1
|
Paul B, Han Q, Xie L, Rashwan AK, Yahia ZO, Liu Q, Liu S, Xu Y, Chen W. Development and evaluation of guar gum-coated nano-nutriosomes for cyanidin-3-O-glucoside encapsulation. Int J Biol Macromol 2024; 271:132537. [PMID: 38821806 DOI: 10.1016/j.ijbiomac.2024.132537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Cyanidin-3-O-glucoside (C3G) is a type of water-soluble flavonoid compound that is abundantly found in fruits and vegetables. C3G possesses numerous biological activities, however, it is prone to breakdown under environmental conditions. To overcome these issues, we developed nano-nutriosome (NS) carriers created by vortex-mixing and probe-sonication techniques for C3G encapsulation in which the phospholipid and Nutriose® FB06 were chosen as carrier material, and guar gum (GG) as a coating material to formulate a unilamellar and multicompartment structure. This study aimed to develop and evaluate C3G-loaded nano-nutriosomes coated by GG (GG-C3G-NS) for improving physicochemical stability, antioxidant activity, cellular uptake, and controlled release properties. The C3G-NS and GG-C3G-NS are nanosized (143.47 to 154.13 nm), with high encapsulation efficiency (>93.31 %). The NS carriers successfully encapsulated C3G which was confirmed by transmission electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. C3G showed more stability in storage, thermal, pH, ionic, and oxidative conditions. Furthermore, the NS exhibited a better-controlled release of C3G in different food stimulant conditions and in vitro release study. Additionally, NS systems enhanced cellular uptake and showed no cytotoxicity. Overall, GG-NS could be a promising nanocarrier for improving the stability, controlled release, and antioxidant activity of bioactive compounds.
Collapse
Affiliation(s)
- Bolai Paul
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingying Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Liu S, Karim N, Rashwan AK, Xie J, Chen W. Carboxymethyl Chitosan-Coated Cyanidin-3- O-Glucoside-Beared Nanonutriosomes Suppress Palmitic Acid-Induced Hepatocytes Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9703-9716. [PMID: 38567751 DOI: 10.1021/acs.jafc.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
3
|
Karim N, Liu S, Rashwan AK, Xie J, Mo J, Osman AI, Rooney DW, Chen W. Green synthesis of nanolipo-fibersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: Characterization, physicochemical properties, and application. Int J Biol Macromol 2023; 247:125839. [PMID: 37454997 DOI: 10.1016/j.ijbiomac.2023.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a "nanolipo-fibersomes (NLFS)" using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsulate delphinidin-3-O-sambubioside (D3S) successfully and evaluate physicochemical and controlled release properties with improved antioxidant activity on palmitic acid (PA)-induced colonic cells (Caco-2 cells). D3S-loaded nanolipo-fibersomes (D3S-NLFS) were nanosized (<150 nm), spherical shaped, and homogenously dispersed in solution with promising encapsulation efficiency (~ 89.31 to 97.31 %). Particles formation was further verified by FTIR. NLFS were well-stable in thermal, storage, and gastrointestinal mimic environments. NLFS exhibited better-controlled release and mucoadhesive properties compared to nanoliposomes (NL). The NLFS showed better cellular uptake than NL, which was correlated to higher mucoadhesive properties. Furthermore, D3S-NLFS exhibited promising protective effects against PA-induced cytotoxicity, O2•- radicals generation, mitochondrial dysfunctions, and GSH depletion, while the free D3S was ineffective. Among D3S-loaded nanoparticles, D3S-NLFS 3 was the most efficient nanocarrier followed by D3S-NLFS 2, D3S-NLFS 1, and D3S-NL, respectively. The above data suggest that nanolipo-fibersomes can be considered as promising nanovesicles for improving colonic delivery of hydrophilic compounds with controlled release properties and greater antioxidant activity.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Jiahong Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
4
|
Fulgheri F, Aroffu M, Ramírez M, Román-Álamo L, Peris JE, Usach I, Nacher A, Manconi M, Fernàndez-Busquets X, Manca ML. Curcumin or quercetin loaded nutriosomes as oral adjuvants for malaria infections. Int J Pharm 2023; 643:123195. [PMID: 37394159 DOI: 10.1016/j.ijpharm.2023.123195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Artemisinin, curcumin or quercetin, alone or in combination, were loaded in nutriosomes, special phospholipid vesicles enriched with Nutriose FM06®, a soluble dextrin with prebiotic activity, that makes these vesicles suitable for oral delivery. The resulting nutriosomes were sized between 93 and 146 nm, homogeneously dispersed, and had slightly negative zeta potential (around -8 mV). To improve their shelf life and storability over time, vesicle dispersions were freeze-dried and stored at 25 °C. Results confirmed that their main physico-chemical characteristics remained unchanged over a period of 12 months. Additionally, their size and polydispersity index did not undergo any significant variation after dilution with solutions at different pHs (1.2 and 7.0) and high ionic strength, mimicking the harsh conditions of the stomach and intestine. An in vitro study disclosed the delayed release of curcumin and quercetin from nutriosomes (∼53% at 48 h) while artemisinin was quickly released (∼100% at 48 h). Cytotoxicity assays using human colon adenocarcinoma cells (Caco-2) and human umbilical vein endothelial cells (HUVECs) proved the high biocompatibility of the prepared formulations. Finally, in vitro antimalarial activity tests, assessed against the 3D7 strain of Plasmodium falciparum, confirmed the effectiveness of nutriosomes in the delivery of curcumin and quercetin, which can be used as adjuvants in the antimalaria treatment. The efficacy of artemisinin was also confirmed but not improved. Overall results proved the possible use of these formulations as an accompanying treatment of malaria infections.
Collapse
Affiliation(s)
- Federica Fulgheri
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| | - Matteo Aroffu
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| | - Miriam Ramírez
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Lucía Román-Álamo
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
| | - Amparo Nacher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Maria Manconi
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy.
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Letizia Manca
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| |
Collapse
|
5
|
Manconi M, Rezvani M, Manca ML, Escribano-Ferrer E, Fais S, Orrù G, Lammers T, Asunis F, Muntoni A, Spiga D, De Gioannis G. Bridging biotechnology and nanomedicine to produce biogreen whey-nanovesicles for intestinal health promotion. Int J Pharm 2023; 633:122631. [PMID: 36690128 DOI: 10.1016/j.ijpharm.2023.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
New intestinal health-promoting biotechnological nanovesicles were manufactured by combining the main environmental pollutant generated from the cheese-making process, whey, with phospholipid, sodium hyaluronate and dextrin, thus overcoming environmental and medical challenges. An efficient, consolidated and eco-friendly preparation method was employed to manufacture the vesicles and the bioactive whey was obtained by mesophilic dark fermentation without external inoculum through a homolactic pathway, which was operated in such a way as to maximize the production of lactic acid. The biotechnological nutriosomes and hyalonutriosomes were relatively small (∼100 nm) and characterized by the net negative surface charge (>-30 mV). The addition of maltodextrin to the liposomes and especially to the hyalurosomes significantly stabilized the vesicles under acidic conditions, simulating the gastric environment, as their size and polydispersity index were significantly lower (p < 0.05) than those of the other formulations. The vesicles were effectively internalized by Caco-2 cells and protected them against oxidative stress. Nutriosomes promoted the proliferation of Streptococcus salivarius, a human commensal bacterium, to a better extent (p < 0.05) than liposomes and hyalurosomes, as a function of the concentration tested. These findings could open a new horizon in intestinal protection and health promotion by integrating biotechnology, nanomedicine, sustainability principles and bio-circular economy.
Collapse
Affiliation(s)
- Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maryam Rezvani
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Department of Food Science and Technology, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Sara Fais
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124 Cagliari, Italy
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Fabiano Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| | - Daniela Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| |
Collapse
|
6
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
7
|
Formulation and In Vitro Efficacy Assessment of Teucrium marum Extract Loading Hyalurosomes Enriched with Tween 80 and Glycerol. NANOMATERIALS 2022; 12:nano12071096. [PMID: 35407213 PMCID: PMC9000414 DOI: 10.3390/nano12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
The extract of Teucrium marum L. (Lamiaceae) was obtained using the aerial parts of the plant, by means of a maceration process. Verbascoside, caffeic acids derivatives and flavonols were the main components contained in the extract as detected using high-performance liquid chromatography coupled with diode array detector (HPLC–DAD) as an analytical method. The extract was successfully incorporated into hyalurosomes, which were further enriched by adding a water cosolvent (glycerol) and a surfactant (Tween 80), thus obtaining glycerohyalurosomes. Liposomes, transfersomes and glycerosomes were prepared as well and used as comparisons. All vesicles were small, as the mean diameter was never higher than ~115 nm, thus ideal for topical application and stable on storage, probably thanks to the highly negative surface charge of the vesicles (~−33 mV). The cryo-TEM images confirmed the formation of close-packed, oligolamellar and multicompartment hyalurosomes and glycerohyalurosomes in which around 95% of the used extract was retained, confirming their ability to simultaneously load a wide range of molecules having different chemical natures. Moreover, the extract, when loaded in hyalurosomes and glycerohyalurosomes was able to counteract the damages induced in the fibroblasts by hydrogen peroxide to a better extent (viability~110%) than that loaded in the other vesicles (viability~100%), and effectively promoted their proliferation and migration ensuring the healing of the wound performed in a cell monolayer (scratch assay) during 48 h of experiment. Overall in vitro results confirmed the potential of glycerohyalurosomes as delivery systems for T. marum extract for the treatment of skin lesions connected with oxidative stress.
Collapse
|
8
|
Rezvani M, Manca ML, Muntoni A, De Gioannis G, Pedraz JL, Gutierrez G, Matos M, Fadda AM, Manconi M. From process effluents to intestinal health promotion: Developing biopolymer-whey liposomes loaded with gingerol to heal intestinal wounds and neutralize oxidative stress. Int J Pharm 2021; 613:121389. [PMID: 34923053 DOI: 10.1016/j.ijpharm.2021.121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
As a sustainable strategy to valorize the main effluent of the cheese industry and potent environmental pollutant, whey, several biopolymer-whey vesicles loaded with gingerol were tailored for counteracting intestinal oxidative stress and boosting wound healing. An eco-friendly method was used to combine whey with four different water-dispersible biopolymers (xanthan gum, tragacanth, Arabic gum and sodium alginate), phospholipid and a natural antioxidant (gingerol). The results of cryogenic transmission microscopy and dynamic light scattering indicated that the vesicles were mostly unilamellar and small in size (∼100 nm) with low polydispersity index, high negative zeta potential and ability to entrap a high amount of gingerol (up to 94%). The vesicles could maintain their structures in acidic and neutral media and Turbiscan® technology confirmed their stability during the storage. Vesicles prepared with whey and tragacanth exhibited the highest capability to protect intestinal cells from damages induced by hydrogen peroxide. When Arabic and tragacanth gums were added to the whey vesicles, the closure rate of the scratched area was fast and no trace of the wound was observed after 72 h of treatment. These promising findings could open a new horizon in the application of whey in nanomedicine for the treatment of intestinal damages.
Collapse
Affiliation(s)
- Maryam Rezvani
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gemma Gutierrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Maria Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33003 Oviedo, Spain
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Essential Oil-Loaded NLC for Potential Intranasal Administration. Pharmaceutics 2021; 13:pharmaceutics13081166. [PMID: 34452126 PMCID: PMC8399280 DOI: 10.3390/pharmaceutics13081166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Complementary and alternative medicines represent an interesting field of research on which worldwide academics are focusing many efforts. In particular, the possibility to exploit pharmaceutical technology strategies, such as the nanoencapsulation, for the delivery of essential oils is emerging as a promising strategy not only in Italy but also all over the world. The aim of this work was the development of nanostructured lipid carriers (NLC) for the delivery of essential oils (Lavandula, Mentha, and Rosmarinus) by intranasal administration, an interesting topic in which Italian contributions have recently increased. Essential oil-loaded NLC, projected as a possible add-on strategy in the treatment of neurodegenerative diseases, were characterized in comparison to control formulations prepared with Tegosoft CT and Neem oil. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<200 nm) and good stability were obtained. Morphological and physical-chemical studies showed the formation of different structures depending on the nature of the liquid oil component. In particular, NLC prepared with Lavandula or Rosmarinus showed the formation of a more ordered structure with higher cytocompatibility on two cell lines, murine and human fibroblasts. Taken together, our preliminary results show that optimized positively charged NLC containing Lavandula or Rosmarinus can be proposed as a potential add-on strategy in the treatment of neurodegenerative diseases through intranasal administration, due to the well-known beneficial effects of essential oils and the mucoadhesive properties of NLC.
Collapse
|
10
|
Manca ML, Casula E, Marongiu F, Bacchetta G, Sarais G, Zaru M, Escribano-Ferrer E, Peris JE, Usach I, Fais S, Scano A, Orrù G, Maroun RG, Fadda AM, Manconi M. From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci Rep 2020; 10:14184. [PMID: 32843707 PMCID: PMC7447760 DOI: 10.1038/s41598-020-71191-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Maria Letizia Manca
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Eleonora Casula
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Francesca Marongiu
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Gianluigi Bacchetta
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Giorgia Sarais
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Marco Zaru
- Icnoderm Srl, Sardegna Ricerche Ed. 5, Pula, 09010, Cagliari, Italy
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Sara Fais
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, Molecular Biology Service Lab (MBS), University of Cagliari, Via Ospedale 40, 09124, Cagliari, Italy
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, UR GPF, Laboratoire CTA, Faculté Des Sciences, Université Saint-Joseph, B.P. 11-514 Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Anna Maria Fadda
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Maria Manconi
- Section of Pharmaceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| |
Collapse
|
11
|
Leyva-Jiménez FJ, Manca ML, Manconi M, Caddeo C, Vázquez JA, Carbone C, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A. Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chem 2020; 337:127746. [PMID: 32795856 DOI: 10.1016/j.foodchem.2020.127746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Pressurized liquid extraction was performed to obtain a phytocomplex from Lippia citriodora leaves rich in bioactive compounds. The extract was loaded in phospholipid vesicles to improve its protective effect against oxidative stress in the intestine. The phytochemicals were identified and quantified by HPLC-ESI-TOF-MS. The extract was incorporated in liposomes and penetration enhancer-containing vesicles (PEVs) modified with glucidex, a dextrin, and a biopolymer obtained from Chimaera monstrosa. The PEVs were smaller than liposomes (~150 vs 370 nm) and more stable, according to accelerated aging tests. The integrity of the vesicles in acidic or neutral pH and high ionic strength or in milk whey was assessed. The cytocompatibility of the formulations and their ability to protect Caco-2 cells against oxidative stress were confirmed in vitro and compared with two commercial extracts of L. citriodora. The results confirmed the suitability of formulations to be used in functional foods to protect the intestine from oxidative stress.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain
| | - Maria Letizia Manca
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Carla Caddeo
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), C/Eduardo Cabello, 6, CP36208 Vigo, Spain
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
12
|
Manconi M, Caddeo C, Manca ML, Fadda AM. Oral delivery of natural compounds by phospholipid vesicles. Nanomedicine (Lond) 2020; 15:1795-1803. [PMID: 32698672 DOI: 10.2217/nnm-2020-0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this report is to summarize and critically analyze emerging trends in phospholipid vesicles for the oral delivery of natural compounds. Liposomes have long been used as delivery systems, thanks to their ability to incorporate diverse bioactives, their biocompatibility and safety. However, the efficacy of oral liposomes is hampered by their low stability under the harsh conditions of the gastrointestinal tract. Different approaches have been utilized with the aim of improving the stability of liposomes and the payload after oral administration. This report provides an overview on the phospholipid vesicles used for oral delivery of natural compounds, exploring the current strategies to improve their performance by modifying the lipid bilayer composition and assembly or the physical state.
Collapse
Affiliation(s)
- Maria Manconi
- Department of Life & Environmental Sciences, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Carla Caddeo
- Department of Life & Environmental Sciences, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Maria Letizia Manca
- Department of Life & Environmental Sciences, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| | - Anna Maria Fadda
- Department of Life & Environmental Sciences, University of Cagliari, Via Ospedale 72, Cagliari, 09124, Italy
| |
Collapse
|
13
|
Huguet-Casquero A, Moreno-Sastre M, López-Méndez TB, Gainza E, Pedraz JL. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells. Pharmaceutics 2020; 12:pharmaceutics12050429. [PMID: 32384817 PMCID: PMC7285197 DOI: 10.3390/pharmaceutics12050429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage has been linked to a number of diseases. Oleuropein (OLE), a natural occurring polyphenol from olive leaves (Olea europaea L.), is known to be a potent antioxidant compound with inherent instability and compromised bioavailability. Therefore, in this work, nanostructured lipid carriers (NLCs) were proposed for OLE encapsulation to protect and improve its antioxidant efficacy. The lipid matrix, composed of olive oil and Precirol, was optimized prior to OLE encapsulation. The characterization of the optimized oleuropein-loaded NLCs (NLC-OLE) showed a mean size of 150 nm, a zeta potential of −21 mV, an encapsulation efficiency of 99.12%, sustained release profile, and improved radical scavenging activity. The cellular in vitro assays demonstrated the biocompatibility of the NLCs, which were found to improve and maintain OLE antioxidant efficacy in the A549 and CuFi-1 lung epithelial cell lines, respectively. Overall, these findings suggest a promising potential of NLC-OLE to further design a pulmonary formulation for OLE delivery in lung epithelia.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Maria Moreno-Sastre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Tania Belén López-Méndez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Eusebio Gainza
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| |
Collapse
|
14
|
Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chem 2019; 293:368-377. [PMID: 31151624 DOI: 10.1016/j.foodchem.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
In this study, the efficiency and practical utilization feasibility of niosomal and liposomal nanovesicles loading Isoleucine-Proline-Proline (IPP) as suitable ingredients of functional beverages were evaluated. Vesicles were tailored by different preparation methods using phospholipid and non-ionic surfactants. The optimization process was performed by central composite design approach. The results of Fourier transform infrared spectroscopy demonstrated the compatibility of IPP with the vesicles. The phospholipidic nanovesicles, produced by modified ethanol injection-microchannel technique, were smaller with lower polydispersity index than non-ionic surfactant vesicles developed by the method of thin film hydration and probe sonication. However, niosomal model functional beverage exhibited more proper palatability, biological activity and physicochemical properties during long-term storage than liposomal one. Moreover, niosomes exhibited more sustained release behaviour in simulated blood fluid than liposomes. These findings are of great importance for design and development of the functional foods containing IPP.
Collapse
|