1
|
Liu S, Yi D, Ma R, Zhang W. Folic Acid-Targeted Liposome-Based Nanoparticle Loaded with Sorafenib for Liver Cancer Therapy. Int J Nanomedicine 2025; 20:3933-3944. [PMID: 40177124 PMCID: PMC11963799 DOI: 10.2147/ijn.s489777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Sorafenib (SF) is a small molecule involved in tumor proliferation and angiogenesis. SF is inhibitor of several kinases, including RAF, VEGFR, and PDGFR. However the weak targeting ability of SF for liver tumor tissues is the major problem in clinical therapy. Therefore, a SF-loaded folic acid-targeted liposome drug delivery system was devised for targeting liver tumor therapy in this study. Methods Folic acid (FA), HSPC, DSPE-PEG2k, CHO, and SF were composed to prepare a folic acid-targeted SF-loaded liposome (LSF) drug delivery system. LSF and drug loading content was established through thin-film-hydration technique and HPLC, respectively. The particle size and stability of LSF were examined by dynamic light scattering (DLS). The inhibition effect of LSF was elucidated in vitro on liver cancer cells through cell cytotoxicity and apoptosis experiments. The tumor-inhibiting efficacy was measured on liver xenograft model. Results The drug loading content (DLC) of LSF was 3.6%. The diameter of LSF was 197.1±16.6 nm, and LSF was stable during 24 h. Liver cancer cells could be effectively inhibited by LSF in vitro. LSF could substantially induce apoptosis. Also, LSF could inhibit tumor growth effectively in vivo. LSF could reduce side effects of SF demonstrated by bio-safety tests. Conclusion LSF is a FA-targeted drug delivery system that could effectively inhibit the progression of liver cancer.
Collapse
Affiliation(s)
- Songyang Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Dan Yi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
- Department of VascularSurgery Qiqihar first hospital, Qiqihar City, Heilongjiang Province, 161000, People’s Republic of China
| | - Rui Ma
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| |
Collapse
|
2
|
Pandey P, Arya DK, Kumar A, Kaushik A, Mishra YK, Rajinikanth PS. Dual ligand functionalized pH-sensitive liposomes for metastatic breast cancer treatment: in vitro and in vivo assessment. J Mater Chem B 2025; 13:2682-2694. [PMID: 39841132 DOI: 10.1039/d4tb02570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), i.e., (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment. The physicochemical characterization revealed that 5-FU-iRGD-FA-pSL possesses optimal size, low polydispersity index, and favorable zeta potential, enhancing its stability and targeting capabilities. In vitro studies demonstrated significantly enhanced cellular uptake, cytotoxicity, and inhibition of cell migration in MCF-7 BC cells compared to free 5-FU and non-targeted liposomal formulations. DAPI staining revealed significant apoptotic features, including chromatin condensation (CC) and nuclear fragmentation (NF), with 5-FU-iRGD-FA-pSL inducing more pronounced apoptosis compared to 5-FU-pSL. Furthermore, in vivo analysis in a BC rat model showed superior anti-tumor efficacy, reduced systemic toxicity, and improved safety profile of the 5-FU-iRGD-FA-pSL formulation. This dual-targeting pSL system presents a promising approach for enhancing the therapeutic index of 5-FU, offering a potential strategy for more effective BC treatment.
Collapse
Affiliation(s)
- Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| | - Anit Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland 33805, FL, USA
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
3
|
Emami J, Kazemi M, Mirian M. Synthesis and in vitro evaluation of self-assembling biocompatible heparin-based targeting polymeric micelles for delivery of doxorubicin to leukemic cells. Res Pharm Sci 2025; 20:142-164. [PMID: 40190826 PMCID: PMC11972022 DOI: 10.4103/rps.rps_197_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 04/09/2025] Open
Abstract
Background and purpose Biodegradable polymeric micelles have emerged as one of the most promising platforms for targeted drug delivery. In the present study, a polymeric micelle composed of folic acid (FA), heparin (HEP), dexamethasone (DEX), and (FA-PEG-HEP-CA-TOC) was developed for the delivery of doxorubicin (DOX) to leukemic cells. Experimental approach FA-HEP-DEX was synthesized and characterized by 1H-NMR. DOX-loaded micelles were prepared using a dialysis method. The impact of various processing variables, including polymer-to-drug ratio, dialysis temperature, and solvent type, on the physicochemical properties of the micelles were evaluated. In vitro, cellular uptake and cytotoxicity of the micelles in folate receptor-positive (K562) and negative (HepG2) cells were evaluated. Findings/Results The 1H-NMR results confirmed the successful synthesis of FA-HEP-DEX. DOX-loaded micelles exhibited an average particle size of 117 to 181 nm with a high drug entrapment efficiency (36% to 71%). DOX-loaded micelles also showed sustained drug-release behavior. DOX-loaded FA-HEP-DEX micelles exhibited higher cellular uptake and in vitro cytotoxicity than free DOX and DOX-loaded HEP-DEX micelles in K562 cells. Conclusions and implications DOX was well incorporated into the micelles with high entrapment efficiency due to high solubility of DOX in DEX as the hydrophobic component of the micelle structure. The higher cellular uptake and cell toxicity of targeted micelles correspond to the presence of FA on the micelle surface, which promotes cell internalization of the micelles viaspecific receptor-mediated endocytosis. Our results indicated the potential of DOX-loaded heparin-based micelles with desirable antitumor activity as a targeted drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Moloud Kazemi
- Nanotechnology Research Center, Medical Basic Research Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
4
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025:10.1007/s13346-024-01765-w. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
5
|
Oopkaew L, Injongkol Y, Kungwan N, Rungrotmongkol T. Theoretical investigation of structure and electronic properties in Cisplatin-citrate complexes. J Comput Chem 2025; 46:e27511. [PMID: 39644131 DOI: 10.1002/jcc.27511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (CDDP) is an effective Platinum (Pt) based anticancer drug used in chemotherapy. However, its effectiveness is limited due to its instability in solvents, along with the side effects it causes due to DNA damage. Nanoparticles (NPs) were developed in vitro to address these issues by loading CDDP into various types of NPs, including metal, lipid, and biological NPs. Citrate was employed as a biocompatible compound in nanomedicine to reduce cytotoxicity and enhance stability. In our study, the physicochemical and electronic properties of CDDP and citrate have been investigated using density functional theory (DFT), with a comparison of their behavior in water and DMSO. Additionally, TD-DFT was applied to analyze the UV-Vis spectra results. Six complexes have been proposed to better understand the interaction between citrate and CDDP. The results demonstrated that the CDDP could form stable complexes with citrate in both water and DMSO, and the considered complexes exhibited UV-Vis spectra within the experiment range. The frontier orbitals, electron densities mapping, and electrostatic potential analysis revealed that complex 5, where citrate di-substituted on two chlorides, is the most likely and effective complex. In summary, our investigation sheds light on the potential of CDDP-citrate complexes to address the limitations of CDDP, offering insights into their stability and interaction in solvents and highlighting the promising efficacy of specific complex formations for future therapeutic applications.
Collapse
Affiliation(s)
- Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yuwanda Injongkol
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Tan X, Liu Y, Shang B, Geng M, Teng F. Layer-by-layer self-assembled liposomes fabricated using sodium alginate and chitosan: Investigation of co-encapsulation of folic acid and vitamin E. Int J Biol Macromol 2024; 281:136464. [PMID: 39396588 DOI: 10.1016/j.ijbiomac.2024.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
In this study, we constructed layer-by-layer self-assembled liposomes were prepared using sodium alginate (SA) and chitosan (CS) to co-encapsulate folic acid (FA) and vitamin E (VE). We investigated the morphology structure, stability mechanism and digestive behavior of the liposomes with varying addition mass ratios of FA and VE (3:7, 4:6, 1:1, 6:4, and 7:3). The results showed that the particle size of FA and VE co-encapsulated liposomes (L-FA-VE) increased from 424.54 to 464.27 nm. Compared to liposomes without encapsulated FA and VE (L), L-FA-VE were uniformly distributed and with a clear fingerprint structure. Among the L-FA-VE with different addition mass ratios, L-FA-VE 3:7 exhibited the highest encapsulation efficiency (EE) of 79.54 % and 81.57 % for FA and VE, respectively. Layer-by-layer self-assembled liposomes effectively retarded the degradation of FA and VE under strong acid, alkali, high salt environments and ultraviolet radiation. Additionally, L-FA-VE enhanced the extent of FA and VE release in the simulated gastrointestinal environment (FA: 69.26 %; VE: 83.98 %). These findings are valuable for developing of multi-component nutrient delivery systems using layer-by-layer self-assembled liposomes.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baiyu Shang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Nasra S, Bhatia D, Kumar A. Targeted Macrophage Re-Programming: Synergistic Therapy With Methotrexate and RELA siRNA Folate-Liposome in RAW264.7 Cells and Arthritic Rats. Adv Healthc Mater 2024; 13:e2400679. [PMID: 38794813 DOI: 10.1002/adhm.202400679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation and destruction. Current treatments, such as Methotrexate (MTX), though effective, often face limitations such as high plasma Cmax and lack of sustained release. This study explores a synergistic approach to RA therapy using folate-liposomal co-delivery of MTX and RELA siRNA (short interfering RNA), targeting RAW264.7 macrophage repolarization via nuclear factor kappa B (NF-κB) pathway inhibition. Extensive in vitro characterizations demonstrate the stability and biocompatibility of this therapy via folate-liposomes. In the collagen-induced arthritis (CIA) rat model, treatment leads to reduced synovial inflammation and improved mobility. The combined MTX and RELA siRNA approach indirectly inhibits inflammatory cytokines, rheumatoid factor (RF), and C-reactive protein (CRP). Targeted macrophage delivery shows marked therapeutic effects in RAW264.7 murine macrophages, potentially modulating M1 to M2 polarization. This research presents a promising avenue for innovative RA therapies by inhibiting the inflammatory cascade and preventing joint damage.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar, Palaj, Gujarat, 382355, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
9
|
Azmy L, Ibraheem IBM, Alsalamah SA, Alghonaim MI, Zayed A, Abd El-Aleam RH, Mohamad SA, Abdelmohsen UR, Elsayed KNM. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. BIOLOGY 2024; 13:581. [PMID: 39194519 DOI: 10.3390/biology13080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from -31.6 mV to -43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from -31.6 mV to -22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1-22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6'-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
Collapse
Affiliation(s)
- Lamya Azmy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt
| | - Soad A Mohamad
- Clinical Pharmacy Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia 61111, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
10
|
Zafar MN, Pitt WG, Husseini GA. Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon 2024; 10:e27882. [PMID: 38524567 PMCID: PMC10958368 DOI: 10.1016/j.heliyon.2024.e27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A. Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Wang T, Li M, Wei R, Wang X, Lin Z, Chen J, Wu X. Small Molecule-Drug Conjugates Emerge as a New Promising Approach for Cancer Treatment. Mol Pharm 2024; 21:1038-1055. [PMID: 38344996 DOI: 10.1021/acs.molpharmaceut.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antibody drug conjugates (ADCs) have emerged as a new promising class of anti- cancer agents. However, limitations such as higher costs and unavoidable immunogenicity due to their relatively large structures cannot be ignored. Therefore, the development of lightweight drugs such as small molecule-drug conjugates (SMDCs) based on the ADC design idea has become a new option for targeted therapy. SMDCs are derived from the coupling of small-molecule targeting ligands with cytotoxic drugs. They are composed of three parts: small-molecule targeting ligands, cytotoxic molecules, and linkers. Compared with ADCs, SMDCs can be more rapidly and evenly dispersed into tumor tissues, with low cost and no immunogenicity. In this article, we will give a comprehensive review of different types of SMDCs currently under clinical trials to provide ideas and inspirations for the development of clinically applicable SMDCs.
Collapse
Affiliation(s)
- Tiansi Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Meichai Li
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xinyu Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai 201799, China
- Shandong University of Traditional Chinese Medicine, No.4655, University Road, Jinan, Shandong 250355, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| |
Collapse
|
12
|
Inbaraj BS, Lai YW, Chen BH. A comparative study on inhibition of lung cancer cells by nanoemulsion, nanoliposome, nanogold and their folic acid conjugates prepared with collagen peptides from Taiwan tilapia skin. Int J Biol Macromol 2024; 261:129722. [PMID: 38280696 DOI: 10.1016/j.ijbiomac.2024.129722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 μg/mL), followed by TSCP2-NE-FA/CH (8.3 μg/mL), TSCP2-NE (22.4 μg/mL), TSCP2-NL (82.7 μg/mL), TSCP2-NG-FA (159.8 μg/mL), TSCP2-NG (234.0 μg/mL) and TSCP2 (359.7 μg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.
Collapse
Affiliation(s)
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; Department of Nutrition, China Medical University, Taichung 404328, Taiwan.
| |
Collapse
|
13
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
14
|
Abawi A, Thomann C, Lollo G, Granjon T, Petiot E, Bérot A, Oger C, Bultel-Poncé V, Guy A, Galano JM, Durand T, Girard-Egrot A, Maniti O. Carrier-Tumor Cell Membrane Interactions for Optimized Delivery of a Promising Drug, 4( RS)-4-F 4t-Neuroprostane. Pharmaceutics 2023; 15:2739. [PMID: 38140081 PMCID: PMC10748318 DOI: 10.3390/pharmaceutics15122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.
Collapse
Affiliation(s)
- Ariana Abawi
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Céline Thomann
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France;
| | - Thierry Granjon
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Emma Petiot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Anna Bérot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Camille Oger
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Valérie Bultel-Poncé
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Alexandre Guy
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France; (C.O.); (A.G.); (J.-M.G.); (T.D.)
| | - Agnès Girard-Egrot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| | - Ofelia Maniti
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (C.T.); (T.G.); (E.P.); (A.B.); (A.G.-E.)
| |
Collapse
|
15
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
16
|
Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, Sethi G. Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances. ENVIRONMENTAL RESEARCH 2023; 233:116476. [PMID: 37348632 DOI: 10.1016/j.envres.2023.116476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.
Collapse
Affiliation(s)
- Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, 345050, Dubai, United Arab Emirates
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Mohali, 140413, Punjab, India; Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India
| | | | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India; Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151 401, Bathinda, Punjab, India.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
17
|
de Oliveira Silva J, Fernandes RS, de Alcântara Lemos J, Cassali GD, de Paula Sabino A, Townsend DM, Oliveira MC, de Barros ALB. Evaluation of acute toxicity and in vitro antitumor activity of a novel doxorubicin-loaded folate-coated pH-sensitive liposome. Biomed Pharmacother 2023; 165:115280. [PMID: 37541172 PMCID: PMC10720880 DOI: 10.1016/j.biopha.2023.115280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023] Open
Abstract
Doxorubicin (DOX) loaded liposomes have been used and studied in the last decades due to the significant decrease in DOX induced cardiac and systemic toxicity relative to administration of free drug. Therefore, new strategies are sought to improve DOX delivery and antitumor activity, while avoiding side effects. Recently, folate-coated pH-sensitive liposomes (SpHL-Fol) have been studied as a tool to enhance cellular uptake and antitumor activity of paclitaxel and DOX in breast cancer cells expressing folate receptor (FR+). However, the elucidation of folate functionalization relevance in DOX-loaded SpHL (SpHL-DOX-Fol) in different cell types (MDA-MB-231, MCF-7, and A549), as well as, the complete safety evaluation, is necessary. To achieve these objectives, SpHL-DOX-Fol was prepared and characterized as previously described. Antitumor activity and acute toxicity were evaluated in vivo through direct comparison of free DOX verses SpHL-DOX, a well-known formulation to reduce DOX cardiotoxicity. The obtained data are crucial to support future translational research. Liposomes showed long-term stability, suitable for biological use. Cellular uptake, cytotoxicity, and percentage of migration inhibition were significantly higher for MDA-MB-231 (FR+) treated with SpHL-DOX-Fol. In addition, SpHL-DOX-Fol demonstrated a decrease in the systemic toxic effects of DOX, mainly in renal and cardiac parameters evaluation, even using a higher dose (20 mg/kg). Collectively these data build the foundation of support demonstrating that SpHL-DOX-Fol could be considered a promising drug delivery strategy for the treatment of FR+ breast tumors.
Collapse
Affiliation(s)
- Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Renata Salgado Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janaína de Alcântara Lemos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
18
|
André AS, Dias JNR, Aguiar SI, Leonardo A, Nogueira S, Amaral JD, Fernandes C, Gano L, Correia JDG, Cavaco M, Neves V, Correia J, Castanho M, Rodrigues CMP, Gaspar MM, Tavares L, Aires-da-Silva F. Panobinostat-loaded folate targeted liposomes as a promising drug delivery system for treatment of canine B-cell lymphoma. Front Vet Sci 2023; 10:1236136. [PMID: 37711439 PMCID: PMC10498770 DOI: 10.3389/fvets.2023.1236136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.
Collapse
Affiliation(s)
- Ana S. André
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Sandra I. Aguiar
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Leonardo
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Sara Nogueira
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Joana D. Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Célia Fernandes
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - Lurdes Gano
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - João D. G. Correia
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - Marco Cavaco
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Miguel Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Tavares
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
19
|
Xu M, Han X, Xiong H, Gao Y, Xu B, Zhu G, Li J. Cancer Nanomedicine: Emerging Strategies and Therapeutic Potentials. Molecules 2023; 28:5145. [PMID: 37446806 DOI: 10.3390/molecules28135145] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer continues to pose a severe threat to global health, making pursuing effective treatments more critical than ever. Traditional therapies, although pivotal in managing cancer, encounter considerable challenges, including drug resistance, poor drug solubility, and difficulties targeting tumors, specifically limiting their overall efficacy. Nanomedicine's application in cancer therapy signals a new epoch, distinguished by the improvement of the specificity, efficacy, and tolerability of cancer treatments. This review explores the mechanisms and advantages of nanoparticle-mediated drug delivery, highlighting passive and active targeting strategies. Furthermore, it explores the transformative potential of nanomedicine in tumor therapeutics, delving into its applications across various treatment modalities, including surgery, chemotherapy, immunotherapy, radiotherapy, photodynamic and photothermal therapy, gene therapy, as well as tumor diagnosis and imaging. Meanwhile, the outlook of nanomedicine in tumor therapeutics is discussed, emphasizing the need for addressing toxicity concerns, improving drug delivery strategies, enhancing carrier stability and controlled release, simplifying nano-design, and exploring novel manufacturing technologies. Overall, integrating nanomedicine in cancer treatment holds immense potential for revolutionizing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hongtai Xiong
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijie Gao
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
20
|
Lin B, Dai R, Liu Z, Li W, Bai J, Zhang G, Lv R. Dual-targeting lanthanide-ICG-MOF nanoplatform for cancer Theranostics: NIR II luminescence imaging guided sentinel lymph nodes surgical navigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112731. [PMID: 37331158 DOI: 10.1016/j.jphotobiol.2023.112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Sentinel lymph node imaging is important for breast tumor staging and prediction of postoperative metastasis. However, clinical sentinel lymph node imaging has limitations such as low specificity, low contrast, and short retention time. The combination of bio-conjugates chemistry and luminescence technology may achieve the specific targeting effect. In this research, we designed a dual-targeting composite nanoprobe (∼50 nm) using a metal-organic framework (MOF) as carrier, loaded with lanthanide and ICG, and combined with hyaluronic acid and folic acid to detect metastatic lymph nodes. The coupled hyaluronic acid and folic acid can target to the tumor cells and dentritic cells with a dual-targeting effect. The FA-HA/ZIF-8@ICG nanoprobes can accumulate rapidly in sentinel lymph node with a stronger luminescence intensity (1.6 times) than that of normal popliteal lymph nodes in vivo, thus distinguish metastatic sentinel lymph node from normal effectively. Furthermore, due to the MOF carrier, the integrated lanthanide and near-infrared dye by transferring the absorbed excitation energy from ICG to Nd3+ can enhance the signal-to-background ratio of NIR II imaging and have long retention time in vivo imaging. Finally, the FA-HA/ICG@Ln@ZIF-8 nanoplatform increased the penetration depth and contrast of imaging, prolonged the retention time, and achieved the sentinel lymph nodes surgical resection. This study has important implications for lymph node imaging and surgical navigation.
Collapse
Affiliation(s)
- Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Ruiyi Dai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhenghao Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jingwen Bai
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China
| | - Guojun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| |
Collapse
|
21
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
22
|
Zhu WT, Zeng XF, Yang H, Jia ML, Zhang W, Liu W, Liu SY. Resveratrol Loaded by Folate-Modified Liposomes Inhibits Osteosarcoma Growth and Lung Metastasis via Regulating JAK2/STAT3 Pathway. Int J Nanomedicine 2023; 18:2677-2691. [PMID: 37228445 PMCID: PMC10204760 DOI: 10.2147/ijn.s398046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Osteosarcoma is a malignant bone tumor with a high rate of lung metastasis and mortality. It has been demonstrated that resveratrol can inhibit tumor proliferation and metastasis, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare folate-modified liposomes loaded with resveratrol to investigate its anti-osteosarcoma effect in vitro and in vivo. Methods We prepared and characterized resveratrol liposomes modified with folate (denoted as, FA-Res/Lps). The effects of FA-Res/Lps on human osteosarcoma cell 143B proliferation, apoptosis, and migration were investigated by MTT, cell cloning, wound-healing assay, transwell, and flow cytometry. A xenograft tumor and lung metastasis model of osteosarcoma was constructed to study the therapeutic effects of FA-Res/Lps on the growth and metastasis of osteosarcoma in vivo. Results The FA-Res/Lps were prepared with a particle size of 118.5 ± 0.71 and a small dispersion coefficient of 0.154 ± 0.005. We found that FA-modified liposomes significantly increased resveratrol uptake by osteosarcoma cells 143B in flow cytometric assay, resulting in FA-Res/Lps, which inhibit tumor proliferation, migration and induce apoptosis more effectively than free Res and Res/Lps. The mechanism of action may be associated with the inhibition of JAK2/STAT3 signaling. In vivo imaging demonstrated that FA-modified DiR-modified liposomes significantly increased the distribution of drugs at the tumor site, leading to significant inhibition of osteosarcoma growth and metastasis by FA-Res/Lps. Furthermore, we found that FA-Res/Lps did not cause any adverse effects on mice body weight, liver, or kidney tissues. Conclusion Taken together, the anti-osteosarcoma effect of resveratrol is significantly enhanced when it is loaded into FA-modified liposomes. FA-Res/Lps is a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wen Ting Zhu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Xiang Feng Zeng
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Hua Yang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Meng Lei Jia
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People’s Republic of China
| | - Wei Zhang
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Sheng Yao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
| |
Collapse
|
23
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
24
|
Karmacharya M, Kumar S, Cho YK. Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications. J Funct Biomater 2023; 14:jfb14020117. [PMID: 36826916 PMCID: PMC9960107 DOI: 10.3390/jfb14020117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Membrane fusion is one of the key phenomena in the living cell for maintaining the basic function of life. Extracellular vesicles (EVs) have the ability to transfer information between cells through plasma membrane fusion, making them a promising tool in diagnostics and therapeutics. This study explores the potential applications of natural membrane vesicles, EVs, and their fusion with liposomes, EVs, and cells and introduces methodologies for enhancing the fusion process. EVs have a high loading capacity, bio-compatibility, and stability, making them ideal for producing effective drugs and diagnostics. The unique properties of fused EVs and the crucial design and development procedures that are necessary to realize their potential as drug carriers and diagnostic tools are also examined. The promise of EVs in various stages of disease management highlights their potential role in future healthcare.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| |
Collapse
|
25
|
Guo M, He Z, He X, Song X. Surface Modification of Liposomes Using Folic Acid. Methods Mol Biol 2023; 2622:191-196. [PMID: 36781761 DOI: 10.1007/978-1-0716-2954-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Liposomes are usually defined as spherically shaped microscopic vesicles that consist of one or more phospholipid bilayer membranes. They are widely used in drug delivery due to their biocompatibility, biodegradability, and stability. In recent years, a growing body of research shows that folic acid (FA)-modified liposomes can be targeted to deliver therapeutics to tumor and inflammation sites via receptor-mediated endocytosis between FA and folate receptor (FR). Taking this advantage, FA-modified liposomes are usually used in the targeted treatment of cancer, atherosclerosis, and arthrosis. In this chapter, we provided a classical thin-film hydration method to prepare FA-modified liposomes. We expect that our strategies would provide new opportunities for the development of FA-modified liposomes for research and clinical uses.
Collapse
Affiliation(s)
- Mengran Guo
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongshan He
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi He
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
27
|
Al-Hetty HRAK, Kadhim MS, Al-Tamimi JHZ, Ahmed NM, Jalil AT, Saleh MM, Kandeel M, Abbas RH. Implications of biomimetic nanocarriers in targeted drug delivery. EMERGENT MATERIALS 2023; 6:1-13. [PMID: 36686331 PMCID: PMC9846706 DOI: 10.1007/s42247-023-00453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nanomaterials and nanostructures have shown fascinating performances in various biomedicine fields, from cosmetic to cancer diagnosis and therapy. Engineered nanomaterials can encapsulate both lipophilic and hydrophilic substances/drugs to eliminate their limitations in the free forms, such as low bioavailability, multiple drug administration, off-target effects, and various side effects. Moreover, it is possible to deliver the loaded cargo to the desired site of action using engineered nanomaterials. One approach that has made nanocarriers more sophisticated is the "biomimetic" concept. In this scenario, biomolecules (e.g., natural proteins, peptides, phospholipids, cell membranes) are used as building blocks to construct nanocarriers and/or modify agents. For instance, it has been reported that specific cells tend to migrate to a particular site during specific circumstances (e.g., inflammation, tumor formation). Employing the cell membrane of these cells as a coating for nanocarriers confers practical targeting approaches. Accordingly, we introduce the biomimetic concept in the current study, review the recent studies, challenge the issues, and provide practical solutions.
Collapse
Affiliation(s)
| | - Maitha Sameer Kadhim
- Department of Prevention Dentistry, Al-Rafidain University College, Baghdad, Iraq
| | | | - Nahid Mahmood Ahmed
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001 Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982 Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516 Egypt
| | - Ruaa H. Abbas
- Communication Technical Engineering, Collage of Technical Engineering, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
28
|
Hoffmann M, Gerlach S, Hoffmann C, Richter N, Hersch N, Csiszár A, Merkel R, Hoffmann B. PEGylation and folic-acid functionalization of cationic lipoplexes-Improved nucleic acid transfer into cancer cells. Front Bioeng Biotechnol 2022; 10:1066887. [PMID: 36619382 PMCID: PMC9811411 DOI: 10.3389/fbioe.2022.1066887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Efficient and reliable transfer of nucleic acids for therapy applications is a major challenge. Stabilization of lipo- and polyplexes has already been successfully achieved by PEGylation. This modification reduces the interaction with serum proteins and thus prevents the lipoplexes from being cleared by the reticuloendothelial system. Problematically, this stabilization of lipoplexes simultaneously leads to reduced transfer efficiencies compared to non-PEGylated complexes. However, this reduction in transfer efficiency can be used to advantage since additional modification of PEGylated lipoplexes with functional groups enables improved selective transfer into target cells. Cancer cells overexpress folate receptors because of a significantly increased need of folate due to high cell proliferation rates. Thus, additional folate functionalization of PEGylated lipoplexes improves uptake into cancer cells. We demonstrate herein that NHS coupling chemistries can be used to modify two commercially available transfection reagents (Fuse-It-DNA and Lipofectamine® 3000) with NHS-PEG-folate for increased uptake of nucleic acids into cancer cells. Lipoplex characterization and functional analysis in cultures of cancer- and healthy cells clearly demonstrate that functionalization of PEGylated lipoplexes offers a promising method to generate efficient, stable and selective nucleic acid transfer systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bernd Hoffmann
- Institute of Biological Information Processing, Mechanobiology (IBI-2), Research Center Juelich, Juelich, Germany
| |
Collapse
|
29
|
Carborane-Containing Folic Acid bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells. Int J Mol Sci 2022; 23:ijms232213726. [PMID: 36430206 PMCID: PMC9692863 DOI: 10.3390/ijms232213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The design of highly selective low-toxic, low-molecular weight agents for boron delivery to tumour cells is of decisive importance for the development of boron neutron capture therapy (BNCT), a modern efficient combined method for cancer treatment. In this work, we developed a simple method for the preparation of new closo- and nido-carborane-containing folic acid bis-amides containing 18-20 boron atoms per molecule. Folic acid derivatives containing nido-carborane residues were characterised by high water solubility, low cytotoxicity, and demonstrated a good ability to deliver boron to tumour cells in in vitro experiments (up to 7.0 µg B/106 cells in the case of U87 MG human glioblastoma cells). The results obtained demonstrate the high potential of folic acid-nido-carborane conjugates as boron delivery agents to tumour cells for application in BNCT.
Collapse
|
30
|
Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): a current overview of active targeting in brain diseases. Colloids Surf B Biointerfaces 2022; 221:112999. [DOI: 10.1016/j.colsurfb.2022.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
31
|
Géczi Z, Róth I, Kőhidai Z, Kőhidai L, Mukaddam K, Hermann P, Végh D, Zelles T. The use of Trojan-horse drug delivery system in managing periodontitis. Int Dent J 2022; 73:346-353. [PMID: 36175203 DOI: 10.1016/j.identj.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this review is to evaluate the possibility of delivering a silver-acid complex via a Trojan-horse mechanism for managing periodontits. We theroised that the complex could be an effective treatment option for bacterial inflammatory processes in the oral cavity. Searches were conducted using MEDLINE, Embase, Web of Science Core Collection, and Google Scholar search engines. We also reviewed several reference lists of the included studies or relevant reviews identified by the search. By using Medical Subject Headings (MeSH) terminology, a comprehensive search was performed for the following keywords: silver, folic acid, periodontitis, macrophages, Trojan-horse mechanism, toxicity, and targeting. Using the keywords mentioned earlier, we selected 110 articles and after appropriate elimination the review was written based on 37 papers. Accordingly the we noted that silver isons were an effective approach to kill oral pathogens. Secondly the Trojan-horse mechanism. could be used by macrophages (as the Trojan horse) to deliver silver ions in large quantities to the inflammatory focus to kill the periodontopathogens. The Trojan-horse mechanism has never been described in the field of dentistry before. The proposed novel approach using the principle of Trojan Horse delivery of drugs/chemicals could be used to manage oral inflammatory conditions. This method can be used to supplement regular treatments.
Collapse
Affiliation(s)
- Zoltán Géczi
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary.
| | - Ivett Róth
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Zsófia Kőhidai
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Péter Hermann
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Dániel Végh
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Tivadar Zelles
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
33
|
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. NANOSCALE ADVANCES 2022; 4:3479-3494. [PMID: 36134349 PMCID: PMC9400644 DOI: 10.1039/d2na00229a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has increasingly emerged as a promising tool for exploring new approaches, from treating complex conditions to early detection of the onset of multiple disease states. Tailored designer nanoparticles can now more comprehensively interact with their cellular targets and various pathogens due to a similar size range and tunable surface properties. The basic goal of drug delivery is to employ pharmaceuticals only where they are needed, with as few adverse effects and off-target consequences as possible. Rheumatoid arthritis (RA) is a chronic inflammatory illness that leads to progressive loss of bone and cartilage, resulting in acute impairment, decreased life expectancy, and increased death rates. Recent advancements in treatment have significantly slowed the progression of the disease and improved the lives of many RA sufferers. Some patients, on the other hand, attain or maintain illness remission without needing to continue immunosuppressive therapy. Furthermore, a large percentage of patients do not respond to current treatments or acquire tolerance to them. As a result, novel medication options for RA therapy are still needed. Nanocarriers, unlike standard medications, are fabricated to transport drugs directly to the location of joint inflammation, evading systemic and negative effects. As a result, researchers are reconsidering medicines that were previously thought to be too hazardous for systemic delivery. This article gives an overview of contemporary nanotechnology-based tactics for treating rheumatoid arthritis, as well as how the nanotherapeutic regimen could be enhanced in the future.
Collapse
Affiliation(s)
- Simran Nasra
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar Palaj 382355 Gujarat India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| |
Collapse
|
34
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
35
|
Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydr Polym 2022; 287:119315. [DOI: 10.1016/j.carbpol.2022.119315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
|
36
|
Karabuga M, Erdogan S, Timur SS, Vural I, Çalamak S, Ulubayram K. Development of tumor-specific liposomes containing quantum dots-photosensitizer conjugate used for radiotherapy. J Liposome Res 2022; 32:396-404. [PMID: 35704022 DOI: 10.1080/08982104.2022.2087082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study aims to develop a multifunctional liposomal radiosensitizer to destroy more tumor cells by using lower radiation doses compared to clinically used 6 MV X-ray doses. To achieve this aim, first Chlorine-e6 (Ce6) was covalently bound to functional groups of outer surfaces of quantum dots (QDs) through EDC/NHS reactions. Then, QDs-Ce6 conjugate loaded, nanosized, PEG-coated, and tumor-specific folic acid-modified immunoliposome dispersions were prepared by film method. Enhanced anti-proliferation activity of free and liposomal conjugate against 4T1 (murine breast cancer) cell lines was investigated at different X-ray doses (5, 10, 15, and 20 Gy). As a result, the best radiosensitizer effect was observed at a 5 Gy X-ray dose and it was found that following the X-ray irradiation, immunoliposome dispersions containing QDs-Ce6 conjugate killed 26.8 ± 1.7% more cancer cells than radiation alone.
Collapse
Affiliation(s)
- M Karabuga
- Department of Nanotechnology and Nanomedicine, Graduated School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - S Erdogan
- Department of Nanotechnology and Nanomedicine, Graduated School of Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - S S Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - I Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - S Çalamak
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - K Ulubayram
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
37
|
Jurczyk M, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines 2022; 10:biomedicines10051187. [PMID: 35625921 PMCID: PMC9138983 DOI: 10.3390/biomedicines10051187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
A growing interest in the use of a combination of chemosensitizers and cytostatics for overcoming cancer resistance to treatment and the development of their delivery systems has been observed. Resveratrol (Res) presents antioxidant, anti-inflammatory and chemopreventive properties but also limits multidrug resistance against docetaxel (Dtx), which is one of the main causes of failure in cancer therapy with this drug. However, the use of both drugs presents challenges, including poor bioavailability, the unfavourable pharmacokinetics and chemical instability of Res and the poor water solubility and dose-limiting toxicity of Dtx. In order to overcome these difficulties, attempts have been made to create different forms of delivery for both agents. This review is focused on the latest developments in nanoparticles for the delivery of Dtx, Res and for the combined delivery of those two drugs. The aim of this review was also to summarize the synergistic mechanism of action of Dtx and Res on cancer cells. According to recent reports, Dtx and Res loaded in a nano-delivery system exhibit better efficiency in cancer treatment compared to free drugs. Also, the co-delivery of Dtx and Res in one actively targeted delivery system providing the simultaneous release of both drugs in cancer cells has a chance to fulfil the requirements of effective anticancer therapy and reduce limitations in therapy caused by multidrug resistance (MDR).
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Correspondence: ; Tel.: +48-32-271-2969
| |
Collapse
|
38
|
Rezaei T, Rezaei M, Karimifard S, Mahmoudi Beram F, Dakkali MS, Heydari M, Afshari-Behbahanizadeh S, Mostafavi E, Bokov DO, Ansari MJ, Farasati Far B, Akbarzadeh I, Chaiyasut C. Folic Acid-Decorated pH-Responsive Nanoniosomes With Enhanced Endocytosis for Breast Cancer Therapy: In Vitro Studies. Front Pharmacol 2022; 13:851242. [PMID: 35517801 PMCID: PMC9065559 DOI: 10.3389/fphar.2022.851242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women and the second leading cause of cancer death in women after lung cancer. The purpose of this study is a targeted delivery toward in vitro (on MCF7 and 4T1 breast cancer cell lines) through niosomes-based nanocarriers. To this end, different bioactive molecules, including hyaluronic acid (HA), folic acid (FA), and polyethylene glycol (PEG), were used and compared for surface modification of niosomes to enhance endocytosis. FA-functionalized niosomes (Nio/5-FU/FA) were able to increase cell cytotoxicity and reduce cell migration and invasion compared to PEG-functionalized niosomes (Nio/5-FU/PEG), and HA-functionalized niosomes (Nio/5-FU/HA) groups in MCF-7 and 4T1 cell lines. Although the Nio/5-FU/PEG and Nio/5-FU/HA demonstrated MCF7 cell uptake, the Nio/5-FU/FA exhibited the most preponderant endocytosis in pH 5.4. Remarkably, in this study 5-FU loaded niosomes (nonionic surfactant-based vesicles) were decorated with various bioactive molecules (FA, PEG, or HA) to compare their ability for breast cancer therapy. The fabricated nanoformulations were readily taken up by breast cancer cells (in vitro) and demonstrated sustained drug release characteristics, inducing cell apoptosis. Overall, the comprehensive comparison between different bioactive molecules-decorated nanoniosomes exhibited promising results in finding the best nano formulated candidates for targeted delivery of drugs for breast cancer therapy.
Collapse
Affiliation(s)
- Tahereh Rezaei
- General Physician, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaei
- Department of Cardiology, Fars-Iranian Heart Association, Fars Society of Internal Medicine, Shiraz, Iran
| | - Sara Karimifard
- Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Farzaneh Mahmoudi Beram
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022; 14:pharmaceutics14040778. [PMID: 35456613 PMCID: PMC9026371 DOI: 10.3390/pharmaceutics14040778] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Liposomes are highly advantageous platforms for drug delivery. To improve the colloidal stability and avoid rapid uptake by the mononuclear phagocytic system of conventional liposomes while controlling the release of encapsulated agents, modification of liposomes with well-designed polymers to modulate the physiological, particularly the interfacial properties of the drug carriers, has been intensively investigated. Briefly, polymers are incorporated into liposomes mainly using “grafting” or “coating”, defined according to the configuration of polymers at the surface. Polymer-modified liposomes preserve the advantages of liposomes as drug-delivery carriers and possess specific functionality from the polymers, such as long circulation, precise targeting, and stimulus-responsiveness, thereby resulting in improved pharmacokinetics, biodistribution, toxicity, and therapeutic efficacy. In this review, we summarize the progress in polymer-modified liposomes for drug delivery, focusing on the change in physiological properties of liposomes and factors influencing the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence: (Y.C.); (X.C.)
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China;
| | - Xuepeng Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
- Correspondence: (Y.C.); (X.C.)
| |
Collapse
|
40
|
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022; 10:844050. [PMID: 35295856 PMCID: PMC8918578 DOI: 10.3389/fcell.2022.844050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a rapid development of biomimetic platforms using cell membranes as nanocarriers to camouflage nanoparticles for enhancing bio-interfacial capabilities. Various sources of cell membranes have been explored for natural functions such as circulation and targeting effect. Biomedical applications of cell membranes-based delivery systems are expanding from cancer to multiple diseases. However, the natural properties of cell membranes are still far from achieving desired functions and effects as a nanocarrier platform for various diseases. To obtain multi-functionality and multitasking in complex biological systems, various functionalized modifications of cell membranes are being developed based on physical, chemical, and biological methods. Notably, many research opportunities have been initiated at the interface of multi-technologies and cell membranes, opening a promising frontier in therapeutic applications. Herein, the current exploration of natural cell membrane functionality, the design principles for engineered cell membrane-based delivery systems, and the disease applications are reviewed, with a special focus on the emerging strategies in engineering approaches.
Collapse
Affiliation(s)
- Biao Yu
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Shanghai, China
- Department of Orthopedics, Luodian Hospital, Shanghai University, Shanghai, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jianping Huang
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
41
|
3D Printed Scaffold Based on Type I Collagen/PLGA_TGF-β1 Nanoparticles Mimicking the Growth Factor Footprint of Human Bone Tissue. Polymers (Basel) 2022; 14:polym14050857. [PMID: 35267680 PMCID: PMC8912467 DOI: 10.3390/polym14050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
In bone regenerative strategies, the controlled release of growth factors is one of the main aspects for successful tissue regeneration. Recent trends in the drug delivery field increased the interest in the development of biodegradable systems able to protect and transport active agents. In the present study, we designed degradable poly(lactic-co-glycolic)acid (PLGA) nanocarriers suitable for the release of Transforming Growth Factor-beta 1 (TGF-β1), a key molecule in the management of bone cells behaviour. Spherical TGF-β1-containing PLGA (PLGA_TGF-β1) nanoparticles (ca.250 nm) exhibiting high encapsulation efficiency (ca.64%) were successfully synthesized. The TGF-β1 nanocarriers were subsequently combined with type I collagen for the fabrication of nanostructured 3D printed scaffolds able to mimic the TGF-β1 presence in the human bone extracellular matrix (ECM). The homogeneous hybrid formulation underwent a comprehensive rheological characterisation in view of 3D printing. The 3D printed collagen-based scaffolds (10 mm × 10 mm × 1 mm) successfully mimicked the TGF-β1 presence in human bone ECM as assessed by immunohistochemical TGF-β1 staining, covering ca.3.4% of the whole scaffold area. Moreover, the collagenous matrix was able to reduce the initial burst release observed in the first 24 h from about 38% for the PLGA_TGF-β1 alone to 14.5%, proving that the nanocarriers incorporation into collagen allows achieving sustained release kinetics.
Collapse
|
42
|
Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:675-690. [PMID: 35129960 PMCID: PMC8864616 DOI: 10.1021/acsabm.1c01107] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has become a treatment modality for breast cancer. However, serious side effects and high cytotoxicity associated with this combination therapy make it a high-risk method for breast cancer treatment. This study evaluated the anticancer effect of decorated niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI) in vitro (on SKBR3 and 4T1 breast cancer cells) and in vivo on BALB/c mice. For this purpose, polyethylene glycol (PEG) and folic acid (FA) were employed to prepare a functionalized niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS and EPI, respectively. Moreover, cellular assays disclosed that a CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3 and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI). For FPNCE and NCE groups, the expression levels of Bax, Caspase3, Caspase9, and Mfn1 genes increased, whereas the expression of Bcl2, Drp1, MMP-2, and MMP-9 genes was downregulated. Histopathology results showed a reduction in the mitosis index, invasion, and pleomorphism in BALB/c inbred mice with NCE and FPNCE treatment. In this paper, for the first time, we report a niosomal nanocarrier functionalized with PEG and FA for codelivery of CIS and EPI to treat breast cancer. The results demonstrated that the codelivery of CIS and EPI through FA-PEGylated niosomes holds great potential for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Moammeri
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Koorosh Abbaspour
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Alireza Zafarian
- Faculty
of Medicine, Isfahan University of Medical
Sciences, Isfahan 8174673461, Iran
| | - Elham Jamshidifar
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
| | - Hamidreza Motasadizadeh
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| | - Farnaz Dabbagh Moghaddam
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zeinab Salehi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Center for Materials Interfaces, Pontedera, Pisa 56025, Italy
| | - Rassoul Dinarvand
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| |
Collapse
|
43
|
SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting. Int J Mol Sci 2021; 23:ijms23010155. [PMID: 35008582 PMCID: PMC8745432 DOI: 10.3390/ijms23010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted nanocarriers could reach new levels of drug delivery, bringing new tools for personalized medicine. It is known that cancer cells overexpress folate receptors on the cell surface compared to healthy cells, which could be used to create new nanocarriers with specific targeting moiety. In addition, magnetic nanoparticles can be guided under the influence of an external magnetic field in different areas of the body, allowing their precise localization. The main purpose of this paper was to decorate the surface of magnetic nanoparticles with poly(2-hydroxyethyl methacrylate) (PHEMA) by surface-initiated atomic transfer radical polymerization (SI-ATRP) followed by covalent bonding of folic acid to side groups of the polymer to create a high specificity magnetic nanocarrier with increased internalization capacity in tumor cells. The biocompatibility of the nanocarriers was demonstrated by testing them on the NHDF cell line and folate-dependent internalization capacity was tested on three tumor cell lines: MCF-7, HeLa and HepG2. It has also been shown that a higher concentration of folic acid covalently bound to the polymer leads to a higher internalization in tumor cells compared to healthy cells. Last but not least, magnetic resonance imaging was used to highlight the magnetic properties of the functionalized nanoparticles obtained.
Collapse
|
44
|
Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021; 14:14. [PMID: 35056911 PMCID: PMC8781617 DOI: 10.3390/pharmaceutics14010014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
In normal tissues, the expression of folate receptors is low and limited to cells that are important for embryonic development or for folate reabsorption. However, in several pathological conditions some cells, such as cancer cells and activated macrophages, overexpress folate receptors (FRs). This overexpression makes them a potential therapeutic target in the treatment of cancer and inflammatory diseases to obtain a selective delivery of drugs at altered cells level, and thus to improve the therapeutic efficacy and decrease the systemic toxicity of the pharmacological treatments. Two strategies have been used to achieve this folate receptor targeting: (i) the use of ligands with high affinity to FRs (e.g., folic acid or anti-FRs monoclonal antibodies) linked to the therapeutic agents or (ii) the use of nanocarriers whose surface is decorated with these ligands and in which the drug is encapsulated. This manuscript analyzes the use of FRs as a target to develop new therapeutic tools in the treatment of cancer and inflammatory diseases with an emphasis on the nanoformulations that have been developed for both therapeutic and imaging purposes.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
45
|
Xie W, Zhou F, Li X, Liu Z, Zhang M, Zong Z, Liang L. A surface architectured metal-organic framework for targeting delivery: suppresses cancer growth and metastasis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
Al-Nemrawi NK, Altawabeyeh RM, Darweesh RS. Preparation and Characterization of Docetaxel-PLGA Nanoparticles Coated with Folic Acid-chitosan Conjugate for Cancer Treatment. J Pharm Sci 2021; 111:485-494. [PMID: 34728172 DOI: 10.1016/j.xphs.2021.10.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
The conjugation of chitosan (CS) and folic acid (FA) was prepared and used to coat PLGA nanoparticles (NPs) that are loaded with Docetaxel (DTX) to target cancer cells that have lower pH and overexpression of folate receptors in comparison to normal cells. Three formulations had been prepared to reach the highest loading capacity (LC%) and encapsulation efficiency (EE%) and to study the effect of the amount of FA-CS on the drug release. The sizes, charges, homogeneity, surface morphology, LC% and EE% of the NPs were determined. The NPs were characterized using FTIR and XRD. In vitro release profiles of DTX from PLGA NPs, at pH 5.5 and 7.4 were determined. Finally, in vitro cytotoxicity assay on three cancer cell lines (RPMI 2650, Calu-3, and A549) was studied. The sizes of the three formulations ranged between 250.3±1.7 and 356.3±17.7. All prepared formulations showed acceptable monodispersity with highly positive charges. The EE% was above 85% and the LC% ranged between 6-35%. The in vitro release of DTX show an inverse relation to the amounts of FA-CS used and the pH of the dissolution medium. Coated PLGA NPs showed a significant difference in RPMI 2650, Calu-3, and A549 cell viability in comparison to free DTX. The NPs components were safe and non-toxic to human cells. In conclusion, coating PLGA NPs with FA-CS may be used as a good carrier for chemotherapeutic agents that selectively target carcinogenic tissues.
Collapse
Affiliation(s)
- Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Rowaida M Altawabeyeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
47
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
48
|
Grace VMB, Wilson DD, Guruvayoorappan C, Danisha JP, Bonati L. Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells. IET Nanobiotechnol 2021; 15:380-390. [PMID: 34694713 PMCID: PMC8675848 DOI: 10.1049/nbt2.12028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/27/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular targeted drug ATRA demands a suitable carrier that delivers to the cancer site due to its poor bioavailability and drug resistance. ATRA, being a lipid with carboxylic acid, has been nano‐formulated as a cationic lipo‐ATRA with DOTAP:cholesterol:ATRA (5:4:1) and its pH‐responsive release, intracellular drug accumulation, and anticancer effect on human lung cancer (A549) cell line analysed. The analysis of the physicochemical characteristics of the developed lipo‐ATRA (0.8 µmol) revealed that the size of 231 ± 2.35 d.nm had a zeta potential of 6.4 ± 1.19 and an encapsulation efficiency of 93.7 ± 3.6%. The ATRA release from lipo‐ATRA in vitro was significantly (p ≤ 0.05) higher at acidic pH 6 compared to pH 7.5. The intracellular uptake of ATRA into lipo‐ATRA‐treated A549 cells was seven‐fold higher (0.007 ± 0.001 mg/ml) while only three‐fold uptake was observed in free ATRA treatment (0.003 ± 0.002 mg/ml). The lipo‐ATRA treatment caused a highly significant (p ≤ 0.001) decrease in percent cell viability at 48 h when compared with the free ATRA treatment. Overall, the results proved that the developed lipo‐ATRA has suitable physicochemical properties with enhanced ATRA release at acidic pH, while maintaining stability at physiologic pH and temperature. This resulted in an increased ATRA uptake by lung cancer cells with enhanced treatment efficiency. Hence, it is concluded that DOTAP lipo‐ATRA is a suitable carrier for ATRA delivery to solid cancer cells.
Collapse
Affiliation(s)
| | - Devarajan David Wilson
- School of Science, Arts, Media and Management, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, Kerala, India
| | - Jesubatham Perinba Danisha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Lucia Bonati
- IAESTE Intern at Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
49
|
Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, Rahman NA, Othman R, Wahab HA. Conjugated β-Cyclodextrin Enhances the Affinity of Folic Acid towards FRα: Molecular Dynamics Study. Molecules 2021; 26:5304. [PMID: 34500740 PMCID: PMC8434473 DOI: 10.3390/molecules26175304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
Collapse
Affiliation(s)
- Mohammad G. Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
- Pharmaceutical Design and Simulation (PHDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Ezatul Ezleen Kamarulzaman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Rozana Othman
- Center for Natural Products Research and Drug Discovery (CENAR), Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
- Pharmaceutical Design and Simulation (PHDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia
| |
Collapse
|
50
|
Microfluidics for Multiphase Mixing and Liposomal Encapsulation of Nanobioconjugates: Passive vs. Acoustic Systems. FLUIDS 2021. [DOI: 10.3390/fluids6090309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico and experimentally. The in silico analysis was implemented through multiphysics simulations with the software COMSOL Multiphysics 5.5® (COMSOL Inc., Stockholm, Sweden) via both a Eulerian model and a transport of diluted species model. The encapsulation efficiency was determined experimentally, aided by spectrofluorimetry. Encapsulation efficiencies obtained experimentally and in silico approached 80% for the highest flow rate ratios (FRRs). Compared with the passive mixer, the in silico results of the device under acoustic waves led to higher discrepancies with respect to those obtained experimentally. This was attributed to the complexity of the process in such a situation. The obtained MLPs demonstrated successful encapsulation of the nanobioconjugates by both methods with a 36% reduction in size for the ones obtained in the presence of ultrasound. These findings suggest that the proposed serpentine micromixers are well suited to produce MLPs very efficiently and with homogeneous key physichochemical properties.
Collapse
|