1
|
Pepin XJH, Johansson Soares Medeiros J, Deris Prado L, Suarez Sharp S. The Development of an Age-Appropriate Fixed Dose Combination for Tuberculosis Using Physiologically-Based Pharmacokinetic Modeling (PBBM) and Risk Assessment. Pharmaceutics 2024; 16:1587. [PMID: 39771565 PMCID: PMC11680012 DOI: 10.3390/pharmaceutics16121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The combination of isoniazid (INH) and rifampicin (RIF) is indicated for the treatment maintenance phase of tuberculosis (TB) in adults and children. In Brazil, there is no current reference listed drug for this indication in children. Farmanguinhos has undertaken the development of an age-appropriate dispersible tablet to be taken with water for all age groups from birth to adolescence. The primary objective of this work was to develop and validate a physiologically-based biopharmaceutics model (PBBM) in GastroPlusTM, to link the product's in vitro performance to the observed pharmacokinetic (PK) data in adults and children. Methods: The PBBM was developed based on measured or predicted physico-chemical and biopharmaceutical properties of INH and RIF. The metabolic clearance was specified mechanistically in the gut and liver for both parent drugs and acetyl-isoniazid. The model incorporated formulation related measurements such as dosage form disintegration and dissolution as inputs and was validated using extensive literature as well as in house clinical data. Results: The model was used to predict the exposure in children across the targeted dosing regimen for each age group using the new age-appropriate formulation. Probabilistic models of efficacy and safety versus exposure, combined with real world data on children, were utilized to assess drug efficacy and safety in the target populations. Conclusions: The model predictions (systemic exposure) along with clinical data from the literature linking systemic exposure to clinical outcomes confirmed that the proposed dispersible pediatric tablet and dosing regimen are anticipated to be as safe and as effective as adult formulations at similar doses.
Collapse
Affiliation(s)
- Xavier J. H. Pepin
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534-7059, USA;
| | - Juliana Johansson Soares Medeiros
- Technological Development Coordination, Instituto de Tecnologia em Fármacos (Farmanguinhos)/Fiocruz, Av. Cmte. Guaranys, 447-Jacarepaguá, Rio de Janeiro 22775-903, Brazil; (J.J.S.M.); (L.D.P.)
| | - Livia Deris Prado
- Technological Development Coordination, Instituto de Tecnologia em Fármacos (Farmanguinhos)/Fiocruz, Av. Cmte. Guaranys, 447-Jacarepaguá, Rio de Janeiro 22775-903, Brazil; (J.J.S.M.); (L.D.P.)
| | - Sandra Suarez Sharp
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534-7059, USA;
| |
Collapse
|
2
|
Armani S, Geier A, Forst T, Merle U, Alpers DH, Lunnon MW. Effect of changes in metabolic enzymes and transporters on drug metabolism in the context of liver disease: Impact on pharmacokinetics and drug-drug interactions. Br J Clin Pharmacol 2023. [PMID: 38148609 DOI: 10.1111/bcp.15990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
Changes in the pharmacokinetic and resulting pharmacodynamic properties of drugs are common in many chronic liver diseases, leading to adverse effects, drug interactions and increased risk of over- or underdosing of medications. Structural and functional hepatic impairment can have major effects on drug metabolism and transport. This review summarizes research on the functional changes in phase I and II metabolic enzymes and in transport proteins in patients with metabolic diseases such as type 2 diabetes, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis and cirrhosis, providing a clinical perspective on how these changes affect drug uptake and metabolism. Generally, a decrease in expression and/or activity of many enzymes of the cytochrome P450 family (e.g. CYP2E1 and CYP3A4), and of influx and efflux transporters (e.g. organic anion-transporting polypeptide [OATP]1B1, OATP2B1, OAT2 and bile salt export pump), has been recently documented in patients with liver disease. Decreased enzyme levels often correlate with increased severity of chronic liver disease. In subjects with hepatic impairment, there is potential for strong alterations of drug pharmacokinetics due to reduced absorption, increased volume of distribution, metabolism and extraction. Due to the altered pharmacokinetics, specific drug-drug interactions are also a potential issue to consider in patients with liver disease. Given the huge burden of liver disease in western societies, there is a need to improve awareness among all healthcare professionals and patients with liver disease to ensure appropriate drug prescriptions.
Collapse
Affiliation(s)
- Sara Armani
- CRS Clinical Research Services, Mannheim, Germany
| | - Andreas Geier
- Department of Internal Medicine and Hepatology, University Hospital, Würzburg, Germany
| | - Thomas Forst
- CRS Clinical Research Services, Mannheim, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital, Heidelberg, Germany
| | - David H Alpers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
3
|
Alqahtani F, Alruwaili AH, Alasmari MS, Almazroa SA, Alsuhaibani KS, Rasool MF, Alruwaili AF, Alsanea S. A Physiologically Based Pharmacokinetic Model to Predict Systemic Ondansetron Concentration in Liver Cirrhosis Patients. Pharmaceuticals (Basel) 2023; 16:1693. [PMID: 38139819 PMCID: PMC10747545 DOI: 10.3390/ph16121693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Ondansetron is a drug that is routinely prescribed for the management of nausea and vomiting associated with cancer, radiation therapy, and surgical operations. It is mainly metabolized in the liver, and it might accumulate in patients with hepatic impairment and lead to unwanted adverse events. METHODS A physiologically based pharmacokinetic (PBPK) model was developed to predict the exposure of ondansetron in healthy and liver cirrhosis populations. The population-based PBPK simulator PK-Sim was utilized for simulating ondansetron exposure in healthy and liver cirrhosis populations. RESULTS The developed model successfully described the pharmacokinetics of ondansetron in healthy and liver cirrhosis populations. The predicted area under the curve, maximum systemic concentration, and clearance were within the allowed twofold range. The exposure of ondansetron in the population of Child-Pugh class C has doubled in comparison to Child-Pugh class A. The dose has to be adjusted for liver cirrhosis patients to ensure comparable exposure to a healthy population. CONCLUSION In this study, the developed PBPK model has described the pharmacokinetics of ondansetron successfully. The PBPK model has been successfully evaluated to be used as a tool for dose adjustments in liver cirrhosis patients.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| | - Abdullah H. Alruwaili
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| | - Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| | - Sultan A. Almazroa
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| | - Khaled S. Alsuhaibani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| | - Muhammad F. Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Abdulkarim F. Alruwaili
- Clinical Pharmacy Unit, Department of Pharmaceutical Services, Dallah Hospital, Riyadh 12381, Saudi Arabia;
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (A.H.A.); (S.A.A.); (K.S.A.)
| |
Collapse
|
4
|
Zamir A, Rasool MF, Imran I, Saeed H, Khalid S, Majeed A, Rehman AU, Ahmad T, Alasmari F, Alqahtani F. Physiologically Based Pharmacokinetic Model To Predict Metoprolol Disposition in Healthy and Disease Populations. ACS OMEGA 2023; 8:29302-29313. [PMID: 37599939 PMCID: PMC10433471 DOI: 10.1021/acsomega.3c02673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The evolution in the development of drugs has increased the popularity of physiologically based pharmacokinetic (PBPK) models. This study seeks to assess the PK of metoprolol in populations with healthy, chronic kidney disease (CKD), and acute myocardial infarction (AMI) conditions by developing and evaluating PBPK models. An extensive literature review for identifying and selecting plasma concentration vs time profile data and other drug-related parameters was undergone for their integration into the PK-Sim program followed by the development of intravenous, oral, and diseased models. The developed PBPK model of metoprolol was then evaluated using the visual predictive checks, mean observed/predicted ratios (Robs/pre), and average fold error for all PK parameters, i.e., the area under the curve (AUC), maximal plasma concentration, and clearance. The model evaluation depicted that none of the PK parameters were out of the allowed range (2-fold error) in the case of the mean Robs/pre ratios. The model anticipations were executed to determine the influence of diseases on unbound and total AUC after the application of metoprolol in healthy, moderate, and severe CKD. The dosage reductions were also suggested based on differences in unbound and total AUC in different stages of CKD. The developed PBPK models have successfully elaborated the PK changes of metoprolol occurring in healthy individuals and those with renal and heart diseases (CKD & AMI), which may be fruitful for dose optimization among diseased patients.
Collapse
Affiliation(s)
- Ammara Zamir
- Department of Pharmacy
Practice, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy
Practice, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, University College
of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore 54000, Pakistan
| | - Sundus Khalid
- Department of Pharmacy
Practice, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Abdul Majeed
- Department of Pharmacy
Practice, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Anees Ur Rehman
- Department of Pharmacy
Practice, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institute for Advanced Biosciences (IAB),
CNRS UMR5309, INSERM U1209, Grenoble Alpes
University, La Tronche 38700, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Saeheng T, Na-Bangchang K. Simulation of optimal dose regimens of photoactivated curcumin for antimicrobial resistance pneumonia in COVID-19 patients: A modeling approach. Infect Dis Model 2023; 8:S2468-0427(23)00046-5. [PMID: 37361409 PMCID: PMC10239661 DOI: 10.1016/j.idm.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background Secondary antimicrobial resistance bacterial (AMR) pneumonia could lead to an increase in mortality in COVID-19 patients, particularly of geriatric patients with underlying diseases. The comedication of current medicines for AMR pneumonia with corticosteroids may lead to suboptimal treatment or toxicities due to drug-drug interactions (DDIs). Objective This study aimed to propose new promising dosage regimens of photoactivated curcumin when co-administered with corticosteroids for the treatment of antimicrobial resistance (AMR) pneumonia in COVID-19 patients. Methods A whole-body physiologically-based pharmacokinetic (PBPK) with the simplified lung compartments model was built and verified following standard model verification (absolute average-folding error or AAFEs). The pharmacokinetic properties of photoactivated were assumed to be similar to curcumin due to minor changes in physiochemical properties of compound by photoactivation. The acceptable AAFEs values were within 2-fold. The verified model was used to simulate new regimens for different formulations of photoactivated curcumin. Results The AAFEs was 1.12-fold. Original formulation (120 mg once-daily dose) or new intramuscular nano-formulation (100 mg with a release rate of 10/h given every 7 days) is suitable for outpatients with MRSA pneumonia to improve patient adherence. New intravenous formulation (2000 mg twice-daily doses) is for hospitalized patients with both MRSA and VRSA pneumonia. Conclusion The PBPK models, in conjunction with MIC and applied physiological changes in COVID-19 patients, is a potential tool to predict optimal dosage regimens of photoactivated curcumin for the treatment of co-infected AMR pneumonia in COVID-19 patients. Each formulation is appropriate for different patient conditions and pathogens.
Collapse
Affiliation(s)
- Teerachat Saeheng
- Centre of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, 99 Moo 18, Phaholyothin Road, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, 12121, Thailand
| | - Kesara Na-Bangchang
- Centre of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, 99 Moo 18, Phaholyothin Road, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, 12121, Thailand
- Drug Discovery and Development Centre, Office of Advanced Science and Technology, 99 Moo 18, Phaholyothin Road, Thammasat University (Rangsit Campus), Klongneung, Klongluang, Pathumthani, 12121, Thailand
| |
Collapse
|
6
|
Alqahtani F, Asiri AM, Zamir A, Rasool MF, Alali AS, Alsanea S, Walbi IA. Predicting Hydroxychloroquine Clearance in Healthy and Diseased Populations Using a Physiologically Based Pharmacokinetic Approach. Pharmaceutics 2023; 15:pharmaceutics15041250. [PMID: 37111735 PMCID: PMC10140819 DOI: 10.3390/pharmaceutics15041250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hydroxychloroquine (HCQ), a congener of chloroquine, is widely used in prophylaxis and the treatment of malaria, and also as a cure for rheumatoid arthritis, systemic lupus erythematosus, and various other diseases. Physiologically based pharmacokinetic modeling (PBPK) has attracted great interest in the past few years in predicting drug pharmacokinetics (PK). This study focuses on predicting the PK of HCQ in the healthy population and extrapolating it to the diseased populations, i.e., liver cirrhosis and chronic kidney disease (CKD), utilizing a systematically built whole-body PBPK model. The time vs. concentration profiles and drug-related parameters were obtained from the literature after a laborious search and in turn were integrated into PK-Sim software for designing healthy intravenous, oral, and diseased models. The model's evaluation was performed using observed-to-predicted ratios (Robs/Rpre) and visual predictive checks within a 2-fold error range. The healthy model was then extrapolated to liver cirrhosis and CKD populations after incorporating various disease-specific pathophysiological changes. Box-whisker plots showed an increase in AUC0-t in liver cirrhosis, whereas a decrease in AUC0-t was seen in the CKD population. These model predictions may assist clinicians in adjusting the administered HCQ doses in patients with different degrees of hepatic and renal impairment.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Mohammed Asiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ammara Zamir
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amer S Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran 64462, Saudi Arabia
| |
Collapse
|
7
|
Zhang J, Song C, Wu M, Yue J, Zhu S, Zhu P, Oo C, Schlender JF, Lv Z, Zhu Y, Sy SKB, Yu M. Physiologically-based pharmacokinetic modeling to inform dosing regimens and routes of administration of rifampicin and colistin combination against Acinetobacter baumannii. Eur J Pharm Sci 2023; 185:106443. [PMID: 37044198 DOI: 10.1016/j.ejps.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to major antibiotics such as penicillin, cephalosporin, fluoroquinolone and aminoglycoside, and has become a significant nosocomial pathogen. The efficacy of rifampicin and colistin combination against CRAB could be dependent on the administration routes and drug concentrations at the site of infection. OBJECTIVE The objective is to predict drug disposition in biological tissues. Treatment efficacy is extrapolated by assessing respective pharmacodynamic (PD) indices, as well as parameters associated with the emergence of resistance. METHODS Physiologically-based pharmacokinetic models of rifampicin and colistin were utilized to predict tissue exposures. Dosing regimens and administration routes for combination therapy were evaluated in terms of in vitro antimicrobial susceptibility of A. baumannii associated with targeted PD indices and resistance parameters. RESULTS Simulated exposures in blood, heart, lung, skin and brain were consistent with reported penetration rates. The results demonstrated that a combination of colistin and rifampicin using conventional intravenous (i.v.) doses could achieve effective exposures in the blood and skin. However, for lung infections, colistin by inhalation would be required due to low lung penetration from intravenous route. Inhaled colistin alone provided good PD coverage but this practice could encourage the emergence of additional resistance which may be overcome by a combination regimen that includes inhaled colistin. CONCLUSION This in silico extrapolation provides valuable information on dosing regimens and routes of administration against CRAB infections in specific tissues. The PBPK modeling approach could be a non-invasive way to inform therapeutic benefits of combination antimicrobial therapy.
Collapse
Affiliation(s)
- Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Mengyuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiali Yue
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, New Jersey, USA
| | | | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Yuanqi Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
8
|
Deepika D, Kumar V. The Role of "Physiologically Based Pharmacokinetic Model (PBPK)" New Approach Methodology (NAM) in Pharmaceuticals and Environmental Chemical Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3473. [PMID: 36834167 PMCID: PMC9966583 DOI: 10.3390/ijerph20043473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Physiologically Based Pharmacokinetic (PBPK) models are mechanistic tools generally employed in the pharmaceutical industry and environmental health risk assessment. These models are recognized by regulatory authorities for predicting organ concentration-time profiles, pharmacokinetics and daily intake dose of xenobiotics. The extension of PBPK models to capture sensitive populations such as pediatric, geriatric, pregnant females, fetus, etc., and diseased populations such as those with renal impairment, liver cirrhosis, etc., is a must. However, the current modelling practices and existing models are not mature enough to confidently predict the risk in these populations. A multidisciplinary collaboration between clinicians, experimental and modeler scientist is vital to improve the physiology and calculation of biochemical parameters for integrating knowledge and refining existing PBPK models. Specific PBPK covering compartments such as cerebrospinal fluid and the hippocampus are required to gain mechanistic understanding about xenobiotic disposition in these sub-parts. The PBPK model assists in building quantitative adverse outcome pathways (qAOPs) for several endpoints such as developmental neurotoxicity (DNT), hepatotoxicity and cardiotoxicity. Machine learning algorithms can predict physicochemical parameters required to develop in silico models where experimental data are unavailable. Integrating machine learning with PBPK carries the potential to revolutionize the field of drug discovery and development and environmental risk. Overall, this review tried to summarize the recent developments in the in-silico models, building of qAOPs and use of machine learning for improving existing models, along with a regulatory perspective. This review can act as a guide for toxicologists who wish to build their careers in kinetic modeling.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
- Pere Virgili Health Research Institute (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Catalonia, Spain
| |
Collapse
|
9
|
Khalid S, Rasool MF, Masood I, Imran I, Saeed H, Ahmad T, Alqahtani NS, Alshammari FA, Alqahtani F. Application of a physiologically based pharmacokinetic model in predicting captopril disposition in children with chronic kidney disease. Sci Rep 2023; 13:2697. [PMID: 36792681 PMCID: PMC9931704 DOI: 10.1038/s41598-023-29798-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the last several decades, angiotensin-converting enzyme inhibitors (ACEIs) have been a staple in the treatment of hypertension and renovascular disorders in children. One of the ACEIs, captopril, is projected to have all the benefits of traditional vasodilators. However, conducting clinical trials for determining the pharmacokinetics (PK) of a drug is challenging, particularly in pediatrics. As a result, modeling and simulation methods have been developed to identify the safe and effective dosages of drugs. The physiologically based pharmacokinetic (PBPK) modeling is a well-established method that permits extrapolation from adult to juvenile populations. By using SIMCYP simulator, as a modeling platform, a previously developed PBPK drug-disease model of captopril was scaled to renally impaired pediatrics population for predicting captopril PK. The visual predictive checks, predicted/observed ratios (ratiopred/obs), and the average fold error of PK parameters were used for model evaluation. The model predictions were comparable with the reported PK data of captopril in mild and severe chronic kidney disease (CKD) patients, as the mean ratiopred/obs Cmax and AUC0-t were 1.44 (95% CI 1.07 - 1.80) and 1.26 (95% CI 0.93 - 1.59), respectively. The successfully developed captopril-CKD pediatric model can be used in suggesting drug dosing in children diagnosed with different stages of CKD.
Collapse
Affiliation(s)
- Sundus Khalid
- grid.411501.00000 0001 0228 333XDepartment of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Imran Masood
- grid.412496.c0000 0004 0636 6599Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Imran Imran
- grid.411501.00000 0001 0228 333XDepartment of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Hamid Saeed
- grid.11173.350000 0001 0670 519XSection of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, 54000 Pakistan
| | - Tanveer Ahmad
- grid.450307.50000 0001 0944 2786Institute for Advanced Biosciences (IAB), CNRS UMR5309, INSERM U1209, Grenoble Alpes University, 38700 La Tronche, France
| | - Nawaf Shalih Alqahtani
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Fahad Ali Alshammari
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
10
|
Saeheng T, Karbwang J, Na-Bangchang K. In Silico Prediction of Andrographolide Dosage Regimens for COVID-19 Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1719-1737. [PMID: 36030375 DOI: 10.1142/s0192415x22500732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Andrographolide (APE) has been used for COVID-19 treatment in various clinical settings in South-East Asia due to its benefits on reduction of viral clearance and prevention of disease progression. However, the limitation of APE clinical use is the high incidence of adverse events. The objective of this study was to find the optimal dosage regimens of APE for COVID-19 treatment. The whole-body physiologically-based pharmacokinetic (PBPK) models were constructed using data from the published articles and validated against clinical observations. The inhibitory effect of APE was determined for the potency of drug efficacy. For prevention of pneumonia, multiple oral doses such as 120[Formula: see text]mg for three doses, followed by 60[Formula: see text]mg three times daily for 4 consecutive days, or 200[Formula: see text]mg intravenous infusion at the rate of 20 mg/h once daily is advised in patients with mild COVID-19. For prevention of pneumonia and reduction of viral clearance time, the recommended dosage regimen is 500[Formula: see text]mg intravenous infusion at the rate of 25[Formula: see text]mg/h once daily in patients with mild-to-moderate COVID-19. One hundred virtual populations (50 males and 50 females) were simulated for oral and intravenous infusion formulations of APE. The eligible PBPK/PD models successfully predicted optimal dosage regimens and formulations of APE for prevention of disease progression and/or reduction of viral clearance time. Additionally, APE should be co-administered with other antiviral drugs to enhance therapeutic efficacy for COVID-19 treatment.
Collapse
Affiliation(s)
- Teerachat Saeheng
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thailand
| | - Juntra Karbwang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thailand
| | - Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Pathumthani 12121, Thailand
| |
Collapse
|
11
|
Farhan M, Rani P, Moledina F, George T, Tummala HP, Mallayasamy S. Application of Physiologically Based Pharmacokinetic Modeling of Lamotrigine Using PK-Sim in Predicting the Impact of Drug Interactions and Dosage Adjustment. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Physiologically based pharmacokinetic (PBPK) models are helpful as mechanistic representations of pharmacokinetic parameters. There were no reports of lamotrigine (LTG) PBPK models developed in open source platforms like PK-Sim. Objectives The present work was aimed to build a LTG PBPK model and compare it to the clinical data from South Asian Indian patients and use this model to understand the drug interactions of LTG and explore the optimal doses. Methods and Material The PBPK model was developed using the PK-Sim software platform and qualified with LTG plasma concentration data from an Indian study. The European population database was chosen as the patient setting in the software. Physicochemical data of LTG and enzyme kinetic data were incorporated from the literature. Dosing protocols were as per the previous study. Interaction models for drug interactions with carbamazepine and valproate were also simulated. Results Most of the model predicted concentration-time profiles of LTG at steady-state were well within the observed concentrations. The developed models were suitably qualified. The drug interaction model was used to assess the impact of induction and inhibition of the pharmacokinetic profile of LTG. Conclusions The predicted plasma concentrations of the developed PBPK models using the European population database were very similar to the data from Indian patients. The developed LTG PBPK models are applicable in predicting the impact of drug interactions and can yield appropriate LTG doses to be administered.
Collapse
Affiliation(s)
- Mohammed Farhan
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prathvi Rani
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Fatimazahra Moledina
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thomas George
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hari Prabhath Tummala
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Estradé O, Vozmediano V, Carral N, Isla A, González M, Poole R, Suarez E. Key Factors in Effective Patient-Tailored Dosing of Fluoroquinolones in Urological Infections: Interindividual Pharmacokinetic and Pharmacodynamic Variability. Antibiotics (Basel) 2022; 11:antibiotics11050641. [PMID: 35625285 PMCID: PMC9137891 DOI: 10.3390/antibiotics11050641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones (FQs) are a critical group of antimicrobials prescribed in urological infections as they have a broad antimicrobial spectrum of activity and a favorable tissue penetration at the site of infection. However, their clinical practice is not problem-free of treatment failure, risk of emergence of resistance, and rare but important adverse effects. Due to their critical role in clinical improvement, understanding the dose-response relation is necessary to optimize the effectiveness of FQs therapy, as it is essential to select the right antibiotic at the right dose for the right duration in urological infections. The aim of this study was to review the published literature about inter-individual variability in pharmacological processes that can be responsible for the clinical response after empiric dose for the most commonly prescribed urological FQs: ciprofloxacin, levofloxacin, and moxifloxacin. Interindividual pharmacokinetic (PK) variability, particularly in elimination, may contribute to treatment failure. Clearance related to creatinine clearance should be specifically considered for ciprofloxacin and levofloxacin. Likewise, today, undesired interregional variability in FQs antimicrobial activity against certain microorganisms exists. FQs pharmacology, patient-specific characteristics, and the identity of the local infecting organism are key factors in determining clinical outcomes in FQs use.
Collapse
Affiliation(s)
- Oskar Estradé
- Department of Urology, Cruces University Hospital, 48903 Barakaldo, Spain;
| | - Valvanera Vozmediano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Nerea Carral
- Department of Pharmacology, Faculty of Medicine and Nursey, University of Basque Country UPV/EHU, 48940 Leioa, Spain;
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Arantxa Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
- Instituto de Investigación Sanitaria Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Margarita González
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Rachel Poole
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Gainesville, FL 32612, USA; (V.V.); (M.G.); (R.P.)
| | - Elena Suarez
- Department of Pharmacology, Faculty of Medicine and Nursey, University of Basque Country UPV/EHU, 48940 Leioa, Spain;
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Correspondence:
| |
Collapse
|
13
|
Humphries H, Almond L, Berg A, Gardner I, Hatley O, Pan X, Small B, Zhang M, Jamei M, Romero K. Development of physiologically-based pharmacokinetic models for standard of care and newer tuberculosis drugs. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1382-1395. [PMID: 34623770 PMCID: PMC8592506 DOI: 10.1002/psp4.12707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) remains a global health problem and there is an ongoing effort to develop more effective therapies and new combination regimes that can reduce duration of treatment. The purpose of this study was to demonstrate utility of a physiologically‐based pharmacokinetic modeling approach to predict plasma and lung concentrations of 11 compounds used or under development as TB therapies (bedaquiline [and N‐desmethyl bedaquiline], clofazimine, cycloserine, ethambutol, ethionamide, isoniazid, kanamycin, linezolid, pyrazinamide, rifampicin, and rifapentine). Model accuracy was assessed by comparison of simulated plasma pharmacokinetic parameters with healthy volunteer data for compounds administered alone or in combination. Eighty‐four percent (area under the curve [AUC]) and 91% (maximum concentration [Cmax]) of simulated mean values were within 1.5‐fold of the observed data and the simulated drug‐drug interaction ratios were within 1.5‐fold (AUC) and twofold (Cmax) of the observed data for nine (AUC) and eight (Cmax) of the 10 cases. Following satisfactory recovery of plasma concentrations in healthy volunteers, model accuracy was assessed further (where patients’ with TB data were available) by comparing clinical data with simulated lung concentrations (9 compounds) and simulated lung: plasma concentration ratios (7 compounds). The 5th–95th percentiles for the simulated lung concentration data recovered between 13% (isoniazid and pyrazinamide) and 88% (pyrazinamide) of the observed data points (Am J Respir Crit Care Med, 198, 2018, 1208; Nat Med, 21, 2015, 1223; PLoS Med, 16, 2019, e1002773). The impact of uncertain model parameters, such as the fraction of drug unbound in lung tissue mass (fumass), is discussed. Additionally, the variability associated with the patient lung concentration data, which was sparse and included extensive within‐subject, interlaboratory, and experimental variability (as well interindividual variability) is reviewed. All presented models are transparently documented and are available as open‐source to aid further research.
Collapse
Affiliation(s)
| | - Lisa Almond
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | | - Iain Gardner
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | | - Xian Pan
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Ben Small
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Mian Zhang
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Masoud Jamei
- Certara UK Limited, Simcyp Division, Sheffield, UK
| | | |
Collapse
|
14
|
A Physiologically Based Pharmacokinetic Model for Predicting Diazepam Pharmacokinetics after Intravenous, Oral, Intranasal, and Rectal Applications. Pharmaceutics 2021; 13:pharmaceutics13091480. [PMID: 34575556 PMCID: PMC8465253 DOI: 10.3390/pharmaceutics13091480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diazepam is one of the most prescribed anxiolytic and anticonvulsant that is administered through intravenous (IV), oral, intramuscular, intranasal, and rectal routes. To facilitate the clinical use of diazepam, there is a need to develop formulations that are convenient to administer in ambulatory settings. The present study aimed to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for diazepam that is capable of predicting its pharmacokinetics (PK) after IV, oral, intranasal, and rectal applications using a whole-body population-based PBPK simulator, Simcyp®. The model evaluation was carried out using visual predictive checks, observed/predicted ratios (Robs/pred), and the average fold error (AFE) of PK parameters. The Diazepam PBPK model successfully predicted diazepam PK in an adult population after doses were administered through IV, oral, intranasal, and rectal routes, as the Robs/pred of all PK parameters were within a two-fold error range. The developed model can be used for the development and optimization of novel diazepam dosage forms, and it can be extended to simulate drug response in situations where no clinical data are available (healthy and disease).
Collapse
|
15
|
El-Khateeb E, Darwich AS, Achour B, Athwal V, Rostami-Hodjegan A. Review article: time to revisit Child-Pugh score as the basis for predicting drug clearance in hepatic impairment. Aliment Pharmacol Ther 2021; 54:388-401. [PMID: 34218453 DOI: 10.1111/apt.16489] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prescription information for many drugs entering the market lacks dosage guidance for hepatic impairment. Dedicated studies for assessing the fate of drugs in hepatic impairment commonly stratify patients using Child-Pugh score. Child-Pugh is a prognostic clinical score with limitations in reflecting the liver's metabolic capacity. AIMS To demonstrate the need for better drug dosing approaches in hepatic impairment, summarise the current status, identify knowledge gaps related to drug kinetic parameters in hepatic impairment, propose solutions for predicting the liver disease impact on drug exposure and discuss barriers to dosing guidance in those patients. METHODS Relevant reports on dosage adjustment in hepatic impairment were analysed concerning the prediction of the impairment impact on drug kinetics using physiologically-based pharmacokinetic (PBPK) modelling. RESULTS PBPK models are suggested as a potential framework to understand drug clearance changes in hepatic impairment. Quantifying changes in abundance and activity of drug-metabolising enzymes and transporters, understanding the impact of shunting, and accounting for interindividual variations in drug absorption could help in extending the success of these models in hepatically-impaired populations. These variables might not correlate with Child-Pugh score as a whole. Therefore, new metabolic activity markers, imaging techniques and other scoring systems are proposed to either support or substitute Child-Pugh score. CONCLUSIONS Many physiological changes in hepatic impairment determining the fate of drugs do not necessarily correlate with Child-Pugh score. Quantifying these changes in individual patients is essential in future hepatic impairment studies. Further studies assessing Child-Pugh alternatives are recommended to allow better prediction of drug exposure.
Collapse
Affiliation(s)
- Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Adam S Darwich
- Logistics and Informatics in Health Care, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Varinder Athwal
- Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK.,Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Certara UK Ltd. (Simcyp Division), Sheffield, UK
| |
Collapse
|
16
|
Rasool MF, Ali S, Khalid S, Khalid R, Majeed A, Imran I, Saeed H, Usman M, Ali M, Alali AS, AlAsmari AF, Ali N, Asiri AM, Alasmari F, Alqahtani F. Development and evaluation of physiologically based pharmacokinetic drug-disease models for predicting captopril pharmacokinetics in chronic diseases. Sci Rep 2021; 11:8589. [PMID: 33883647 PMCID: PMC8060346 DOI: 10.1038/s41598-021-88154-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The advancement in the processing speeds of computing machines has facilitated the development of complex physiologically based pharmacokinetic (PBPK) models. These PBPK models can incorporate disease-specific data and could be used to predict pharmacokinetics (PK) of administered drugs in different chronic conditions. The present study aimed to develop and evaluate PBPK drug-disease models for captopril after incorporating relevant pathophysiological changes occurring in adult chronic kidney disease (CKD) and chronic heart failure (CHF) populations. The population-based PBPK simulator Simcyp was used as a modeling and simulation platform. The visual predictive checks and mean observed/predicted ratios (ratio(Obs/pred)) of the PK parameters were used for model evaluation. The developed disease models were successful in predicting captopril PK in all three stages of CKD (mild, moderate, and severe) and CHF, as the observed and predicted PK profiles and the ratio(obs/pred) for the PK parameters were in close agreement. The developed captopril PBPK models can assist in tailoring captopril dosages in patients with different disease severity (CKD and CHF).
Collapse
Affiliation(s)
- Muhammad F Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Shazia Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sundus Khalid
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ramsha Khalid
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hamid Saeed
- University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Usman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mohsin Ali
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Amer S Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ali Mohammed Asiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
17
|
Kalam MN, Rasool MF, Alqahtani F, Imran I, Rehman AU, Ahmed N. Development and Evaluation of a Physiologically Based Pharmacokinetic Drug-Disease Model of Propranolol for Suggesting Model Informed Dosing in Liver Cirrhosis Patients. Drug Des Devel Ther 2021; 15:1195-1211. [PMID: 33762817 PMCID: PMC7982780 DOI: 10.2147/dddt.s297981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
AIM The study was aimed to understand the underlying causes for the differences in propranolol pharmacokinetics (PK) between healthy and cirrhosis populations by using a systematic whole-body physiologically based pharmacokinetic (PBPK) model-building approach for suggesting model informed propranolol dosing in liver cirrhosis patients with different stages of disease severity. METHODS A whole-body PBPK model was developed by using population simulator PK-Sim® by using reported physicochemical and clinical data for propranolol in healthy and liver cirrhosis populations. The model evaluation was done by visual verification and comparison of PK parameters using their observed/predicted ratios (Robs/pred). RESULTS The developed model has effectively described the disposition of propranolol after intravenous and oral application in healthy and liver cirrhosis populations. All the model predictions were comparable to the observed clinical data and the Robs/pred for all the PK parameters were within a 2-fold range. A significant increase in plasma concentration of propranolol and decrease in drug clearance was observed in progressive stages of liver cirrhosis. The developed model after evaluation with the reported clinical PK data was used for suggesting model informed propranolol dosing in different stages of liver cirrhosis based on systemic unbound drug concentration. CONCLUSION The developed PBPK model has successfully described propranolol PK in healthy and cirrhosis populations after IV and oral administration. The evaluated PBPK propranolol-cirrhosis model can have many implications in predicting propranolol dosing in liver cirrhosis patients with different stages of disease severity.
Collapse
Affiliation(s)
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|