1
|
Rudzińska M, Cieślik-Boczula K, Grygier A, Kmiecik D, Dwiecki K, Jarzębski M. Stigmasterol and its esters encapsulated in liposomes: Characterization, stability, and derivative formation. Food Chem 2025; 465:142039. [PMID: 39561597 DOI: 10.1016/j.foodchem.2024.142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Dipalmitoylphosphatidylcholine liposomes were encapsulated with free stigmasterol (ST), stigmasteryl myristate (ME), and stigmasteryl oleate (OE). Their quality was determined using TEM, FT-IR spectroscopy, zeta potential and hydrodynamic diameter. The prepared liposomes were heated at 60 and 180 °C. The degradation of stigmasterol, fatty acids was determined, as was the formation of derivatives. The results show that the liposomes had been prepared successfully. The ST liposomes were the smallest, while the ME and OE liposomes were of similar size. The extent to which the compounds encapsulated in the liposomes degraded depended on their structure. When samples were heated to 60 °C, the degradation of stigmasterol ranged from 11 % in ST to 47 % in OE and 58 % in ME. After heating to 180 °C, the lowest level of degradation of stigmasterol was for OE (51 %), whereas the degradation of stigmasterol in ST and ME was 85 % and 90 %, respectively. In addition, the high level of oxyphytosterols in the samples heated to 180 °C is of concern, especially in the ST and ME samples. The level of SOP in liposomes heated to 60 °C ranged from 1.7 mg/g in liposomes encapsulated with free stigmasterol to 10.4 and 32.9 mg/g in liposomes with stigmasteryl myristate and oleate. After heating to 180 °C, the total content of SOP was much higher, ranging from 68.2 for OE to 111.7 and 135.7 mg/g for ME and ST, respectively.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | | | - Anna Grygier
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Dominik Kmiecik
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Krzysztof Dwiecki
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Maciej Jarzębski
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| |
Collapse
|
2
|
Li L, Li X, McClements DJ, Jin Z, Ji H, Qiu C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39722469 DOI: 10.1080/10408398.2024.2439040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage. The degradation products of EOs can be toxic and may not be able to fully exert their biological activity, which limits their application. Typically, these challenges can be overcome by encapsulating the essential oil in an appropriate colloid delivery system. This article begins by reviewing the sources, extraction, and activity mechanisms of EOs, and then highlights plant-based encapsulation technologies that can be used to enhance their efficacy. Finally, the potential applications of plant essential oil encapsulation system are discussed.
Collapse
Affiliation(s)
- Lecheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Hatem S, Kamel AO, Elkheshen SA, Nasr M, Moftah NH, Ragai MH, El Hoffy NM, Elezaby RS. Nano-vesicular systems for melanocytes targeting and melasma treatment: In-vitro characterization, ex-vivo skin retention, and preliminary clinical appraisal. Int J Pharm 2024; 665:124731. [PMID: 39306205 DOI: 10.1016/j.ijpharm.2024.124731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Melasma represents an acquired melanogenesis disorder resulting in skin's hyperpigmentation effect. Although several approaches are adopted for melasma treatment, nanotechnology presents the most convenient one. Therefore, the present work aimed to formulate and characterize three nano-vesicular systems namely, liposomes, penetration enhancer containing vesicles (PEVs) and invasomes to enhance the topical delivery of the skin whitening agent; alpha arbutin (α-arbutin) for the treatment of melasma. Liposomes were prepared according to a 23 full factorial design and the selected formula was further employed for the preparation of PEVs and invasomes. Results showed that the three vesicular systems exhibited nano-sizes ranging from 151.95 to 672.5 nm, negative charges ranging from -12.50 to -28.20 mV, high entrapment efficiencies ranging from 80.59 to 99.53 %, good stability and prolonged-release of α-arbutin for 24 h after dispersion in hydrogel form. The deposition study from the vesicular hydrogel confirmed their effectiveness for the drug's accumulation in the skin reaching an average of 1.6-fold higher in the stratum corneum, 1.6-1.8-fold higher in the epidermis, and 1.6-1.8-fold higher in the dermis compared to the free drug dispersion in hydrogel. A preliminary clinical split-face study on patients suffering from melasma revealed that α-arbutin-loaded liposomes and PEVs in hydrogel forms showed better clinical outcomes compared to the free α-arbutin hydrogel as well as to the previously published α-arbutin encapsulated in chitosan nanoparticles and dispersed in hydrogel form. This delineates the aforementioned nano-vesicular systems as effective and clinically superior delivery means for melasma management.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H Moftah
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Maha H Ragai
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Al- Minia, Egypt
| | - Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Loukili EH, Merzouki M, Taibi M, Elbouzidi A, Hammouti B, Kumar Yadav K, Khalid M, Addi M, Ramdani M, Kumar P, Ryeol Choi J. Phytochemical, biological, and nutritional properties of the prickly pear, Opuntia dillenii: A review. Saudi Pharm J 2024; 32:102167. [PMID: 39286769 PMCID: PMC11402621 DOI: 10.1016/j.jsps.2024.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Opuntia (Cactaceae) species are native to arid and semi-arid regions of Mexico and the southern United States and grow in various climatic zones. Opuntia dillenii is a cactus fruit with many beneficial properties, and it is used as a medicinal plant in various countries. This review paper provides updated information on the phytochemical and pharmacological aspects of O. dillenii. The fruit contains valuable compounds such as flavonoids, phenolics, ascorbic acid, betanin, and essential elements, which have been isolated and identified. The fruit also exhibits diverse pharmacological activities, such as antioxidant, anti-inflammatory, anti-tumor, neuroprotective, hepatoprotective, hypotensive, anti-diabetic, antifungal, and anticancer effects. Moreover, molecular docking and ADMET predictions were performed to evaluate the antibacterial potential of the fruit against Escherichia coli protein. This paper suggests that O. dillenii has significant potential as a complementary therapy for various pathological conditions.
Collapse
Affiliation(s)
- El Hassania Loukili
- Euromed University of Fes, UEMF, Morocco
- Laboratory of Applied Analytical Chemistry Materials and Environment (LC2AME), Faculty of Science, Mohamed First University, Oujda, Morocco
| | - Mohammed Merzouki
- Laboratory of Applied Chemistry and Environment (LCAE-ECOMP), Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | | | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Ramdani
- Laboratory of Applied Analytical Chemistry Materials and Environment (LC2AME), Faculty of Science, Mohamed First University, Oujda, Morocco
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
5
|
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024; 16:962. [PMID: 39065659 PMCID: PMC11280113 DOI: 10.3390/pharmaceutics16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
Collapse
Affiliation(s)
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Beograd, Serbia;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| |
Collapse
|
6
|
Chiarentin R, Pereira Bottcher D, Zeni B, Grave C, Neutzling Kaufmann F, Emmanoella Sebulsqui Saraiva T, da Costa Berna G, Aline Führ G, Saraiva Hermann B, Hoffmeister B, Dal Pont Morisso F, Feiffer Charão M, Gasparin Verza S, Deise Fleck J, Heemann Betti A, Bastos de Mattos C. Development and pharmacological evaluation of liposomes and nanocapsules containing paroxetine hydrochloride. Int J Pharm 2024; 660:124304. [PMID: 38848799 DOI: 10.1016/j.ijpharm.2024.124304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Depression is one of the most common psychiatric disorders. Nanotechnology has emerged to optimize the pharmacological response. Therefore, the aim of this work was to develop and characterize liposomes and nanocapsules containing paroxetine hydrochloride and evaluate their antidepressant-like effect using the open field and tail suspension tests in mice. Liposomes and nanocapsules were prepared using the reverse-phase evaporation and nanoprecipitation methods, respectively. The particle size of the formulation ranged from 121.81 to 310.73 nm, the polydispersity index from 0.096 to 0.303, the zeta potential from -11.94 to -34.50 mV, the pH from 5.31 to 7.38, the drug content from 80.82 to 94.36 %, and the association efficiency was 98 %. Paroxetine hydrochloride showed slower release when associated with liposomes (43.82 %) compared to nanocapsules (95.59 %) after 10 h. In Vero cells, in vitro toxicity showed a concentration-dependent effect for paroxetine hydrochloride nanostructures. Both nanostructures decreased the immobility time in the TST at 2.5 mg/kg without affecting the number of crossings in the open field test, suggesting the antidepressant-like effect of paroxetine. In addition, the nanocapsules decreased the number of groomings, reinforcing the anxiolytic effect of this drug. These results suggest that the nanostructures were effective in preserving the antidepressant-like effect of paroxetine hydrochloride even at low doses.
Collapse
Affiliation(s)
- Raquel Chiarentin
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | | | - Bruna Zeni
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Carolina Grave
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | | | - Thalia Emmanoella Sebulsqui Saraiva
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Gabriel da Costa Berna
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Giulia Aline Führ
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Saraiva Hermann
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Hoffmeister
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Fernando Dal Pont Morisso
- Advanced Materials Studies Laboratory, Creative and Technological Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Materials Technology and Industrial Processes, Feevale University, Novo Hamburgo, RS, Brazil
| | - Mariele Feiffer Charão
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Simone Gasparin Verza
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Molecular Microbiology Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
| | - Cristiane Bastos de Mattos
- Bioanalysis Laboratory, Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil; Postgraduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
7
|
Erdoğmuş SF, Altintaş ÖE, Demirel HH, Okumuş N. Fabrication of wound dressings: Herbal extract-loaded nanoliposomes embedded in fungal chitosan/polycaprolactone electrospun nanofibers for tissue regeneration. Microsc Res Tech 2024; 87:360-372. [PMID: 37850370 DOI: 10.1002/jemt.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Wound healing is a complex process and one of the major therapeutic and economic subjects in the pharmaceutical area. In recent years, the fabrication of nano-sized wound dressing models has attracted great attention for tissue regeneration. Plant extracts loaded nanoparticles are environmentally friendly and non-toxic and the release of the bioactive substance will be controlled to the wound area. This study aims to fabricate wound dressing models that contain bioactive components for tissue regeneration. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extracts loaded nanoliposomes were prepared, characterized, and embedded in nanofiber structures. The effectiveness of wound dressing models for tissue regeneration was evaluated by in vitro and in vivo studies. It was observed that all wound dressing models positively affect the cell viability of human dermal fibroblast cells. It was determined that plant extracts loaded nanoparticles embedded in nanofibers increased in cell viability than nanoparticles that were non-embedded in nanofiber structures. Histological analysis showed that plant extract-loaded nanoliposomes embedded in chitosan/PCL nanofibers were used for tissue regeneration. The most effective nanofibers were determined as Wd-ClNL nanofibers. RESEARCH HIGHLIGHTS: Hypericum perforatum L. and Cistus laurifolius L. were prepared by modified ultrasonic extraction method. Fungal chitosan/polycaprolactone nanofiber was fabricated by electrospinning and it has been characterized. Plant extract-loaded nanoliposomes were prepared, and characterized. They were embedded in chitosan/polycaprolactone nanofiber. Effects of the wound dressing model were analyzed by in vitro and in vivo assays for tissue regeneration.
Collapse
Affiliation(s)
- Sevim Feyza Erdoğmuş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Özlem Erdal Altintaş
- Department of Medical Services and Techniques, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hasan Hüseyin Demirel
- Afyon Kocatepe University, Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyonkarahisar, Turkey
| | - Nurullah Okumuş
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Pediatrics, Afyonkarahisar, Turkey
| |
Collapse
|
8
|
Kadlecová Z, Sevriugina V, Lysáková K, Rychetský M, Chamradová I, Vojtová L. Liposomes Affect Protein Release and Stability of ITA-Modified PLGA-PEG-PLGA Hydrogel Carriers for Controlled Drug Delivery. Biomacromolecules 2024; 25:67-76. [PMID: 38135465 PMCID: PMC10777393 DOI: 10.1021/acs.biomac.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.
Collapse
Affiliation(s)
- Zuzana Kadlecová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Veronika Sevriugina
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Klára Lysáková
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Matěj Rychetský
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 464, 612 00 Brno, Czech Republic
| | - Ivana Chamradová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Lucy Vojtová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
9
|
Poudel A, Gachumi G, Paterson PG, El-Aneed A, Badea I. Liposomal Phytosterols as LDL-Cholesterol-Lowering Agents in Diet-Induced Hyperlipidemia. Mol Pharm 2023; 20:4443-4452. [PMID: 37492942 DOI: 10.1021/acs.molpharmaceut.2c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and β-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and β-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.
Collapse
Affiliation(s)
- Asmita Poudel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
10
|
Souri P, Emamifar A, Davati N. Physical and Antimicrobial Properties of Nano-ZnO-loaded Nanoliposomes Prepared by Thin Layer Hydration-Sonication and Heating Methods. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
11
|
Development of Novel Lipid-Based Formulations for Water-Soluble Vitamin C versus Fat-Soluble Vitamin D3. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120819. [PMID: 36551025 PMCID: PMC9774173 DOI: 10.3390/bioengineering9120819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to develop a facile and novel lipid-based formulation of vitamin C and vitamin D3. Liposomes loaded with vitamin C and D3 were characterized using transmission electron microscopy (TEM) and zeta potential measurements for evaluating morphology, particle size and physical stability. HPLC was employed to quantify the content of vitamin C and vitamin D3 in their liposomal forms. The UHPLC analysis of the lipid-based vitamin formulation is an easy and rapid method for the characterization as well as the quantification of all components. In addition, encapsulation efficiency, vitamin loading and stability analysis were performed by the UHPLC method, in order to evaluate the reliability of the optimized lipid-based formulation. The TEM results provided key support for the core type of liposome structure in the formulations, whereas the HPLC results indicated that the liposomal vitamin C and D3 systems were homogeneous, and did not undergo phase separation. Taken together, the results demonstrate that liposomal encapsulated vitamins (vitamin C and D3) possess a unilamellar vesicle morphology with uniform particle size, despite differences in the hydrophile-lipophile profiles of the vitamins. The highly efficient encapsulation properties of such liposomal constructs are proposed to contribute to enhanced vitamin bioavailability.
Collapse
|
12
|
Wang X, Wang A, Feng W, Wang D, Guo X, Wang X, Miao Q, Liu M, Xia G. Novel 5-Fluorouracil Carbonate-Loaded Liposome: Preparation, In Vitro, and In Vivo Evaluation as an Antitumor Agent. Mol Pharm 2022; 19:2061-2076. [PMID: 35731595 DOI: 10.1021/acs.molpharmaceut.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug against many types of cancers, especially colorectal cancer. However, its short plasma half-life and serious adverse reactions limit its wide clinical applications. To overcome these shortcomings, a novel lipophilic 5-FU carbonate [XL-01, (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl tetradecyl carbonate] was designed, synthesized, and encapsulated into liposome (LipoXL-01) by a thin-film dispersion method through formulation screening and optimization. LipoXL-01 was characterized by a particle size of around 100 nm, polydispersity index of 0.200, ζ-potential value of -41 mV, encapsulation efficiency of 93.9%, and drug-loading efficiency of 11.6%. The cellular uptake of LipoXL-01 was increased in a concentration-dependent manner on HCT15 cells. LipoXL-01 could enhance the induction of cell apoptosis and the inhibition of cell migration and arrest the ability of the cell cycle at the S-phase on HCT15 cells better than 5-FU. Additionally, LipoXL-01 exhibited a slow drug release profile with a cumulative release rate of 12% in 8 h. The results of pharmacokinetic and biodistribution studies revealed that LipoXL-01 had a long plasma half-life (7.21 h) and a high tumor accumulation (733 nmol/g at 8 h). The in vivo antitumor effect study also showed that LipoXL-01 had more potent efficacy than 5-FU (65 vs 48% of the tumor-inhibition rate). Simultaneously, negligible systemic toxicity was observed via analyzing the body weight as well as hematological and pathological parameters in the tested mice. The current study suggested that LipoXL-01 might be a promising nanocandidate for chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoru Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Pavani M, Singha P, Dash DR, Asaithambi N, Singh SK. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mekala Pavani
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Poonam Singha
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Dibya Ranjan Dash
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Niveditha Asaithambi
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Sushil Kumar Singh
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| |
Collapse
|
14
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
15
|
Poudel A, Gachumi G, Purves R, Badea I, El-Aneed A. Determination of phytosterol oxidation products in pharmaceutical liposomal formulations and plant vegetable oil extracts using novel fast liquid chromatography - Tandem mass spectrometric methods. Anal Chim Acta 2022; 1194:339404. [PMID: 35063161 DOI: 10.1016/j.aca.2021.339404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and β-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and β-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.
Collapse
Affiliation(s)
- Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy Purves
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Canadian Food Inspection Agency, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
16
|
An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability. Molecules 2021; 26:molecules26133833. [PMID: 34201792 PMCID: PMC8270320 DOI: 10.3390/molecules26133833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.
Collapse
|
17
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
18
|
Gachumi G, Demelenne A, Poudel A, Dallal Bashi Z, El-Aneed A. Novel Fast Chromatography-Tandem Mass Spectrometric Quantitative Approach for the Determination of Plant-Extracted Phytosterols and Tocopherols. Molecules 2021; 26:molecules26051402. [PMID: 33807675 PMCID: PMC7961602 DOI: 10.3390/molecules26051402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Phytosterols and tocopherols are commonly used in food and pharmaceutical industries for their health benefits. Current analysis methods rely on conventional liquid chromatography, using an analytical column, which can be tedious and time consuming. However, simple, and fast analytical methods can facilitate their qualitative and quantitative analysis. In this study, a fast chromatography-tandem mass spectrometric (FC-MS/MS) method was developed and validated for the quantitative analysis of phytosterols and tocopherols. Omitting chromatography by employing flow injection analysis—mass spectrometry (FIA-MS) failed in the quantification of target analytes due to analyte-to-analyte interferences from phytosterols. These interferences arise from their ambiguous MS fingerprints that would lead to false identification and inaccurate quantification. Therefore, a C18 guard column with a 1.9 µm particle size was employed for FC-MS/MS under isocratic elution using acetonitrile/methanol (99:1 v/v) at a flow rate of 600 µL/min. Analyte-to-analyte interferences were identified and eliminated. The false peaks could then be easily identified due to chromatographic separation. In addition, two internal standards were evaluated, namely cholestanol and deuterated cholesterol. Both internal standards contributed to the observed analyte-to-analyte interferences; however, adequate shift in the retention time for deuterated cholesterol eliminated its interferences and allowed for an accurate quantification. The method is fast (1.3 min) compared to published methods and can distinguish false peaks observed in FIA-MS. Seven analytes were quantified simultaneously, namely brassicasterol, campesterol, stigmasterol, β-sitosterol, α-tocopherol, δ-tocopherol, and γ-tocopherol. The method was successfully applied in the quantitative analysis of phytosterols and tocopherols present in the unsaponifiable matter of canola oil deodorizer distillate (CODD). β-sitosterol and γ-tocopherol were the most abundant phytosterols and tocopherols, respectively.
Collapse
Affiliation(s)
- George Gachumi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.); (Z.D.B.)
| | - Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, CIRM, University of Liège, 4000 Liege, Belgium;
| | - Asmita Poudel
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.); (Z.D.B.)
| | - Zafer Dallal Bashi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.); (Z.D.B.)
| | - Anas El-Aneed
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.); (Z.D.B.)
- Correspondence:
| |
Collapse
|
19
|
Gachumi G, Poudel A, Wasan KM, El-Aneed A. Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics 2021; 13:pharmaceutics13020268. [PMID: 33669349 PMCID: PMC7920278 DOI: 10.3390/pharmaceutics13020268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed.
Collapse
Affiliation(s)
- George Gachumi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Asmita Poudel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
| | - Kishor M. Wasan
- iCo Therapeutics Inc., Vancouver, BC V6Z 2T3, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Skymount Medical Group Inc., Calgary, AB T3C 0J8, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (G.G.); (A.P.)
- Correspondence: ; Tel.: +1-306-966-2013
| |
Collapse
|
20
|
Salehi B, Quispe C, Sharifi-Rad J, Cruz-Martins N, Nigam M, Mishra AP, Konovalov DA, Orobinskaya V, Abu-Reidah IM, Zam W, Sharopov F, Venneri T, Capasso R, Kukula-Koch W, Wawruszak A, Koch W. Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Front Pharmacol 2021; 11:599959. [PMID: 33519459 PMCID: PMC7841260 DOI: 10.3389/fphar.2020.599959] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Phytosterols (PSs) are plant-originated steroids. Over 250 PSs have been isolated, and each plant species contains a characteristic phytosterol composition. A wide number of studies have reported remarkable pharmacological effects of PSs, acting as chemopreventive, anti-inflammatory, antioxidant, antidiabetic, and antiatherosclerotic agents. However, PS bioavailability is a key issue, as it can be influenced by several factors (type, source, processing, preparation, delivery method, food matrix, dose, time of administration into the body, and genetic factors), and the existence of a close relationship between their chemical structures (e.g., saturation degree and side-chain length) and low absorption rates has been stated. In this sense, the present review intends to provide in-depth data on PS therapeutic potential for human health, also emphasizing their preclinical effects and bioavailability-related issues.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, India
| | - Abhay Prakash Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, School of Pharmacy, Shobhit University, Gangoh, India
| | - Dmitryi Alexeevich Konovalov
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute, Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk, Russia
| | - Valeriya Orobinskaya
- Institute of Service, Tourism and Design (Branch) of North-Caucasus Federal University in Pyatigorsk, Pyatigorsk, Russia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Farukh Sharopov
- “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Tommaso Venneri
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
21
|
Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Dima C, Assadpour E, Dima S, Jafari SM. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit Rev Food Sci Nutr 2020; 61:3031-3065. [PMID: 32691612 DOI: 10.1080/10408398.2020.1792409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanofoods is a current concept that is based on the application of nanotechnologies in the preparation of safe foods, with superior nutritional and sensory characteristics, and capable of providing multiple health benefits. In line with the principles of this concept, food scientists have focused on developing new types of nano biosystems that can contribute to increasing the bioavailability of bioactive compounds used in food fortification. Numerous research teams have investigated the main factors limiting oral bioavailability including: bioaccessibility, absorption and transformation of bioactive compounds and bioactive-loaded nanocarriers. The physicochemical processes involved in the factors limiting oral bioavailability have been extensively studied, such asthe release, solubility and interaction of bioactive compounds and nanocarriers during food digestion, transport mechanisms of bioactive compounds and nanoparticles through intestinal epithelial cells as well as the chemical and biochemical transformations in phase I and phase II reactions. In this comprehensive review, the physicochemical processes involved in the bioaccessibility/bioavailability of different encapsulated bioactive compounds, that play an important role in human health, will be explained including polyphenols, phytosterols, carotenoids, vitamins and minerals. In particular, the mechanisms involved in the cellular uptake of bioactive-loaded nanocarriers including transcellular transport (diffusion, endocytosis, pinocytosis, transcytosis, phagocytosis), paracellular transport (through the "tight junctions" between epithelial cells), and the active transport of bioactive compounds under the action of membrane transporters are highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
23
|
Gachumi G, Purves RW, Hopf C, El-Aneed A. Fast Quantification Without Conventional Chromatography, The Growing Power of Mass Spectrometry. Anal Chem 2020; 92:8628-8637. [PMID: 32510944 DOI: 10.1021/acs.analchem.0c00877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) in hyphenated techniques is widely accepted as the gold standard quantitative tool in life sciences. However, MS possesses intrinsic analytical capabilities that allow it to be a stand-alone quantitative technique, particularly with current technological advancements. MS has a great potential for simplifying quantitative analysis without the need for tedious chromatographic separation. Its selectivity relies on multistage MS analysis (MSn), including tandem mass spectrometry (MS/MS), as well as the ever-growing advancements of high-resolution MS instruments. This perspective describes various analytical platforms that utilize MS as a stand-alone quantitative technique, namely, flow injection analysis (FIA), matrix assisted laser desorption ionization (MALDI), including MALDI-MS imaging and ion mobility, particularly high-field asymmetric waveform ion mobility spectrometry (FAIMS). When MS alone is not capable of providing reliable quantitative data, instead of conventional liquid chromatography (LC)-MS, the use of a guard column (i.e., fast chromatography) may be sufficient for quantification. Although the omission of chromatographic separation simplifies the analytical process, extra procedures may be needed during sample preparation and clean-up to address the issue of matrix effects. The discussion of this manuscript focuses on key parameters underlying the uniqueness of each technique for its application in quantitative analysis without the need for a chromatographic separation. In addition, the potential for each analytical strategy and its challenges are discussed as well as improvements needed to render them as mainstream quantitative analytical tools. Overcoming the hurdles for fully validating a quantitative method will allow MS alone to eventually become an indispensable quantitative tool for clinical and toxicological studies.
Collapse
Affiliation(s)
- George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5.,Centre for Veterinary Drug Residues, Canadian Food Inspection Agency, 116 Veterinary Rd, Saskatoon, Saskatchewan Canada, S7N 2R3
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan Canada, S7N 5E5
| |
Collapse
|
24
|
Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules. Molecules 2020; 25:molecules25030638. [PMID: 32024189 PMCID: PMC7037994 DOI: 10.3390/molecules25030638] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
Collapse
|
25
|
Poudel A, Gachumi G, Badea I, Bashi ZD, El-Aneed A. The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography -tandem mass spectrometry. J Pharm Biomed Anal 2020; 183:113104. [PMID: 32058287 DOI: 10.1016/j.jpba.2020.113104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and β-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization. Unlike published work, the chromatographic conditions were modified to simplify the analytical approach. For the first time, a simple isocratic elution (acetonitrile:methanol 99:1 v/v) was utilized for the separation of four phytosterols and four tocopherols in a single run. A substantially better baseline separation of phytosterols were obtained in comparison to reported methods by using poroshell C18 column. The method has a total run time of 7 min, which is the shortest run time among all reported quantitative methods for the simultaneous determination of four phytosterols and four tocopherols. Calibration curves for all phytosterols were linear in the range of 0.05-10 μg/mL. In the case of tocopherols, alpha tocopherol showed linear response in the range of 0.25-10 μg/mL. However, gamma and delta tocopherols exhibited quadratic relationship in the same concentration range (0.25-10 μg/mL). Validation parameters met the International Conference on Harmonization (ICH) guidelines in terms of selectivity, accuracy, precision, repeatability, sensitivity, matrix effects, dilution integrity and stability. The method was, for the first time, successfully applied for the quantifying phytosterols and tocopherols entrapped inside liposomes. An interesting chromatographic phenomenon was observed during sample analysis. Alpha tocopherol (entrapped in the liposomal lipid bilayer) was found to elute at two retention times, 2.53 min and 3.60 min. Such dual separation was not observed in calibration standards and quality controls. It was concluded that the chiral recognition ability of liposomes made up of phosphatidylcholine separated the enantiomers of alpha tocopherol, giving rise to two peaks at two different retention time. To sum, the reported novel LC-MS/MS method addresses three major analytical shortcomings, namely i)longer run time, ii)complex gradient elution and iii)poor baseline separation of phytosterols and tocopherols.
Collapse
Affiliation(s)
- Asmita Poudel
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - George Gachumi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zafer Dallal Bashi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Anas El-Aneed
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
26
|
Drug Delivery Technology Development in Canada. Pharmaceutics 2019; 11:pharmaceutics11100541. [PMID: 31627471 PMCID: PMC6835823 DOI: 10.3390/pharmaceutics11100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. It may involve rational site-targeting, or facilitating systemic pharmacokinetics; in any case, it is typically concerned with both quantity and duration of the presence of the drug in the body. Drug delivery is often approached through a drug’s chemical formulation, medical devices or drug-device combination products. Drug delivery is a concept heavily integrated with dosage form development and selection of route of administration; the latter sometimes even being considered part of the definition. Drug delivery technologies modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and adherence. Over the past 30 years, numerous Canadian-based biotechnology companies have been formed stemming from the inventions conceived and developed within academic institutions. Many have led to the development of important drug delivery products that have enhanced the landscape of drug therapy in the treatment of cancer to infectious diseases. This Special Issue serves to highlight the progress of drug delivery within Canada. We invited articles on all aspects of drug delivery sciences from pre-clinical formulation development to human clinical trials that bring to light the world-class research currently undertaken in Canada for this Special Issue.
Collapse
|