1
|
Nguyen HT, Nguyen TT, Chau Doan VT, Nguyen TH, Tran MH. Recent advances in metal-free catalysts for the synthesis of N-heterocyclic frameworks focusing on 5- and 6-membered rings: a review. RSC Adv 2025; 15:9676-9755. [PMID: 40165917 PMCID: PMC11955962 DOI: 10.1039/d5ra00962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The tremendous potential of transition metal-free multi-component reactions (MCR) in the synthesis of N-heterocyclic frameworks is examined in this review, offering a complete overview of this subject matter. The discussion on the mechanistic rationale of the reaction routes and intermediates provides profound insights into the underlying changes, encouraging deeper investigation into various molecular frameworks. This review serves as a doorway to study the practicality of exploiting these reactions for the efficient and uncomplicated synthesis of specific nitrogen heterocycles. Specifically, we reveal the potential of transition metal-free catalysts in this field. Because of their extensive scope and diversity, these reactions enable the synthesis of various heterocycles that contain nitrogen, which include 5-membered (carbazole, pyrimidines, and pyrroles) and 6-membered rings (piperidine, pyridine, quinoline, diazinane, pyrazine, quinoxaline, and 1,2,3-triazine). In addition, the compatibility of transition metal-free catalysts with various functional groups and substrates not only increases the synthetic value of these compounds but also broadens their relevance in the domains of medical chemistry, materials science, and other relevant areas of study. To motivate future study and development in this field, the successful examples described in this review highlight the potential of transition metal-free catalysts as powerful instruments for the quick and efficient synthesis of nitrogen heterocycles. In general, this review provides a thorough and insightful examination of transition metal-free catalysts, highlighting the relevance of these compounds in contemporary organic synthesis and their potential to revolutionize the field of nitrogen heterocycle synthesis.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
| | - The Thai Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
| | - Vinh Thanh Chau Doan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
| | - Minh Hai Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Gündüz MG, Dengiz C, Denzinger K, Huang S, Lee JT, Nafie JW, Armstrong DW, Wolber G, Zamponi GW. Biginelli dihydropyrimidines and their acetylated derivatives as L-/T-type calcium channel blockers: Synthesis, enantioseparation, and molecular modeling studies. Arch Pharm (Weinheim) 2025; 358:e2400584. [PMID: 40128864 PMCID: PMC11933517 DOI: 10.1002/ardp.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Biginelli dihydropyrimidines (DHPMs) are considered superior over 1,4-dihydropyridines (DHPs) in terms of both light and metabolic stabilities. Nevertheless, DHPs dominate the market as the most prescribed calcium channel blockers with strong therapeutic potential in managing cardiovascular ailments. To overcome the restrictions that complicate the formulation and postadministration of DHPs, employing bioisosteric replacement by exchanging the DHP ring with DHPM appears as a logical approach for the improved formulations of new calcium channel blockers. In this study, we obtained DHPM derivatives via Biginelli synthesis and acetylated their N-3 position by heating them in acetic anhydride (GD1-GD12). We also incorporated the DHPM scaffold into a condensed ring system (GD13 and GD14). These DHPMs were evaluated for their ability to block both L- (Cav1.2) and T- (Cav3.2) type calcium channels. Compounds carrying acetyl moiety on the N-3 position of the DHPM scaffold appeared to be more effective inhibitors of both channels. Retesting GD4 enantiomers, separated using high-performance liquid chromatography (HPLC) on a chiral stationary phase, revealed that the (R)-isomer predominantly contributes to the outstanding inhibitory activity of GD4 on calcium channels. Molecular modeling studies, including docking, molecular dynamics simulations, and dynophore analysis, provided insights into the binding mechanism of DHPMs to Cav1.2 and Cav3.2, for the first time.
Collapse
Affiliation(s)
- Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHacettepe University, SıhhiyeAnkaraTurkey
| | - Cagatay Dengiz
- Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
| | - Katrin Denzinger
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| | | | | | - Daniel W. Armstrong
- Department of Chemistry & BiochemistryUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Gerhard Wolber
- Molecular Design Group, Department of Pharmaceutical and Medicinal Chemistry, Institute of PharmacyFreie Universität BerlinBerlinGermany
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryCanada
| |
Collapse
|
3
|
Sun Y, Jin Y, Gu Y, Liu J, Wang L, Jin Y. Enantioselective Synthesis of Spiro[Indoline-3,4-Pyrrolo[3,4-b]Pyridines] Via an Organocatalysed Three-Component Cascade Reaction. Chemistry 2024; 30:e202403349. [PMID: 39380168 DOI: 10.1002/chem.202403349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Asymmetric synthesis of derivatives of spiro[indoline-3,4-pyrrolo[3,4-b]pyridines] were first developed through the organocatalytic cascade of Knoevenagel/Michael/cyclization reactions using a quinidine-derived squaramide. Under the optimized conditions, the three-component reactions of isatins, cyanoacetates, and 3-aminomaleimides yield the desired heterocycle-fused spirooxindoles in good yields (78-91 %) with 53 %-99 % enantiomeric excess (ee). Notably, this reaction enables a broad substrate scope under mild conditions and provides a convenient method for the enantioselective construction of diverse spirooxindoles combined with dihydropyridine and maleimide skeletons, which has great potential for the construction of new bioactive chemical entities.
Collapse
Affiliation(s)
- Yuhong Sun
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yan Jin
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yingying Gu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Jinming Liu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Liming Wang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| |
Collapse
|
4
|
Khurshid A, Anwar Z, Khurshid A, Ahmed S, Sheraz MA, Ahmad I. Cyclodextrins and their applications in pharmaceutical and related fields. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2024; 50:183-227. [PMID: 39855776 DOI: 10.1016/bs.podrm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This chapter presents an overall account of cyclodextrins (CDs) with a brief description of the history, classification, and properties of these macromolecules. CDs act as complexing agents for drugs to form CD-drug inclusion complexes by various techniques. These complexes lead to the modification of the physicochemical properties of drugs to make them more soluble, chemically, and photochemically stable, and less toxic. It focuses in detail on various pharmaceutical uses of CDs and their derived forms in drug solubility, bioavailability, drug stability, drug delivery, and drug safety which have been specifically highlighted. The role of CDs and derivatives as excipients in the drug formulation of solid dosage forms, parenteral dosage forms, and anticancer drugs has been emphasized. Some other applications of CDs in cosmetics, environmental protection, food technology, and analytical methods have been described.
Collapse
Affiliation(s)
- Adeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
| | - Aqeela Khurshid
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
5
|
Somprasong S, Castiñeira Reis M, Harutyunyan SR. Grignard Reagent Addition to Pyridinium Salts: A Catalytic Approach to Chiral 1,4-Dihydropyridines. ACS Catal 2024; 14:13030-13039. [PMID: 39263543 PMCID: PMC11385375 DOI: 10.1021/acscatal.4c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
Catalytic dearomatization of pyridinium salts is a powerful technique for constructing chiral N-heterocycles, which are crucial in alkaloid natural products and drugs. Despite its potential, progress in metal-catalyzed asymmetric dearomatization of pyridinium derivatives has been limited. Here, we present the enantioselective 1,4-dearomatization of pyridinium salts using Grignard reagents and chiral copper catalysis. This approach yields enantioenriched functionalized 1,4-dihydropyridines. Experimental kinetic isotope effects and density functional theory calculations provide insights into the reaction mechanism, regio- and enantioselectivity, and the rate-limiting step.
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, C/ Jenaro de la Fuente s/n, Campus Vida, Santiago de Compostela 15782, Spain
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
6
|
Faizan S, Talath S, Wali AF, Hani U, Haider N, Mandal SP, Kumar BRP. Anticancer potential of novel symmetrical and asymmetrical dihydropyridines against breast cancer via EGFR inhibition: molecular design, synthesis, analysis and screening. RSC Adv 2024; 14:11368-11387. [PMID: 38595721 PMCID: PMC11002980 DOI: 10.1039/d4ra01424c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
A series of novel symmetrical and asymmetrical dihydropyridines (HD 1-15) were designed, subjected to in silico ADMET prediction, synthesized, analyzed by IR, NMR, Mass analytical techniques and evaluated against epidermal growth factor receptor (EGFR) as inhibitors against Breast cancer. The results of predicted ADMET studies demonstrated the drug-likeness properties of the reported compounds. The in vitro cytotoxicity assessment of the synthesized compounds revealed that all of them showed good activity (IC50 ranging from 16.75 to 66.54 μM) towards MCF-7 breast cancer cells compared to the standard drug, Lapatinib (IC50 = 2.02 μM). Among these, compounds HD-6, HD-7, and HD-8 displayed the most potent activity with IC50 value of 21.26, 16.75, and 18.33 μM, respectively. Cytotoxicity of all compounds was tested on normal vero cells for comparison at different concentrations using the MTT assay. In addition to the MTT assay, the potent dihydropyridines derivatives were screened for EGFRwt kinase inhibition assay at concentrations ranging from 1 nM to 360 nM. Among the three compounds tested, HD-8 showed reasonably good inhibition with an IC50 value of 15.90 ± 1.20 nM compared to a standard Lapatinib IC50 value of 10.28 ± 1.01 nM. Based on the molecular docking study against EGFR, the most active derivatives HD-7 and HD-8 were docked against the active site of the protein and showed better binding affinity than the standard lapatinib. Additionally, molecular dynamics (MD) simulations were performed to explore the stability of the protein-ligand complex, its dynamic behavior, and the binding affinity.
Collapse
Affiliation(s)
- Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Constituent College of JSS Academy of Higher Education & Research Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK Medical & Health Sciences University Ras Al Khaimah UAE
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK Medical & Health Sciences University Ras Al Khaimah UAE
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Abha Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University Abha Saudi Arabia
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Constituent College of JSS Academy of Higher Education & Research Mysuru 570015 India +91-821-2548359 +91-821-2548353
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Constituent College of JSS Academy of Higher Education & Research Mysuru 570015 India +91-821-2548359 +91-821-2548353
| |
Collapse
|
7
|
Goswami A, Kaur N, Kaur M, Singh K, Sohal HS, Han H, Bhowmik PK. Facile One-Pot Synthesis and Anti-Microbial Activity of Novel 1,4-Dihydropyridine Derivatives in Aqueous Micellar Solution under Microwave Irradiation. Molecules 2024; 29:1115. [PMID: 38474626 DOI: 10.3390/molecules29051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The current study describes a novel and eco-conscious method to synthesize 1,4-dihydropyridine derivatives utilizing an aqueous micellar solution containing aluminum dodecyl sulfate, Al(DS)3, using readily available starting material. The final products were synthesized with excellent yields within remarkably quick reaction durations, promoting remarkable atom economy and minimizing environmental impacts. The present protocol has several advantages over other methodologies in terms of high yield (up to 97%) with excellent purity. Further, the synthesized 1,4-DHPs exhibit favorable to excellent resistance against examined bacterial and fungal species. Intriguingly, polar groups on the phenyl ring (5b, 5c, 5i and 5j) make the 1,4-DHPs equally potent against the microbes as compared to the standard drugs.
Collapse
Affiliation(s)
- Asmita Goswami
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali 140413, Punjab, India
| | - Navneet Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali 140413, Punjab, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali 140413, Punjab, India
| | - Kishanpal Singh
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali 140413, Punjab, India
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| | - Pradip K Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| |
Collapse
|
8
|
Alzahrani AYA, Shehab WS, Amer AH, Assy MG, Mouneir SM, Aziz MA, Abdel Hamid AM. Design, synthesis, pharmacological evaluation, and in silico studies of the activity of novel spiro pyrrolo[3,4- d]pyrimidine derivatives. RSC Adv 2024; 14:995-1008. [PMID: 38174254 PMCID: PMC10759174 DOI: 10.1039/d3ra07078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
In the present study, spiro compounds are shown to have distinctive characteristics because of their interesting conformations and their structural impacts on biological systems. A new family of functionalized spiro pyrrolo[3,4-d]pyrimidines is prepared via the one-pot condensation reaction of amino cyclohexane derivatives with benzaldehyde to prepare fused azaspiroundecanedione and azaspirodecenone/thione derivatives. A series of synthesized spiro compounds were scanned against DPPH and evaluated for their ability to inhibit COX-1 and COX-2. All compounds exhibit significant antiinflammatory activity, and they inhibited both COX-1 and COX-2 enzymes with a selectivity index higher than celecoxib as a reference drug. The most powerful and selective COX-2 inhibitor compounds were 11 and 6, with selectivity indices of 175 and 129.21 in comparison to 31.52 of the standard celecoxib. However, candidate 14 showed a very promising antiinflammatory activity with an IC50 of 6.00, while celecoxib had an IC50 of 14.50. Our findings are promising in the area of medicinal chemistry for further optimization of the newly designed and synthesized compounds regarding the discussed structure-activity relationship study (SAR), in order to obtain a superior antioxidant lead compound in the near future. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopic and elemental investigations.
Collapse
Affiliation(s)
- Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Asmaa H Amer
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Cairo 12211 Egypt
| | - Maged A Aziz
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| |
Collapse
|
9
|
Seitz L, Reiling N, Vorreiter C, Sippl W, Kessler S, Hilgeroth A. Synthesis and Evaluation of Novel Substituted N-Aryl 1,4-Dihydropyridines as Antituberculostatic Agents. Med Chem 2024; 20:30-39. [PMID: 37349995 DOI: 10.2174/1573406419666230622121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tuberculosis has been the main cause of mortality of infectious diseases worldwide, with strongly limited therapeutic options. With increasing resistance and missing suitable drugs in those cases, there is a strong need for novel antituberculostatic drugs. We developed novel N-aryl 1,4-dihydropyridines with various substitution patterns to evaluate them as antituberculostatic agents. METHODS 1,4-Dihydropyridine derivatives were synthesized and purified by column chromatography or recrystallization. The mycobacterial growth inhibition was determined in a fluorescent mycobacterial growth assay. RESULTS The compounds were prepared in a simple one-pot reaction under acidic conditions with structurally varied components. The substituent effects on the determined mycobacterial growth inhibitory properties are discussed. CONCLUSION Lipophilic diester substituted derivatives show promising activities that were additionally affected by the aromatic substituent functions. Thus, we identified compounds with activities almost reaching that of the used antimycobacterial drug as control.
Collapse
Affiliation(s)
- Lisa Seitz
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle, Germany
| | - Norbert Reiling
- Research Center of Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| | - Christopher Vorreiter
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle, Germany
| | - Sonja Kessler
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle, Germany
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle, Germany
| |
Collapse
|
10
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM, Sharaky M. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem 2023; 38:176-191. [PMID: 36317648 PMCID: PMC9635468 DOI: 10.1080/14756366.2022.2135512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Maha A. Alshubramy
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Medhat Asem
- College of Engineering and Information Technology, Onaizah Colleges, Al-Qassim, Saudi Arabia
| | - Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
12
|
Sun Y, Liu Z, Liu D, Zhang M, Chen L, Chai Z, Chen XB, Yu F. Synthesis of 4-Alkylated 1,4-Dihydropyridines: Fe(II)-Mediated Oxidative Cascade Cyclization Reaction of Cyclic Ethers with Enaminones. J Org Chem 2023; 88:11627-11636. [PMID: 37556793 DOI: 10.1021/acs.joc.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Syntheses of highly functionalized 4-alkylated 1,4-dihydropyridines (1,4-DHPs) from cyclic ethers and enaminones via iron(II)-mediated oxidative free radical cascade C(sp3)-H bond functionalization/C(sp3)-O bond cleavage/cyclization reaction have been first developed. This novel synthetic strategy offers an alternative method for the construction of 1,4-DHPs by using esters as the C4 sources, as well as expands the application of ethers in heterocycle synthesis.
Collapse
Affiliation(s)
- Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhangmengjie Chai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xue-Bing Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
- College of Science, Honghe University, Mengzi 661199 Yunnan, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
13
|
Kaya MO, Demirci T, Ozdemir O, Calisir U, Sonmez F, Arslan M. Synthesis, inhibition effects, molecular docking and theoretical studies as Paraoxonase 1 (PON1) inhibitors of novel 1,4-dihydropyridine substituted sulfonamide derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Borah B, Patat M, Singh V, Sivaprakash M, Prasad MS, Chowhan LR. Visible-light-induced organophotocatalytic and singlet oxygen-initiated domino construction of 1,4-dihydropyridines, C-3 functionalized spiro[indoline-3,4'-pyridines] and C-11 functionalized spiro[indeno-[1,2- b]quinoxaline-11,4'-pyridines]. Org Biomol Chem 2023; 21:1518-1530. [PMID: 36695344 DOI: 10.1039/d3ob00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A highly efficient pot, atom, and step economical method for the construction of pharmacologically potent structurally functionalized 1,4-dihydropyridines, quaternary centered C-3 functionalized spiro[indoline-3,4'-pyridines], and C-11 functionalized spiro[indeno[1,2-b]quinoxaline-11,4'-pyridines] via rose bengal photoredox catalysis under blue LED irradiation in an aqueous medium at room temperature has been developed. The products were isolated in excellent yields within a short reaction time for a variety of functional groups under transition metal- and ligand-free energy-efficient conditions in a green solvent system with high reaction mass efficiency and process mass intensity, which are the key advantages of the current work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Mihir Patat
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Vipin Singh
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Murugesan Sivaprakash
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - Madavi S Prasad
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| |
Collapse
|
15
|
R K, G V, A K, S K. Experimental, Molecular Docking and Molecular Dynamics Investigation on Newly Synthesized Diethyl 4-(Anthracen-9-yl)-2,6-Dimethyl-1,4-Dihydropyridine-3,5-Dicarboxylate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Karthick R
- Department of Physics, CEG Campus, Anna University, Chennai, India
| | - Velraj G
- Department of Physics, CEG Campus, Anna University, Chennai, India
| | - Karuppusamy A
- Department of Chemistry, Indian Institute of Technology–Roorkee, Roorkee, India
| | - Karthikeyan S
- School of Advanced Science, Division of Physics, Vellore Institute of Technology University, Chennai Campus, Chennai, India
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
16
|
Abdelazeem NM, Sroor FM, Basyouni WM, Adel I, Tantawy MA. Synthesis and Evaluation of New 3,4-Dihydropyrimidin-2-(1 H)-Ones and -Thiones as Anti-Cancer Agents: In Vitro, Molecular Docking and SAR Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nagwa M. Abdelazeem
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Islam Adel
- The Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research, and Clinical Studies Institute, National Research Centre, Cairo, Egypt
- Stem Cells Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| |
Collapse
|
17
|
Yıldırım SÖ, Akkurt M, Çetin G, Şimşek R, Butcher RJ, Bhattarai A. Synthesis, characterization, crystal structure and Hirshfeld surface analysis of a hexa-hydro-quinoline derivative: tert-butyl 4-([1,1'-biphen-yl]-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2022; 78:798-803. [PMID: 35974826 PMCID: PMC9361379 DOI: 10.1107/s2056989022007022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
The title compound, C29H33NO3, crystallizes with three mol-ecules (A, B and C) in the asymmetric unit. They differ in the twist of the phenyl and benzene rings of the 1,1'-biphenyl ring with respect to the plane of the 1,4-di-hydro-pyridine ring. In all three mol-ecules, the 1,4-di-hydro-pyridine ring adopts a distorted boat conformation. The cyclo-hexene ring has an envelope conformation in mol-ecules A and B, while it exhibits a distorted half-chair conformation for both the major and minor components in the disordered mol-ecule C. In the crystal, mol-ecules are linked by C-H⋯O and N-H⋯O hydrogen bonds, forming layers parallel to (100) defining R 1 4(6) and C(7) graph-set motifs. Additional C-H⋯π inter-actions consolidate the layered structure. Between the layers, van der Waals inter-actions stabilize the packing, as revealed by Hirshfeld surface analysis. The greatest contributions to the crystal packing are from H⋯H (69.6% in A, 69.9% in B, 70.1% in C), C⋯H/H⋯C (20.3% in A, 20.6% in B, 20.3% in C) and O⋯H/H⋯O (8.6% in A, 8.6% in B, 8.4% in C) inter-actions.
Collapse
Affiliation(s)
- Sema Öztürk Yıldırım
- Department of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey
- Department of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey
| | - Mehmet Akkurt
- Department of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey
| | - Gökalp Çetin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Turkey
| | - Rahime Şimşek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Turkey
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington DC 20059, USA
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
| |
Collapse
|
18
|
Borah B, Patat M, Swain S, Chowhan LR. Recent Advances and Prospects in the Transition‐Metal‐Free Synthesis of 1,4‐Dihydropyridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202202484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Mihir Patat
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Sidhartha Swain
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| |
Collapse
|
19
|
1,1′-{[3,5-Bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide. MOLBANK 2022. [DOI: 10.3390/m1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Synthesis of a double-charged cationic amphiphilic 1,4-dihydropyridine derivative with dodecyl ester groups at positions 3 and 5 of the 1,4-DHP ring was performed starting from Hantzsch type cyclization of dodecyl acetoacetate, 2-naphthaldehyde and ammonium acetate. Bromination of this compound followed by nucleophilic substitution of bromine with (E)-4-(2-(naphthalen-2-yl)vinyl)pyridine gave the desired cationic amphiphilic 1,1′-{[3,5-bis(dodecyloxycarbonyl)-4-(naphthalen-2-yl)-1,4-dihydropyridine-2,6-diyl]bis(methylene)}bis{4-[(E)-2-(naphthalen-2-yl)vinyl]pyridin-1-ium}dibromide. The obtained target compound was fully characterized by IR, UV, 1H-NMR, 13C-NMR, HRMS and microanalysis. The characterization of the cationic 1,4-DHP nanoparticles in an aqueous solution was performed by DLS measurements. The obtained results showed that the compound formed nanoparticles with an average diameter of around 300 nm, a PDI value of around 490 and a zeta-potential of around 20 mV for freshly prepared samples. However, after one week of storage at room temperature, an aggregation of nanoparticles was detected.
Collapse
|
20
|
Han M, Zhang S, Cui X, Wang Q, Li G, Tang Z. Chiral Phosphoric Acid Catalyzed Enantioselective Desymmetrization of 1,4‐Dihydropyridines by C(sp
3
)−H Bromination. Angew Chem Int Ed Engl 2022; 61:e202201418. [DOI: 10.1002/anie.202201418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Min Han
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science Chengdu Sichuan 610041 China
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu Sichuan 610041 China
| | - Shi‐qi Zhang
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science Chengdu Sichuan 610041 China
| | - Xin Cui
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science Chengdu Sichuan 610041 China
| | - Qi‐wei Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu Sichuan 610041 China
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Guang‐xun Li
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science Chengdu Sichuan 610041 China
| | - Zhuo Tang
- Natural Products Research Center Chengdu Institution of Biology Chinese Academy of Science Chengdu Sichuan 610041 China
| |
Collapse
|
21
|
Maafi M, Al-Qarni MA. Photokinetics of Dacarbazine and Nifedipine under polychromatic light irradiation and their application as new reliable actinometers for the ultraviolet range. Sci Rep 2022; 12:7622. [PMID: 35538090 PMCID: PMC9090909 DOI: 10.1038/s41598-022-11570-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The photokinetic behaviour of drugs driven by polychromatic light is an area of pharmaceutics that has not received a lot of attention. Most often, such photokinetic data is treated by thermal kinetic models (i.e., the classical 0th-, 1st- or 2nd-order equations). Such models were not analytically derived from the rate-laws of the photodegradation reactions. Polychromatic light kinetic modelling is hence of importance, as a means to providing adequate toolkits and metrics. This paper aims at proposing two reliable drug-actinometers useful for polychromatic UVA range. The general actinometric methodology offered here is also useful for any drugs/materials obeying a primary photoprocess where both reactant and photoproduct absorb the incident light, of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AB{(1\Phi )}_{{\varepsilon }_{B}\ne 0}$$\end{document}AB(1Φ)εB≠0 type. The present method has been consolidated by the η-order kinetics. This framework further demonstrated the lamp-specificity of actinometers. Overall, Dacarbazine and Nifedipine photodegradations obeyed η-order kinetics, and stand as effective actinometers that can be recommended for the ICH Q1b photostability testing.
Collapse
Affiliation(s)
- Mounir Maafi
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| | - Mohammed Ahmed Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
22
|
Jalili F, Zarei M, Zolfigol MA, Khazaei A. Application of novel metal-organic framework [Zr-UiO-66-PDC-SO 3H]FeCl 4 in the synthesis of dihydrobenzo[ g]pyrimido[4,5- b]quinoline derivatives. RSC Adv 2022; 12:9058-9068. [PMID: 35424891 PMCID: PMC8985156 DOI: 10.1039/d1ra08710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 01/21/2023] Open
Abstract
In the current paper, we produce a new metal-organic framework (MOF) based on Zr metal, [Zr-UiO-66-PDC-SO3H]FeCl4, via an anion exchange method, which is fully characterized by FT-IR, SEM with elemental mapping and EDX, FE-SEM and TEM. Furthermore, the use of [Zr-UiO-66-PDC-SO3H]FeCl4 as a porous catalyst was examined for the one-pot synthesis of novel dihydrobenzo[g]pyrimido[4,5-b]quinoline derivatives by reaction of 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 2-hydroxynaphthalene-1,4-dione and various aldehydes at 100 °C with good to excellent yields.
Collapse
Affiliation(s)
- Fatemeh Jalili
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University 6517838965 Hamedan Iran
| |
Collapse
|
23
|
Han M, Zhang SQ, Cui X, Wang QW, Li G, Tang Z. Chiral Phosphoric Acid Catalyzed Enantioselective Desymmetrization of 1,4‐Dihydropyridines by C(sp3)–H Bromination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Han
- Chengdu Institute of Biology natural products reserch center CHINA
| | - Shi-qi Zhang
- Chengdu Institute of Biology natural products reserch center CHINA
| | - Xin Cui
- Chengdu Institute of Biology natural products reserch center CHINA
| | - Qi-wei Wang
- Chengdu Organic Chemistry Co Ltd: Chengdu Organic Chemicals Co Ltd natural products reserch center CHINA
| | - guangxun Li
- Chengdu institute of biology, Chinese academy of sciences Natural products research center Renming Road south, Block 4, NO 9 610041 Chengdu CHINA
| | - Zhuo Tang
- Chengdu Institute of Biology natural products reserch center CHINA
| |
Collapse
|
24
|
Structural investigations of halogen substituted 1,4-dihydropyridine derivatives: Crystallographic and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Jamrógiewicz M, Józefowicz M. Preparation and Characterization of Indomethacin Supramolecular Systems with β-Cyclodextrin in Order to Estimate Photostability Improvement. Molecules 2021; 26:molecules26247436. [PMID: 34946517 PMCID: PMC8709320 DOI: 10.3390/molecules26247436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins have found wide application in contemporary chemistry, pharmacy and medicine. Because of their unique properties, cyclodextrins are constantly used in research on solubility or stability improvement, as well as other physicochemical properties of medicinal substances. Indomethacin (IND) is a photolabile molecule that also attracts the interest of researchers due to its therapeutic potential and the need to overcome its problematic photosensitivity. Supramolecular complexes of indomethacin with β-cyclodextrin (CD) are already known, and they show greater stability compared to complexes with other types of cyclodextrins. So far, however, the sensitivity to light of physical mixtures and inclusion complexes in the solid phase has not been studied, and their various stoichiometries have not yet been investigated. Due to this fact, the aim of the present study is to obtain supramolecular systems (inclusion complexes and physical mixtures) of indomethacin with three different amounts of β-cyclodextrin. Assessment of the photochemical stability of indomethacin-β-cyclodextrin systems in the solid state is performed in order to find the best correlation between IND stability and the amount of CD. Comparative analysis of physicochemical degradation for stoichiometry systems [CD:IND] = [1:1], [0.5:1] and [0.1:1] is performed by using ultraviolet spectroscopy, transmission—FTIR, reflection—ATR-FTIR infrared spectroscopy and DSC calorimetry.
Collapse
Affiliation(s)
- Marzena Jamrógiewicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-349-16-56
| | - Marek Józefowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| |
Collapse
|
26
|
Ivan BC, Dumitrascu F, Anghel AI, Ancuceanu RV, Shova S, Dumitrescu D, Draghici C, Olaru OT, Nitulescu GM, Dinu M, Barbuceanu SF. Synthesis and Toxicity Evaluation of New Pyrroles Obtained by the Reaction of Activated Alkynes with 1-Methyl-3-(cyanomethyl)benzimidazolium Bromide. Molecules 2021; 26:6435. [PMID: 34770844 PMCID: PMC8587665 DOI: 10.3390/molecules26216435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A series of new pyrrole derivatives were designed as chemical analogs of the 1,4-dihydropyridines drugs in order to develop future new calcium channel blockers. The new tri- and tetra-substituted N-arylpyrroles were synthesized by the one-pot reaction of 1-methyl-3-cyanomethyl benzimidazolium bromide with substituted alkynes having at least one electron-withdrawing substituent, in 1,2-epoxybutane, acting both as the solvent and reagent to generate the corresponding benzimidazolium N3-ylide. The structural characterization of the new substituted pyrroles was based on IR, NMR spectroscopy as well as on single crystal X-ray analysis. The toxicity of the new compounds was assessed on the plant cell using Triticum aestivum L. species and on the animal cell using Artemia franciscana Kellogg and Daphnia magna Straus crustaceans. The compounds showed minimal phytotoxicity on Triticum rootlets and virtually no acute toxicity on Artemia nauplii, while on Daphnia magna, it induced moderate to high toxicity, similar to nifedipine. Our research indicates that the newly synthetized pyrrole derivatives are promising molecules with biological activity and low acute toxicity.
Collapse
Affiliation(s)
- Beatrice-Cristina Ivan
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - Florea Dumitrascu
- “Costin D. Nenitescu” Center of Organic Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Adriana Iuliana Anghel
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - Robert Viorel Ancuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Voda, 700487 Iasi, Romania;
| | - Denisa Dumitrescu
- Faculty of Pharmacy, “Ovidius” University Constanta, Cpt. Av. Al. Serbanescu Street, 900470 Constanta, Romania;
| | - Constantin Draghici
- “Costin D. Nenitescu” Center of Organic Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - Mihaela Dinu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (B.-C.I.); (A.I.A.); (R.V.A.); (G.M.N.); (M.D.); (S.-F.B.)
| |
Collapse
|
27
|
Goswami M, Dutta A, Paul P, Nongkhlaw R. Recent Developments on Catalyst‐Free, Visible‐Light‐Triggered Synthesis of Heterocyclic Scaffolds and Their Mechanistic Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Munmee Goswami
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Arup Dutta
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Pooja Paul
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| |
Collapse
|
28
|
Govender R, Abrahmsén-Alami S, Folestad S, Olsson M, Larsson A. Enabling modular dosage form concepts for individualized multidrug therapy: Expanding the design window for poorly water-soluble drugs. Int J Pharm 2021; 602:120625. [PMID: 33892062 DOI: 10.1016/j.ijpharm.2021.120625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Multidrug dosage forms (aka combination dosage forms, polypills, etc.) create value for patients through reduced pill burdens and simplified administration to improve adherence to therapy. Enhanced flexibility of multidrug dosage forms would provide further opportunities to better match emerging needs for individualized therapy. Through modular dosage form concepts, one approach to satisfy these needs is to adapt multidrug dosage forms to a wider variety of drugs, each with a variety of doses and release profiles. This study investigates and technically explores design requirements for extending the capability of modular multidrug dosage form concepts towards individualization. This builds on our recent demonstration of independent tailoring of dose and drug release, which is here extended towards poorly water-soluble drugs. The challenging design requirement of carrying higher drug loads in smaller volumes to accommodate multiple drugs at their clinical dose is here met regarding dose and release performance. With a modular concept, we demonstrate high precision (<5% RSD) in dose and release performance of individual modules containing felodipine or naproxen in Kollidon VA64 at both a wide drug loading range (5% w/w and 50% w/w drug) and a small module size (3.6 mg). In a forward-looking design-based discussion, further requirements are addressed, emphasizing that reproducible individual module performance is predictive of dosage form performance, provided the modules are designed to act independently. Therefore, efforts to incorporate progressively higher drug loads within progressively smaller module volumes will be crucial to extend the design window further towards full flexibility of future dosage forms for individualized multidrug therapy.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Martina Olsson
- Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
29
|
Petrichenko O, Plotniece A, Pajuste K, Rucins M, Dimitrijevs P, Sobolev A, Sprugis E, Cēbers A. Evaluation of Physicochemical Properties of Amphiphilic 1,4-Dihydropyridines and Preparation of Magnetoliposomes. NANOMATERIALS 2021; 11:nano11030593. [PMID: 33673422 PMCID: PMC7996955 DOI: 10.3390/nano11030593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
This study was focused on the estimation of the targeted modification of 1,4-DHP core with (1) different alkyl chain lengths at 3,5-ester moieties of 1,4-DHP (C12, C14 and C16); (2) N-substituent at position 1 of 1,4-DHP (N-H or N-CH3); (3) substituents of pyridinium moieties at positions 2 and 6 of 1,4-DHP (H, 4-CN and 3-Ph); (4) substituent at position 4 of 1,4-DHP (phenyl and napthyl) on physicochemical properties of the entire molecules and on the characteristics of the obtained magnetoliposomes formed by them. It was shown that thermal behavior of the tested 1,4-DHP amphiphiles was related to the alkyl chains length, the elongation of which decreased their transition temperatures. The properties of 1,4-DHP amphiphile monolayers and their polar head areas were determined. The packing parameters of amphiphiles were in the 0.43–0.55 range. It was demonstrated that the structure of 1,4-DHPs affected the physicochemical properties of compounds. “Empty” liposomes and magnetoliposomes were prepared from selected 1,4-DHP amphiphiles. It was shown that the variation of alkyl chains length or the change of substituents at positions 4 of 1,4-DHP did not show a significant influence on properties of liposomes.
Collapse
Affiliation(s)
- Oksana Petrichenko
- Laboratory of Magnetic Soft Materials, Faculty of Physics, Mathematics and Optometry, University of Latvia, 3 Jelgavas str., LV-1004 Riga, Latvia;
- Correspondence:
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, 21 Dzirciema Str., LV-1007 Riga, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, 21 Dzirciema Str., LV-1007 Riga, Latvia
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia; (A.P.); (K.P.); (M.R.); (P.D.); (A.S.)
| | - Einars Sprugis
- Laboratory of Chemical Technologies, Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| | - Andrejs Cēbers
- Laboratory of Magnetic Soft Materials, Faculty of Physics, Mathematics and Optometry, University of Latvia, 3 Jelgavas str., LV-1004 Riga, Latvia;
| |
Collapse
|
30
|
Molecular Docking and Antibacterial Studies of Pyranopyrazole Derivatives Synthesized Using [Pap-Glu@Chi] Biocatalyst Through a Greener Approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Mathur R, Negi KS, Shrivastava R, Nair R. Recent developments in the nanomaterial-catalyzed green synthesis of structurally diverse 1,4-dihydropyridines. RSC Adv 2021; 11:1376-1393. [PMID: 35424131 PMCID: PMC8693510 DOI: 10.1039/d0ra07807g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
1,4-Dihydropyridine (1,4-DHP), a privileged heterocyclic scaffold, has been extensively utilized in various biological and therapeutic applications. In this review article, we discussed the role of different nano-catalysts, nanoflakes, nanocomposites, and other green-supported nanomaterials in the synthesis of a biologically active and vital pharmaceutical precursor 1,4-DHP and its derivatives such as polyhydroquinoline, benzopyranopyridines, and dihydropyridine since 2015. It is evident that although the use of various tailored nanostructures under different conditions to optimize the synthesis of 1,4-DHP and its compounds has provided sustainable and efficient proposals, yet the development of greener practices in the synthesis of 1,4-DHPs, which can be applied to design new synthetic routes and sequences in process development, is a far-reaching task to be accomplished. Single pot multicomponent approaches using different nanomaterials as green catalysts for synthesis of 1,4-dihydropyridine (1,4-DHP), a privileged heterocyclic scaffold with vital biological and therapeutic applications are reviewed. ![]()
Collapse
Affiliation(s)
- Ritu Mathur
- Department of Chemistry, Zakir Husain Delhi College New Delhi-110002 India
| | - Khushal Singh Negi
- Department of Chemistry, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Rashmy Nair
- Department of Chemistry, S. S. Jain Subodh P. G. (Autonomous) College Jaipur 302004 Rajasthan India
| |
Collapse
|
32
|
Bordallo E, Torneiro M, Lazzari M. Dissolution of amorphous nifedipine from micelle-forming carboxymethylcellulose derivatives. Carbohydr Polym 2020; 247:116699. [PMID: 32829827 DOI: 10.1016/j.carbpol.2020.116699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
We show that a novel amphiphilic graft copolymer combining the biodegradability and biocompatibility of oxidized carboxymethylcellulose (CMC) with that of hydrophilic poly(ethylene glycol) (PEG), and hydrophobic dodecylamine (DDA), improves the solubility and dissolution performance of nifedipine (NIF), considered as a model hydrophobic drug. The hydrophobic components of the graft copolymer have the multiple effect of favouring micelle formation and loading. At the same time, the interaction between the hydrophobic core and NIF has the secondary effect to suppress drug crystallization, favouring its dissolution, and to increase photostability. Oxidized CMC-g-PEG-DDA micelles reached values of drug concentration, loading capacity and encapsulation efficiency as high as 340 μg mL-1, 6.4 % and 34.1 %, respectively. Loaded micelles showed a good stability with a limited release profile at pH 1.2, whereas at pH 7.4 the swollen cores enable much higher and progressive release, that reaches 3.4 and 6.6 % after 3 and 5 h, respectively, corresponding to very competitive concentration of 34 and 66 μg mL-1.
Collapse
Affiliation(s)
- Eduardo Bordallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mercedes Torneiro
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Massimo Lazzari
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Cascade cyclization of glycine derivatives with β-ketoesters for polysubstituted 1,4-dihydropyridines by visible light photoredox catalysis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Catalytic synthesis of dihydropyridines by domino reaction of terminal alkynes, carbodiimides, and acetylenic esters. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Khodamorady M, Sohrabnezhad S, Bahrami K. Efficient one-pot synthetic methods for the preparation of 3,4-dihydropyrimidinones and 1,4-dihydropyridine derivatives using BNPs@SiO2(CH2)3NHSO3H as a ligand and metal free acidic heterogeneous nano-catalyst. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|