 DOI: 10.1016/j.ijpx.2021.100086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
The present study evaluates the crystal growth rate of amorphous drugs when dispersed in different ternary polymeric amorphous solid dispersions (ASDs) in the presence of surfactants. Specifically, ternary ASDs of aprepitant (APT, selected as a model drug) were prepared via melt-quench cooling by evaluating three commonly used ASDs matrix/carriers, namely hydroxypropyl cellulose (HPC), poly(vinylpyrrolidone) (PVP) and the copolymer Soluplus® (SOL), and two suitable surfactants, namely d-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P407). Results showed that all components were completely miscible (verified via hot stage polarized microscopy) and both surfactants were acting as plasticizers to the API. APT's crystal growth rate was increased in the presence of both P407 and TPGS, while PVP was identified as the matrix/carrier with the greatest impact API's crystal growth rate inhibition. Interestingly, TPGS presented a noticeable synergistic effect when combined with PVP resulting in a further reduction of APT's crystal growth rate. Furthermore, evaluation of APT's nucleation induction time in dissolution medium (PBS pH 6.8) revealed PVP as the most effective crystallization inhibitor, whereas the addition of TPGS showed to improve PVP's ability to inhibit APT's recrystallization. Finally, the formation of intermolecular interactions in the ternary APT-PVP-TPGS provided an explanation for the observed PVP-TPGS synergistic effects, with molecular dynamics simulations being able to unravel the type and extent of these interactions on a theoretical basis.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Tzakri
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasiliki Valkanioti
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
26
|
An ultrasonographic assisted investigation for the enhancement of duodenal/cecal motility of mosapride through a surfactant-based triple solid dispersion: In-vitro, in-vivo assessment of tablet formulation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
28
|
Shi X, Fan B, Zhou X, Chen Q, Shen S, Xing X, Deng Y. Preparation and Characterization of Ibrutinib Amorphous Solid Dispersions: a Discussion of Interaction Force. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
30
|
Shinde UK, Suryawanshi DG, Amin PD. Development of Gelucire ® 48/16 and TPGS Mixed Micelles and Its Pellet Formulation by Extrusion Spheronization Technique for Dissolution Rate Enhancement of Curcumin. AAPS PharmSciTech 2021; 22:182. [PMID: 34129146 DOI: 10.1208/s12249-021-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.
Collapse
|
31
|
Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics 2021; 13:pharmaceutics13050735. [PMID: 34067666 PMCID: PMC8156319 DOI: 10.3390/pharmaceutics13050735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
To reduce the dosage size of amorphous solid dispersion (ASD)-based formulations, it is of interest to devise formulation strategies that allow increased drug loading (DL) without compromising dissolution performance. The aim of this study was to explore how surfactant addition impacts drug release as a function of drug loading from a ternary ASD, using felodipine as a model poorly soluble compound. The addition of 5% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant) to felodipine-polyvinylpyrrolidone/vinyl acetate ASDs was found to facilitate rapid and congruent (i.e., simultaneous) release of drug and polymer at higher DLs relative to binary ASDs (drug and polymer only). For binary ASDs, good release was observed for DLs up to <20% DL; this increased to 35% DL with surfactant. Microstructure evolution in ASD films following exposure to 100% relative humidity was studied using atomic force microscopy coupled with nanoscale infrared imaging. The formation of discrete, spherical drug-rich domains in the presence of surfactant appeared to be linked to systems showing congruent and rapid release of drug and polymer. In contrast, a contiguous drug-rich phase was formed for systems without surfactant at higher DLs. This study supports the addition of surfactant to ASD formulations as a strategy to increase DL without compromising release. Furthermore, insights into the potential role of surfactant in altering ASD release mechanisms are provided.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Oral Formulation Sciences and Technology, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pradnya Bapat
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Dana E. Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Umesh S. Kestur
- Drug Product Development, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, NJ 08903, USA;
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Correspondence: ; Tel.: +1-765-496-6614
| |
Collapse
|
32
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Yang L, Wu P, Xu J, Xie D, Wang Z, Wang Q, Chen Y, Li CH, Zhang J, Chen H, Quan G. Development of Apremilast Solid Dispersion Using TPGS and PVPVA with Enhanced Solubility and Bioavailability. AAPS PharmSciTech 2021; 22:142. [PMID: 33893566 DOI: 10.1208/s12249-021-02005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
Apremilast (APST) is an effective inhibitor of phosphodieasterase 4 (PDE4) which is the first oral drug for the treatment of adult patients with active psoriatic arthritis. However, Apremilast's low solubility restricts its dissolution and bioavailability. In this study, APST solid dispersion with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and Poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA) was developed to improve the dissolution and bioavailability of APST by spray drying. A series of TPGS were synthesized to elucidate the effect of the ratio of monoester to diester on solubilizing capacity. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectrophotometry (FT-IR) were used to characterize the solid dispersion, and the results showed that APST was amorphous in solid dispersion. In vitro dissolution study showed that the dissolution rate of solid dispersion in phosphate buffered saline (pH 6.8) was remarkably increased, reaching a release of 90% within 10 min. Moreover, in vivo pharmacokinetics study revealed that the bioavailability of solid dispersion in rats had significant improvement. In particular, its Cmax and AUClast were nearly 22- and 12.9-fold greater as compared to APST form B, respectively. In conclusion, APST solid dispersion with TPGS and PVPVA is an alternative drug delivery system to improve the solubility and oral bioavailability of APST.
Collapse
Affiliation(s)
- Liuhong Yang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Penghui Wu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Jinchao Xu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Dihuan Xie
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Zhongqing Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Qian Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Yong Chen
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China.
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China.
| | - Chuan Hua Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China
| | - Jiaxin Zhang
- College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Paisana MC, Lino PR, Nunes PD, Pinto JF, Henriques J, Paiva AM. Laser diffraction as a powerful tool for amorphous solid dispersion screening and dissolution understanding. Eur J Pharm Sci 2021; 163:105853. [PMID: 33865976 DOI: 10.1016/j.ejps.2021.105853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Biopharmaceutics Classification System (BCS) class II and IV drugs may be formulated as supersaturating drug delivery systems (e.g., amorphous solid dispersions [ASDs]) that can generate a supersaturated drug solution during gastrointestinal (GI) transit. The mechanisms that contribute to increased bioavailability are generally attributed to the increased solubility of the amorphous form, but another mechanism with significant contributions to the improved bioavailability have been recently identified. This mechanism consists on the formation of colloidal species and may further improve the bioavailability several fold beyond that of the amorphous drug alone. These colloidal species occur when the concentration of drug generated in solution exceeds the amorphous solubility during dissolution, resulting in a liquid-liquid phase separation (LLPS). For the appearance of LLPS, the crystallization kinetics needs to be slow relatively to the dissolution process. This work intended to implement an analytical methodology to understand the ability of a drug to form colloidal species in a biorelevant dissolution media. This screening tool was therefore focused on following the colloidal formation and crystallization kinetics of itraconazole (ITZ; model drug from BSC class II) in the presence of hydroxypropyl methylcellulose (HPMC-AS L and HPMC-AS M, which are HPMC-AS with varying ratios of succinoyl:acetyl groups), using a laser diffraction-based methodology. The ability of ITZ to form colloids by a solvent-shift approach was compared with the actual colloidal formation of ITZ amorphous solid dispersions produced by spray-drying. Results indicate that regardless of the used methodology, colloids of ITZ can be detected and monitored. The extension of colloid generation showed to be correlated with the ASD disintegration/dissolution rate, i.e, polymers with faster wettability kinetics led to faster ASD disintegration and colloidal formation. As conclusion, this study showed that laser diffraction could give complementary information about colloidal formation and ASD dissolution profile, showing to be an excellent screening strategy to be applied in the early stage development of amorphous solid dispersions.
Collapse
Affiliation(s)
- Maria C Paisana
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal.
| | - Paulo R Lino
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Patricia D Nunes
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João F Pinto
- iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João Henriques
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Ana Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| |
Collapse
|
35
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Rao MRP, Godbole RV, Borate SG, Mahajan S, Gangwal T. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Drug Dev Ind Pharm 2021; 47:367-376. [PMID: 33492985 DOI: 10.1080/03639045.2021.1879830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Improving solubility and bioavailability of albendazole (ALB). SIGNIFICANCE ALB is a broad-spectrum anthelminthic BCS class II drug with aqueous solubility of solubility of 4.1 mg/l at 25 °C and oral bioavailability of <5%. METHODS ALB nanosuspensions (NSs) were prepared by evaporative antisolvent precipitation using tocopherol polyethylene glycol succinate (TPGS) and polyvinyl pyrrolidone (PVP) as stabilizers and characterized for particle size, polydispersity index, and zeta potential. 32 factorial design was used to investigate effect of stabilizer concentration and speed of stirring on particle size. Concentration of TPGS was varied from 0.03 to 0.05% w/v and PVP K-30 was constant at 0.04% w/v. Stirring speed range was 1000-3000 rpm. Optimized NS was loaded on Espheres and coated with Eudragit S10& L100 and studied for friability, surface morphology and release kinetics. RESULTS Factorial experiments revealed pronounced effect of TPGS on particle size. Optimized batch had particle size of 251 ± 7.2 nm and zeta potential -16.2 ± 2.68 mV. Saturation solubility showed increase of 16-fold in water whereas in phosphate buffer increase was fourfold. ALB-NS secondary coated Espheres released 94.3% drug in 10 h whereas ALB-MS (microsuspension) coated Espheres showed 58% release. A 1.3-fold increase in AUC0-10h was evident. Permeation from ALB-NS coated Espheres was 32% in 60 min while for ALB-MS coated Espheres it was 20%. Permeation increase occurred due to presence of TPGS which acts as a permeation enhancer.
Collapse
Affiliation(s)
| | | | | | | | - Tejal Gangwal
- Pharmaceutics, AISSMS College of Pharmacy, Pune, India
| |
Collapse
|
37
|
Improved Bioavailability and High Photostability of Methotrexate by Spray-Dried Surface-Attached Solid Dispersion with an Aqueous Medium. Pharmaceutics 2021; 13:pharmaceutics13010111. [PMID: 33467157 PMCID: PMC7830624 DOI: 10.3390/pharmaceutics13010111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Low aqueous solubility and poor bioavailability are major concerns in the development of oral solid-dosage drug forms. In this study, we fabricated surface-attached solid dispersion (SASD) to enhance the solubility, bioavailability, and photostability of methotrexate (MTX), a highly lipophilic and photo-unstable drug. Several MTX-loaded SASD formulations were developed for spray-drying using water as the solvent, and were investigated for their aqueous solubility and dissolution kinetics. An optimized ternary SASD formulation composed of MTX/ sodium carboxymethyl cellulose (Na-CMC)/sodium lauryl sulfate (SLS) at 3/0.5/0.5 (w/w) had 31.78-fold and 1.88-fold higher solubility and dissolution, respectively, than MTX powder. For SASD, the in vivo pharmacokinetic parameters AUC and Cmax were 2.90- and 3.41-fold higher, respectively, than for the MTX powder. Solid-state characterizations by differential scanning calorimetry and X-ray diffraction revealed that MTX exists in its crystalline state within the spray-dried SASD. The MTX-loaded SASD formulation showed few physical changes with photostability testing. Overall, the results indicate that the spray-dried MTX-loaded SASD formulation without organic solvents enhances the solubility and oral bioavailability of MTX without a significant deterioration of its photochemical stability.
Collapse
|
38
|
Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO. Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance†. Mol Pharm 2020; 18:198-213. [PMID: 33291881 DOI: 10.1021/acs.molpharmaceut.0c00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the benefits of a ternary amorphous solid dispersion (ASD) that was designed as an immediate-release tablet with a high drug load (e.g., 40% w/w) to produce heightened maintenance of drug supersaturation during dissolution testing, which will be henceforth referred to as the "maintenance ability". Ternary ASD granules were produced by hot melt extrusion (HME) and were comprised of itraconazole (ITZ) 50%, hypromellose (HPMC) 20%, and mesoporous silica (XDP) 30%, where amorphous ITZ incorporated into HPMC was efficiently absorbed in XDP pores. The ternary ASD granules containing a high-viscosity HPMC (AF4M) produced a significantly heightened maintenance ability of drug supersaturation in neutral pH dissolution media in which crystalline ITZ solubility is below 1 μg/mL. The final tablet formulation contained 80% w/w of the ASD granules (40% w/w ITZ), had an acceptable size, and exhibited both sufficient tablet hardness and disintegration. The dissolution behavior of the ternary ASD tablet exhibited a supersaturation maintenance ability similar to that of the ASD granules. Under neutral conditions, the ternary ASD tablet showed immediate and higher ITZ release compared with the binary ASD tablets, and this phenomenon could be explained by the difference in ITZ/AF4M particle size in the tablet. In high-resolution scanning electron microscopy (SEM), it was observed that ITZ and AF4M in the ternary formulation could easily form nano-sized particles (<1 μm) during the absorption process into/onto XDP pores prepared by HME, which contributed to the immediate ITZ release from the ternary ASD tablet under neutral pH conditions. Therefore, the ternary ASD containing high-viscosity HPMC and mesoporous silica prepared by HME made it possible to design a high ASD content, small-size tablet with an ideal dissolution profile in biorelevant media, and we expect that this technology can be applied for continuous HME ASD manufacturing.
Collapse
Affiliation(s)
- Masataka Hanada
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Scott V Jermain
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,Formulation and Process Development, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Hirosuke Furuta
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mamoru Fukuda
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Wu Q, Feng D, Huang Z, Chen M, Yang D, Pan X, Lu C, Quan G, Wu C. Supersaturable organic-inorganic hybrid matrix based on well-ordered mesoporous silica to improve the bioavailability of water insoluble drugs. Drug Deliv 2020; 27:1292-1300. [PMID: 32885715 PMCID: PMC7580725 DOI: 10.1080/10717544.2020.1815898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/01/2022] Open
Abstract
Mesoporous silica with uniform 2-D hexagonal pores has been newly employed as facile reservoir to impove the dissolution rate of water insoluble drugs. However, rapid drug release from mesoporous silica is usually accompanied by the generation of supersaturated solution, which leads to the drug precipitation and compromised absorption. To address this issue, a supersaturated ternary hybrid system was constructed in this study by utilizing inorganic mesoporous silica and organic precipitation inhibitor. Vinylprrolidone-vinylacetate copolymer (PVP VA64) with similar solubility parameter to model drug fenofibrate (FNB) was expected to well inhibit the precipitation. Mesoporous silica Santa Barbara amorphous-15 (SBA-15) was synthesized in acidic media and hybrid matrix was produced by hot melt extrusion technique. The results of in vitro supersaturation dissolution test obviously revealed that the presence of PVP VA64 could effectively sustain a higher apparent concentration. PVP VA64 was suggested to simultaneously reduce the rate of nucleation and crystal growth and subsequently maintain a metastable supersaturated state. The absorption of FNB delivered by the organic-inorganic hybrid matrix was remarkably enhanced in beagle dogs, and its AUC value was 1.92-fold higher than that of FNB loaded mesoporous silica without PVP VA 64. In conclusion, the supersaturated organic-inorganic hybrid matrix can serve as a modular strategy to enhance the oral availability of water insoluble drugs.
Collapse
Affiliation(s)
- Qiaoli Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, Zengcheng District People’s Hospital, Guangzhou, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Jamróz W, Pyteraf J, Kurek M, Knapik-Kowalczuk J, Szafraniec-Szczęsny J, Jurkiewicz K, Leszczyński B, Wróbel A, Paluch M, Jachowicz R. Multivariate Design of 3D Printed Immediate-Release Tablets with Liquid Crystal-Forming Drug-Itraconazole. MATERIALS 2020; 13:ma13214961. [PMID: 33158192 PMCID: PMC7662355 DOI: 10.3390/ma13214961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
The simplicity of object shape and composition modification make additive manufacturing a great option for customized dosage form production. To achieve this goal, the correlation between structural and functional attributes of the printed objects needs to be analyzed. So far, it has not been deeply investigated in 3D printing-related papers. The aim of our study was to modify the functionalities of printed tablets containing liquid crystal-forming drug itraconazole by introducing polyvinylpyrrolidone-based polymers into the filament-forming matrices composed predominantly of poly(vinyl alcohol). The effect of the molecular reorganization of the drug and improved tablets’ disintegration was analyzed in terms of itraconazole dissolution. Micro-computed tomography was applied to analyze how the design of a printed object (in this case, a degree of an infill) affects its reproducibility during printing. It was also used to analyze the structure of the printed dosage forms. The results indicated that the improved disintegration obtained due to the use of Kollidon®CL-M was more beneficial for the dissolution of itraconazole than the molecular rearrangement and liquid crystal phase transitions. The lower infill density favored faster dissolution of the drug from printed tablets. However, it negatively affected the reproducibility of the 3D printed object.
Collapse
Affiliation(s)
- Witold Jamróz
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (J.S.-S.); (R.J.)
- Correspondence: (W.J.); (M.K.); Tel.: +48-12-62-05-600 (W.J. & M.K.)
| | - Jolanta Pyteraf
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (J.S.-S.); (R.J.)
| | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (J.S.-S.); (R.J.)
- Correspondence: (W.J.); (M.K.); Tel.: +48-12-62-05-600 (W.J. & M.K.)
| | - Justyna Knapik-Kowalczuk
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; (J.K.-K.); (K.J.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (J.S.-S.); (R.J.)
| | - Karolina Jurkiewicz
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; (J.K.-K.); (K.J.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Bartosz Leszczyński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland; (B.L.); (A.W.)
| | - Andrzej Wróbel
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland; (B.L.); (A.W.)
| | - Marian Paluch
- Division of Biophysics and Molecular Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; (J.K.-K.); (K.J.); (M.P.)
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (J.S.-S.); (R.J.)
| |
Collapse
|
41
|
Wu H, Liu Y, Ci T, Ke X. Application of HPMC HME polymer as hot melt extrusion carrier in carbamazepine solid dispersion. Drug Dev Ind Pharm 2020; 46:1911-1918. [PMID: 32942902 DOI: 10.1080/03639045.2020.1821045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM This work is to investigate the application characteristics of a new hot melt extrusion (HME) polymer (HME-grade hydroxypropyl methylcellulose, namely HPMC HME 15LV) in solid dispersion by HME. METHODS Carbamazepine (CBZ) was chosen as the model drug. And two types of solid dispersion system was prepared by HME, that is, single carrier system which was composed of PVP VA64(VA64) or Soluplus (SOL), and binary carrier which was composed of HPMC HME 15LV and SOL. Phase analysis of the extrudates were characterized by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The dissolution, moisture absorption and thermal stability CBZ solid dispersion (CBZ-SD) were also investigated. In addition, the mechanism that affects the capsule dissolution was evaluated by the viscosity test and infiltration capability test. RESULTS CBZ-SD was prepared by HME. DSC and PXRD results indicated that CBZ was amorphous in all solid dispersions. Unlike CBZ-SD powder with high dissolution, CBZ-SD capsules showed the variable gelatinization phenomenon during dissolution and different dissolution behaviors, which can be interpreted by the viscosity test and infiltration capacity test. Furthermore, compared with single carrier system, CBZ-SD made by binary carrier exhibited lower moisture absorption and better thermal stability, which is benefit to the long-term stability of CBZ-SD. CONCLUSION HPMC HME 15LV, as a new HME carrier, has certain advantages in producing well CBZ-SD preparation. Its low viscosity can prevent the gelatinization phenomenon during capsule dissolution, as well as suitable Tg and low hygroscopicity were also benefit to the stability of CBZ-SD.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yanhong Liu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Effect of Polymers and Storage Relative Humidity on Amorphous Rebamipide and Its Solid Dispersion Transformation: Multiple Spectra Chemometrics of Powder X-Ray Diffraction and Near-Infrared Spectroscopy. Pharmaceuticals (Basel) 2020; 13:ph13070147. [PMID: 32664249 PMCID: PMC7407760 DOI: 10.3390/ph13070147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effect of polymers and storage relative humidity on amorphous rebamipide (RB) and its solid dispersion phase transformation using chemometrics based on multiple datasets. The amorphous RB was prepared using particle mixture and grinding methods with hydroxypropyl cellulose, polyvinylpyrrolidone, and sodium dodecyl sulfate. Prepared amorphous RB and solid dispersion samples were stored under a relative humidity of 30% and 75% for four weeks. Infrared spectra of the dispersion samples suggested that the hydrogen bond network was constructed among quinolinone, carbonyl acid, and amide of RB and other polymers. The dataset combining near-infrared (NIR) spectra and powder X-ray diffractograms were applied to principal component analysis (PCA). The relationship between diffractograms and NIR spectra was evaluated using loadings and the PCA score. The multiple spectra analysis is useful for evaluating model amorphous active pharmaceutical ingredients without a standard sample.
Collapse
|
43
|
Torrado-Salmerón C, Guarnizo-Herrero V, Gallego-Arranz T, del Val-Sabugo Y, Torrado G, Morales J, Torrado-Santiago S. Improvement in the Oral Bioavailability and Efficacy of New Ezetimibe Formulations-Comparative Study of a Solid Dispersion and Different Micellar Systems. Pharmaceutics 2020; 12:pharmaceutics12070617. [PMID: 32630626 PMCID: PMC7408513 DOI: 10.3390/pharmaceutics12070617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ezetimibe (EZ) is a poorly water-soluble drug with low bioavailability. Strategies such as solid dispersions (SD) and micellar systems (MS) were developed to identify the most effective drug delivery formulations with the highest oral bioavailability, and to improve their lipid-lowering effect. The EZ formulations were prepared with different proportions of Kolliphor® RH40 as a surfactant (1:0.25, 1:0.5 and 1:0.75) and croscarmellose as a hydrophilic carrier. These excipients, and the addition of microcrystalline cellulose during the production process, led to significant improvements in the dissolution profiles of MS. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) revealed an amorphous form of ezetimibe with different semicrystalline states of microcrystalline cellulose for MS-I (1:0.75) and MS-II (1:0.75). Pharmacokinetic analysis after administration of MS-II (1:0.75) demonstrated a 173.86% increase in maximum plasma concentration (Cmax) and a 142.99% increase in oral bioavailability compared to EZ raw material (EZ-RM). Efficacy studies with the micellar system MS-II (1:0.75) in rats with hyperlipidemia showed that total cholesterol, triglycerides and high-density lipoprotein were reduced to normal levels and revealed improvements in low-density lipoprotein, aspartate and alanine aminotransferase. The improvement in the dissolution rate with micellar systems increases bioavailability and enhances the anti-hyperlipidemic effect of EZ.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.); (T.G.-A.); (Y.d.V.-S.)
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.); (T.G.-A.); (Y.d.V.-S.)
| | - Teresa Gallego-Arranz
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.); (T.G.-A.); (Y.d.V.-S.)
| | - Yvonne del Val-Sabugo
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.); (T.G.-A.); (Y.d.V.-S.)
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain;
| | - Javier Morales
- Department of Science and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile;
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.T.-S.); (V.G.-H.); (T.G.-A.); (Y.d.V.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
44
|
Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv 2020; 27:110-127. [PMID: 31885288 PMCID: PMC6968646 DOI: 10.1080/10717544.2019.1704940] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amorphous solid dispersions (ASDs) can increase the oral bioavailability of poorly soluble drugs. However, their use in drug development is comparably rare due to a lack of basic understanding of mechanisms governing drug liberation and absorption in vivo. Furthermore, the lack of a unified nomenclature hampers the interpretation and classification of research data. In this review, we therefore summarize and conceptualize mechanisms covering the dissolution of ASDs, formation of supersaturated ASD solutions, factors responsible for solution stabilization, drug uptake from ASD solutions, and drug distribution within these complex systems as well as effects of excipients. Furthermore, we discuss the importance of these findings on the development of ASDs. This improved overall understanding of these mechanisms will facilitate a rational ASD formulation development and will serve as a basis for further mechanistic research on drug delivery by ASDs.
Collapse
Affiliation(s)
- Andreas Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland.,Department of Biomedicine, Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Wang S, Liu C, Chen H, Zhu AD, Qian F. Impact of Surfactants on Polymer Maintained Nifedipine Supersaturation in Aqueous Solution. Pharm Res 2020; 37:113. [PMID: 32476051 DOI: 10.1007/s11095-020-02837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To study the impact of different surfactants on the supersaturation of nifedipine stabilized with HPMC and PVP-VA. METHODS Different kinds of surfactants, including one cationic surfactant, two anionic surfactants, and three nonionic surfactants, were used to evaluate their impacts on the supersaturation of nifedipine stabilized with HPMC and PVP-VA. Polymer-surfactant interaction was studied by nuclear magnetic resonance (NMR) and fluorescent method. Solubility of nifedipine in solutions containing different amounts of polymers and surfactants was measured. Drug-polymer affinity was evaluated by measuring the percentage of polymer coprecipitated together with the drug from supersaturated solutions. RESULTS Different polymer-surfactant combinations had different impacts on the supersaturation of nifedipine. Some combinations, such as PVP-VA/SLS and PVP-VA/NaTC under higher surfactant concentrations, showed improved drug supersaturation, due to increased drug solubility or polymer-surfactant synergy; while other combinations, such as HPMC/SLS and HPMC/Tween 20 under lower surfactant concentrations, showed reduced drug supersaturation, which could result from competitive surfactant-polymer or drug-surfactant interaction that disrupted pre-existent drug-polymer interaction. CONCLUSIONS The ultimate impacts of various surfactants on polymer stabilized nifedipine supersaturation could be attributed to the interplay between different factors, including solubility enhancement of the drug, drug-polymer-surfactant interactions, and polymer-surfactant synergy.
Collapse
Affiliation(s)
- Shan Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Chengyu Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Huijun Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Alan Donghua Zhu
- Drug Product Development, Small Molecule Pharmaceutical Development, Janssen Research & Development, Johnson & Johnson, Shanghai, China.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
46
|
Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics 2020; 12:pharmaceutics12030197. [PMID: 32106495 PMCID: PMC7150901 DOI: 10.3390/pharmaceutics12030197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/02/2023] Open
Abstract
This study aimed to elucidate the impact of a common anionic surfactant, sodium dodecyl sulfate (SDS), along with hydroxypropyl cellulose (HPC) and Soluplus (Sol) on the release of griseofulvin (GF), a poorly soluble drug, from amorphous solid dispersions (ASDs). Solutions of 2.5% GF and 2.5%–12.5% HPC/Sol with 0.125% SDS/without SDS were prepared in acetone–water and spray-dried. The solid-state characterization of the ASDs suggests that GF–Sol had better miscibility and stronger interactions than GF–HPC and formed XRPD-amorphous GF, whereas HPC-based ASDs, especially the ones with a lower HPC loading, had crystalline GF. The dissolution tests show that without SDS, ASDs provided limited GF supersaturation (max. 250%) due to poor wettability of Sol-based ASDs and extensive GF recrystallization in HPC-based ASDs (max. 50%). Sol-based ASDs with SDS exhibited a dramatic increase in supersaturation (max. 570%), especially at a higher Sol loading, whereas HPC-based ASDs with SDS did not. SDS did not interfere with Sol’s ability to inhibit GF recrystallization, as confirmed by the precipitation from the supersaturated state and PLM imaging. The favorable use of SDS in a ternary ASD was attributed to both the wettability enhancement and its inability to promote GF recrystallization when used as a minor component along with Sol.
Collapse
|
47
|
Kwon J, Giri BR, Song ES, Bae J, Lee J, Kim DW. Spray-Dried Amorphous Solid Dispersions of Atorvastatin Calcium for Improved Supersaturation and Oral Bioavailability. Pharmaceutics 2019; 11:E461. [PMID: 31500147 PMCID: PMC6781288 DOI: 10.3390/pharmaceutics11090461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, the amorphous solid dispersions (ASDs) technique has emerged as a promising strategy to enhance the in vitro/in vivo characteristic of hydrophobic drugs. The low aqueous solubility and poor bioavailability of atorvastatin calcium (ATO), a lipid-lowering drug, present challenges for effective drug delivery. The objective of this work was to improve the aqueous solubility, in vitro dissolution, and oral absorption of ATO with amorphous solid dispersion technique prepared by spray-drying method. The optimized ternary formulation comprising of ATO; hydroxypropyl methylcellulose (HPMC), as a hydrophilic polymer; and sodium lauryl sulfate (SLS), as a surfactant, at a weight ratio of 1/1/0.1, showed significant improvement in aqueous solubility by ~18-fold compared to that of the free drug, and a cumulative release of 94.09% compared to a release of 59.32% of the free drug. Further, physicochemical studies via scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction revealed a change from the crystalline state of the free drug to its amorphous state in the ASD. Pharmacokinetic analysis in rats demonstrated 1.68- and 2.39-fold increments in AUC and Cmax, respectively, in the ASD over the free drug. Altogether, hydrophilic carrier-based ASDs prepared by the spray-drying technique represent a promising strategy to improve the biopharmaceutical performance of poorly soluble drugs.
Collapse
Affiliation(s)
- Jaewook Kwon
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Bhupendra Raj Giri
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Eon Soo Song
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Jinju Bae
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Junseong Lee
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Dong Wuk Kim
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
48
|
El-Laithy HM, Badawi A, Abdelmalak NS, Elsayyad NME. Stabilizing excipients for engineered clopidogrel bisulfate procubosome derived in situ cubosomes for enhanced intestinal dissolution: Stability and bioavailability considerations. Eur J Pharm Sci 2019; 136:104954. [DOI: 10.1016/j.ejps.2019.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022]
|
49
|
Njoku JO, Amaral Silva D, Mukherjee D, Webster GK, Löbenberg R. In silico Tools at Early Stage of Pharmaceutical Development: Data Needs and Software Capabilities. AAPS PharmSciTech 2019; 20:243. [PMID: 31264126 DOI: 10.1208/s12249-019-1461-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
In early drug development, the selection of a formulation platform and decisions on formulation strategies have to be made within a short timeframe and often with minimal use of the active pharmaceutical ingredient (API). The current work evaluated the various physicochemical parameters required to improve the prediction accuracy of simulation software for immediate release tablets in early drug development. DDDPlus™ was used in simulating dissolution test profiles of immediate release tablets of ritonavir and all simulations were compared with experimental results. The minimum data requirements to make useful predictions were assessed using the ADMET predictor (part of DDDPlus) and Chemicalize (an online resource). A surfactant model was developed to estimate the solubility enhancement in media containing surfactant and the software's transfer model based on the USP two-tiered dissolution test was assessed. One measured data point was shown to be sufficient to make predictive simulations in DDDPlus. At pH 2.0, the software overestimated drug release while at pH 1.0 and 6.8, simulations were close to the measured values. A surfactant solubility model established with measured data gave good dissolution predictions. The transfer model uses a single-vessel model and was unable to predict the two in vivo environments separately. For weak bases like ritonavir, a minimum of three solubility data points is recommended for in silico predictions in buffered media. A surfactant solubility model is useful when predicting dissolution behavior in surfactant media and in silico predictions need measured solubility data to be predictive.
Collapse
|
50
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|