1
|
Pike CM, Levi JA, Boone LA, Peddibhotla S, Johnson J, Zwarycz B, Bunger MK, Thelin W, Boazak EM. High-throughput assay for predicting diarrhea risk using a 2D human intestinal stem cell-derived model. Toxicol In Vitro 2025; 106:106040. [PMID: 40086646 DOI: 10.1016/j.tiv.2025.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Gastrointestinal toxicities (GITs) in clinical trials often lead to dose-limitations that reduce drug efficacy and delay treatment optimization. Preclinical animal models do not accurately replicate human physiology, leaving few options for early detection of GITs, such as diarrhea, before human studies. Chemotherapeutic agents, known to cause clinical diarrhea, frequently target mitotic cells. Therefore, we hypothesized a model utilizing proliferative cell populations derived from human intestinal crypts would predict clinical diarrhea occurrence with high accuracy. Here, we describe the development of a diarrhea prediction assay utilizing RepliGut® Planar, a primary intestinal stem cell-derived platform. To evaluate the ability of this model to predict clinical diarrhea risk, we assessed toxicity of 30 marketed drugs by measuring cell proliferation (EdU incorporation), cell abundance (nuclei quantification), and barrier formation (TEER) in cells derived from three human donors. Dose response curves were generated for each drug, and the IC15 to Cmax ratio was used to identify a threshold for assay positivity. This model accurately predicted diarrhea potential, achieving an accuracy of 91 % for proliferation, 90 % for abundance, and 88 % for barrier formation. In vitro toxicity screening using primary proliferative cells may reduce clinical diarrhea and ultimately lead to safer and more effective treatments for patients.
Collapse
|
2
|
Jeong YE, Shea K, Ford KA. Unraveling Caco-2 cells through functional and transcriptomic assessments. Regul Toxicol Pharmacol 2025; 156:105771. [PMID: 39761805 DOI: 10.1016/j.yrtph.2025.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
The static Caco-2 monolayer is an extensively utilized model for predicting the permeability of small molecules during the drug development process. While these cells can differentiate and develop key functional and morphological features that emulate human enterocytes, they do not fully replicate the complexity of human intestinal physiology. In this study, we investigated functional and morphological aspects of Caco-2 cells, alongside their transcriptomic profiles, with a particular emphasis on genes encoding drug-metabolizing enzymes and drug transporters. We found that Caco-2 cells not only established a robust and bio-relevant permeable intestinal barrier but also demonstrated functional maturity and differentiation in the intestinal epithelium, substantiated by the activities of important enzymes and an efflux transporter. However, our targeted gene expression analyses revealed that substantial disparities were found in mRNA transcript levels among Caco-2 cells and human biopsy samples. These findings highlight that, although Caco-2 cells are valuable for assessing the passive transport of drugs, their accuracy for predicting active transport or small intestinal drug metabolism is constrained by their transcriptomic divergence from human intestinal tissues. This study highlights the importance of understanding the Caco-2 model's inherent limitations and provides insights that could inform its appropriate application in drug development and regulatory decision-making.
Collapse
Affiliation(s)
- Ye Eun Jeong
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Katherine Shea
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Kevin A Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|
3
|
Canhão PGM, Snoeys J, Geerinckx S, van Heerden M, Van den Bergh A, Holm C, Markus J, Ayehunie S, Monshouwer M, Evers R, Augustijns P, Kourula S. Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition. Eur J Pharm Sci 2025; 209:107025. [PMID: 39864598 DOI: 10.1016/j.ejps.2025.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (Papp). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [14C]mannitol were established to monitor microtissue integrity. Permeability of EpiColon for 20 benchmark drugs was compared with Caco-2 data, and the activity of pivotal efflux transporters, including multidrug resistance protein 1/P-glycoprotein (MDR1/P-gp), along with multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP), was evaluated using selective substrates. EpiColon exhibited a physiological barrier function (272.0 ± 53.05 Ω x cm2) and effectively discriminated between high (e.g., budesonide and [3H]metoprolol) and low permeable compounds (e.g., [3H]atenolol and [14C]mannitol). The model demonstrated functional activity for key efflux transporters, with efflux ratios of 2.32 for [3H]digoxin (MDR1/P-gp) and 3.34 for sulfasalazine (MRP2 and BCRP). Notably, EpiColon showed an enhanced dynamic range in the low permeability range, differentiating Papp between FD4 and FD10S, in contrast to Caco-2 monolayers. Significant positive correlations were observed between human fraction absorbed (fabs) and logarithmically transformed Papp [AP-BL] values for both EpiColon (rs = 0.68) and Caco-2 (rs = 0.68). Furthermore, EpiColon recapitulates some essential phenotypic and cellular features of the human colon, including the expression of critical marker genes (Pan-Cytokeratin+: epithelial/colonocytes, Vimentin+: mesenchymal/fibroblast, and Alcian Blue+: goblet cell/mucus). In conclusion, EpiColon is a promising platform that offers a valuable complement to conventional Caco-2 monolayers for studying colonic drug disposition. However, the presence of flat and some cuboidal cells, along with low throughput, must be addressed to improve its applicability in both academic research and pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro G M Canhão
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium; Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Jan Snoeys
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Suzy Geerinckx
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marjolein van Heerden
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - An Van den Bergh
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Camden Holm
- MatTek Corporation, 200 Homer Avenue, Ashland, MA, USA
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | - Mario Monshouwer
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Raymond Evers
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Spring House, PA, USA
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - box 921, 3000 Leuven, Belgium
| | - Stephanie Kourula
- Preclinical Sciences & Translational Safety, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.
| |
Collapse
|
4
|
Ghosh S, Singh R, Goap TJ, Sunnapu O, Vanwinkle ZM, Li H, Nukavarapu SP, Dryden GW, Haribabu B, Vemula PK, Jala VR. Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis. J Nanobiotechnology 2024; 22:701. [PMID: 39533380 PMCID: PMC11558909 DOI: 10.1186/s12951-024-02990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Tanu Jain Goap
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Zachary M Vanwinkle
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Hong Li
- UofL-Brown Cancer Cancer, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Gerald W Dryden
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India.
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Janssen AWF, Duivenvoorde LPM, Beekmann K, Pinckaers N, van der Hee B, Noorlander A, Leenders LL, Louisse J, van der Zande M. Transport of perfluoroalkyl substances across human induced pluripotent stem cell-derived intestinal epithelial cells in comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch Toxicol 2024; 98:3777-3795. [PMID: 39215840 PMCID: PMC11489206 DOI: 10.1007/s00204-024-03851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Humans can be exposed to per- and polyfluoroalkyl substances (PFASs) via many exposure routes, including diet, which may lead to several adverse health effects. So far, little is known about PFAS transport across the human intestinal barrier. In the current study, we aimed to assess the transport of 5 PFASs (PFOS, PFOA, PFNA, PFHxS and HFPO-DA) in a human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cell (IEC) model. This model was extensively characterized and compared with the widely applied human colonic adenocarcinoma cell line Caco-2 and a human primary IEC-based model, described to most closely resemble in vivo tissue. The hiPSC-derived IEC layers demonstrated polarized monolayers with tight junctions and a mucus layer. The monolayers consisted of enterocytes, stem cells, goblet cells, enteroendocrine cells, and Paneth cells that are also present in native tissue. Transcriptomics analysis revealed distinct differences in gene expression profiles, where the hiPSC-derived IECs showed the highest expression of intestinal tissue-specific genes relative to the primary IEC-based model and the Caco-2 cells clustered closer to the primary IEC-based model than the hiPSC-derived IECs. The order of PFAS transport was largely similar between the models and the apparent permeability (Papp) values of PFAS in apical to basolateral direction in the hiPSC-derived IEC model were in the following order: PFHxS > PFOA > HFPO-DA > PFNA > PFOS. In conclusion, the hiPSC-derived IEC model highly resembles human intestinal physiology and is therefore a promising novel in vitro model to study transport of chemicals across the intestinal barrier for risk assessment of chemicals.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Karsten Beekmann
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Nicole Pinckaers
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Bart van der Hee
- Animal Sciences Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Annelies Noorlander
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Liz L Leenders
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
- European Food Safety Authority (EFSA), Parma, Italy
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Pike CM, Levi JA, Boone LA, Peddibhotla S, Johnson J, Zwarycz B, Bunger MK, Thelin W, Boazak EM. High-Throughput Assay for Predicting Diarrhea Risk Using a 2D Human Intestinal Stem Cell-Derived Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610072. [PMID: 39257790 PMCID: PMC11383669 DOI: 10.1101/2024.08.28.610072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gastrointestinal toxicities (GITs) are the most prevalent adverse events (AE) reported in clinical trials, often resulting in dose-limitations that reduce drug efficacy and delay development and treatment optimization. Preclinical animal models do not accurately replicate human GI physiology, leaving few options for early detection of GI side effects prior to human studies. Development of an accurate model that predicts GIT earlier in drug discovery programs would better support successful clinical trial outcomes. Chemotherapeutics, which exhibit high rates of clinical GIT, frequently target mitotic cells. Therefore, we hypothesized that a model utilizing proliferative cell populations derived from human intestinal crypts would predict the occurrence of clinical GITs with high accuracy. Here, we describe the development of a multiparametric assay utilizing the RepliGut® Planar system, an intestinal stem cell-derived platform cultured in an accessible high throughput Transwell™ format. This assay addresses key physiological elements of GIT by assessing cell proliferation (EdU incorporation), cell abundance (DAPI quantification), and barrier function (TEER). Using this approach, we demonstrate that primary proliferative cell populations reproducibly respond to marketed chemotherapeutics at physiologic concentrations. To determine the ability of this model to predict clinical diarrhea risk, we evaluated a set of 30 drugs with known clinical diarrhea incidence in three human donors, comparing results to known plasma drug concentrations. This resulted in highly accurate predictions of diarrhea potential for each endpoint (balanced accuracy of 91% for DAPI, 90% for EdU, 88% for TEER) with minimal variation across human donors. In vitro toxicity screening using primary proliferative cells may enable improved safety evaluations, reducing the risk of AEs in clinical trials and ultimately lead to safer and more effective treatments for patients.
Collapse
|
7
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
8
|
Kroneková Z, Majerčíková M, Paulovičová E, Minarčíková A, Danko M, Markus J, Letasiova S, Kronek J. Cytotoxicity and Bioimmunological Activity of Poly(2-Isopropenyl-2-oxazoline) Conjugates with Ibuprofen Using 3D Reconstructed Tissue Models. Biomacromolecules 2024; 25:3288-3301. [PMID: 38805352 DOI: 10.1021/acs.biomac.3c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a universal polymer platform with pendant 2-oxazoline groups, allowing the preparation of biomaterials for various biomedical applications. However, there is a lack of information on PIPOx concerning the effect of molar mass (Mn) on cytotoxicity and bioimmunological properties. Here, aqueous copper(0)-mediated reversible-deactivation radical polymerization (Cu0-RDPR) was used for the preparation of PIPOx with defined Mn and low dispersity. PIPOx of different Mn are used for the synthesis of conjugates with ibuprofen (5 mol %), the nonsteroidal anti-inflammatory drug. The release of ibuprofen at 37 °C and different pH values is monitored using high-performance liquid chromatography, where the rate of drug release increases with increasing pH and lower Mn. In vitro cytotoxicity and bioimmunological properties of PIPOx and drug conjugates are studied using 3D reconstructed tissue models of the human epidermis and intestinal epithelium. We demonstrate low cytotoxicity of PIPOx and conjugates with different Mn values on both 3D tissue models.
Collapse
Affiliation(s)
- Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Glycomaterials, Immunology & Cell Culture Laboratories, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Monika Danko
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Mlynske Nivy 73, 821 05 Bratislava, Slovakia
| | - Silvia Letasiova
- MatTek In Vitro Life Science Laboratories, Mlynske Nivy 73, 821 05 Bratislava, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
9
|
van der Putten E, Wosikowski K, Beijnen JH, Imre G, Freund CR. Ritonavir reverses resistance to docetaxel and cabazitaxel in prostate cancer cells with acquired resistance to docetaxel. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:3. [PMID: 38318527 PMCID: PMC10838382 DOI: 10.20517/cdr.2023.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Aim: Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e., acquired resistance. A possible explanation for the occurrence of acquired resistance to docetaxel is increased drug efflux via P-glycoprotein (P-gp) drug transporters. Methods: We have generated docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8 by exposing parental cell lines DU-145DOC and 22Rv1 to increasing levels of docetaxel. Gene expression levels between DU-145DOC10 and 22Rv1DOC8 were compared with those of their respective originator cell lines. Both parental and resistant cell lines were treated with the taxane drugs docetaxel and cabazitaxel in combination with the P-gp/CYP3A4 inhibitor ritonavir and the P-gp inhibitor elacridar. Results: In the docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8, the ABCB1 (P-gp) gene was highly up-regulated. Expression of the P-gp protein was also significantly increased in the docetaxel-resistant cell lines in a Western blotting assay. The addition of ritonavir to docetaxel resulted in a return of the sensitivity to docetaxel in the DU-145DOC10 and 22Rv1DOC8 to a level similar to the sensitivity in the originator cells. We found that these docetaxel-resistant cell lines could also be re-sensitized to cabazitaxel in a similar manner. In a Caco-2 P-gp transporter assay, functional inhibition of P-gp-mediated transport of docetaxel with ritonavir was demonstrated. Conclusion: Our results demonstrate that ritonavir restores sensitivity to both docetaxel and cabazitaxel in docetaxel-resistant cell lines, most likely by inhibiting P-gp-mediated drug efflux.
Collapse
Affiliation(s)
| | | | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam 1066 CX, the Netherlands
| | - Gábor Imre
- SOLVO Biotechnology, Budapest H-1117, Hungary
| | - Colin R. Freund
- Modra Pharmaceuticals B.V., Amsterdam 1083 HN, the Netherlands
| |
Collapse
|
10
|
Michiba K, Watanabe K, Imaoka T, Nakai D. Recent Advances in the Gastrointestinal Complex in Vitro Model for ADME Studies. Pharmaceutics 2023; 16:37. [PMID: 38258048 PMCID: PMC10819272 DOI: 10.3390/pharmaceutics16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Intestinal absorption is a complex process involving the permeability of the epithelial barrier, efflux transporter activity, and intestinal metabolism. Identifying the key factors that govern intestinal absorption for each investigational drug is crucial. To assess and predict intestinal absorption in humans, it is necessary to leverage appropriate in vitro systems. Traditionally, Caco-2 monolayer systems and intestinal Ussing chamber studies have been considered the 'gold standard' for studying intestinal absorption. However, these methods have limitations that hinder their universal use in drug discovery and development. Recently, there has been an increasing number of reports on complex in vitro models (CIVMs) using human intestinal organoids derived from intestinal tissue specimens or iPSC-derived enterocytes plated on 2D or 3D in microphysiological systems. These CIVMs provide a more physiologically relevant representation of key ADME-related proteins compared to conventional in vitro methods. They hold great promise for use in drug discovery and development due to their ability to replicate the expressions and functions of these proteins. This review highlights recent advances in gut CIVMs employing intestinal organoid model systems compared to conventional methods. It is important to note that each CIVM should be tailored to the investigational drug properties and research questions at hand.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (K.W.); (T.I.); (D.N.)
| | | | | | | |
Collapse
|
11
|
Kourula S, Derksen M, Jardi F, Jonkers S, van Heerden M, Verboven P, Theuns V, Van Asten S, Huybrechts T, Kunze A, Frazer-Mendelewska E, Lai KW, Overmeer R, Roos JL, Vries RGJ, Boj SF, Monshouwer M, Pourfarzad F, Snoeys J. Intestinal organoids as an in vitro platform to characterize disposition, metabolism, and safety profile of small molecules. Eur J Pharm Sci 2023; 188:106481. [PMID: 37244450 DOI: 10.1016/j.ejps.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Intestinal organoids derived from LGR5+ adult stem cells allow for long-term culturing, more closely resemble human physiology than traditional intestinal models, like Caco-2, and have been established for several species. Here we evaluated intestinal organoids for drug disposition, metabolism, and safety applications. Enterocyte-enriched human duodenal organoids were cultured as monolayers to enable bidirectional transport studies. 3D enterocyte-enriched human duodenal and colonic organoids were incubated with probe substrates of major intestinal drug metabolizing enzymes (DMEs). To distinguish human intestinal toxic (high incidence of diarrhea in clinical trials and/or black box warning related to intestinal side effects) from non-intestinal toxic compounds, ATP-based cell viability was used as a readout, and compounds were ranked based on their IC50 values in relation to their 30-times maximal total plasma concentration (Cmax). To assess if rat and dog organoids reproduced the respective in vivo intestinal safety profiles, ATP-based viability was assessed in rat and dog organoids and compared to in vivo intestinal findings when available. Human duodenal monolayers discriminated high and low permeable compounds and demonstrated functional activity for the main efflux transporters Multi drug resistant protein 1 (MDR1, P-glycoprotein P-gp) and Breast cancer resistant protein (BCRP). Human 3D duodenal and colonic organoids also showed metabolic activity for the main intestinal phase I and II DMEs. Organoids derived from specific intestinal segments showed activity differences in line with reported DMEs expression. Undifferentiated human organoids accurately distinguished all but one compound from the test set of non-toxic and toxic drugs. Cytotoxicity in rat and dog organoids correlated with preclinical toxicity findings and observed species sensitivity differences between human, rat, and dog organoids. In conclusion, the data suggest intestinal organoids are suitable in vitro tools for drug disposition, metabolism, and intestinal toxicity endpoints. The possibility to use organoids from different species, and intestinal segment holds great potential for cross-species and regional comparisons.
Collapse
Affiliation(s)
- Stephanie Kourula
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Merel Derksen
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Ferran Jardi
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sophie Jonkers
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marjolein van Heerden
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter Verboven
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Veronique Theuns
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stijn Van Asten
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Tinne Huybrechts
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Annett Kunze
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Ka Wai Lai
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - René Overmeer
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Jamie Lee Roos
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | | | - Sylvia F Boj
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Mario Monshouwer
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Jan Snoeys
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
12
|
Zhang ZD, Tao Q, Bai LX, Qin Z, Liu XW, Li SH, Yang YJ, Ge WB, Li JY. The Transport and Uptake of Resveratrol Mediated via Glucose Transporter 1 and Its Antioxidant Effect in Caco-2 Cells. Molecules 2023; 28:4569. [PMID: 37375124 DOI: 10.3390/molecules28124569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 μM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 μM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
13
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
14
|
Isolation and Characterization of Distinct Rotavirus A in Bat and Rodent Hosts. J Virol 2023; 97:e0145522. [PMID: 36633410 PMCID: PMC9888233 DOI: 10.1128/jvi.01455-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.
Collapse
|
15
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
16
|
Turco L, Santori N, Buratti FM, Dorne JLCM, Testai E. Congeners-Specific Intestinal Absorption Of Microcystins In An In Vitro 3D Human Intestinal Epithelium: The Role Of Influx/Efflux Transporters. FRONTIERS IN TOXICOLOGY 2022; 4:883063. [PMID: 35990858 PMCID: PMC9388863 DOI: 10.3389/ftox.2022.883063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Microcystins constitute a group of over 200 variants and are increasingly considered as emerging toxins in food and feed safety, particularly with regards to sea-food and fish consumption. Toxicity of MCs is congener-specific, being characterised by different acute potencies, likely related to the differential activity of metabolic enzymes and transporters proteins involved in their cellular uptake. However, the active transport of MCs across intestinal membranes has not been fully elucidated. Our results, obtained using a fit for purpose 3D human reconstructed intestinal epithelium, provide new information on the complex mechanisms involved in the absorption of 5 MC variants’: it is indeed characterised by the equilibrium between uptake and extrusion, since the selected congeners are substrates of both influx and efflux proteins. In the range of tested nominal concentrations (10–40 µM) fully representative of relevant exposure scenarios, none of the active tested transporters were saturated. The comparison of permeability (Papp) values of MCs variants highlighted a dose independent relationship for MC-LR, -YR and -RR (Papp x 10–7 ranged from 2.95 to 3.54 cm/s), whereas -LW and–LF showed a dose dependent increase in permeability reaching Papp values which were similar to the other congeners at 40 µM. MC-RR, -LR, -YR show absorption values around 5% of the administered dose. Due to their lipophilicity, MC-LW and -LF were also detected within the cellular compartment. The intestinal uptake was only partially attributable to OATPs, suggesting the involvement of additional transporters. Regarding the efflux proteins, MCs are not P-gp substrates whereas MRP2 and to a lesser extent Breast cancer resistance protein are active in their extrusion. Despite the presence of GST proteins, as an indication of metabolic competence, in the intestinal tissue, MC-conjugates were never detected in our experimental settings.
Collapse
Affiliation(s)
- Laura Turco
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
- *Correspondence: Laura Turco,
| | - Nicoletta Santori
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| | - Franca M. Buratti
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| | | | - Emanuela Testai
- Istituto Superiore Di Sanità, Environment & Health Dept, Rome, Italy
| |
Collapse
|
17
|
Ghosh S, Banerjee M, Haribabu B, Jala VR. Urolithin A attenuates arsenic-induced gut barrier dysfunction. Arch Toxicol 2022; 96:987-1007. [PMID: 35122514 PMCID: PMC10867785 DOI: 10.1007/s00204-022-03232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
Environmental chemicals such as inorganic arsenic (iAs) significantly contribute to redox toxicity in the human body by enhancing oxidative stress. Imbalanced oxidative stress rapidly interferes with gut homeostasis and affects variety of cellular processes such as proliferation, apoptosis, and maintenance of intestinal barrier integrity. It has been shown that gut microbiota are essential to protect against iAs3+-induced toxicity. However, the effect of microbial metabolites on iAs3+-induced toxicity and loss of gut barrier integrity has not been investigated. The objectives of the study are to investigate impact of iAs on gut barrier function and determine benefits of gut microbial metabolite, urolithin A (UroA) against iAs3+-induced adversaries on gut epithelium. We have utilized both colon epithelial cells and in a human intestinal 3D organoid model system to investigate iAs3+-induced cell toxicity, oxidative stress, and gut barrier dysfunction in the presence or absence of UroA. Here, we report that treatment with UroA attenuated iAs3+-induced cell toxicity, apoptosis, and oxidative stress in colon epithelial cells. Moreover, our data suggest that UroA significantly reduces iAs3+-induced gut barrier permeability and inflammatory markers in both colon epithelial cells and in a human intestinal 3D organoid model system. Mechanistically, UroA protected against iAs3+-induced disruption of tight junctional proteins in intestinal epithelial cells through blockade of oxidative stress and markers of inflammation. Taken together, our studies for the first time suggest that microbial metabolites such as UroA can potentially be used to protect against environmental hazards by reducing intestinal oxidative stress and by enhancing gut barrier function.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA.
| |
Collapse
|
18
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
19
|
The Inhibitory Activity of Curcumin on P-Glycoprotein and Its Uptake by and Efflux from LS180 Cells Is Not Affected by Its Galenic Formulation. Antioxidants (Basel) 2021; 10:antiox10111826. [PMID: 34829695 PMCID: PMC8615263 DOI: 10.3390/antiox10111826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
The biological activities of curcumin in humans, including its antioxidative and anti-inflammatory functions, are limited by its naturally low bioavailability. Different formulation strategies have been developed, but the uptake of curcumin from these galenic formulations into and efflux from intestinal cells, which may be critical processes limiting bioavailability, have not been directly compared. Furthermore, little is known about their effect on P-glycoprotein activity, an important determinant of the pharmacokinetics of potentially co-administered drugs. P-glycoprotein activity was determined in LS180 cells, incubated with 30 or 60 µmol/L of curcumin in the form of seven different formulations or native curcuma extract for 1 h. All formulations inhibited P-glycoprotein activity at both concentrations. Curcumin uptake, after 1 h incubation of LS180 cells with the formulations (60 µmol/L), showed significant variability but no consistent effects. After 1 h pre-treatment with the formulations and further 8 h with curcumin-free medium, curcumin in cell culture supernatants, reflecting the efflux, differed between individual formulations, again without a clear effect. In conclusion, curcumin inhibits P-glycoprotein activity independently of its formulation. Its uptake by and efflux from intestinal cells was not significantly different between formulations, indicating that these processes are not important regulatory points for its bioavailability.
Collapse
|
20
|
Dunvald ACD, Järvinen E, Mortensen C, Stage TB. Clinical and Molecular Perspectives on Inflammation-Mediated Regulation of Drug Metabolism and Transport. Clin Pharmacol Ther 2021; 112:277-290. [PMID: 34605009 DOI: 10.1002/cpt.2432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Inflammation is a possible cause of variability in drug response and toxicity due to altered regulation in drug-metabolizing enzymes and transporters (DMETs) in humans. Here, we evaluate the clinical and in vitro evidence on inflammation-mediated modulation of DMETs, and the impact on drug metabolism in humans. Furthermore, we identify and discuss the gaps in our current knowledge. A systematic literature search on PubMed, Embase, and grey literature was performed in the period of February to September 2020. A total of 203 papers was included. In vitro studies in primary human hepatocytes revealed strong evidence that CYP3A4 is strongly downregulated by inflammatory cytokines IL-6 and IL-1β. CYP1A2, CYP2C9, CYP2C19, and CYP2D6 were downregulated to a lesser extent. In clinical studies, acute and chronic inflammatory diseases were observed to cause downregulation of CYP enzymes in a similar pattern. However, there is no clear correlation between in vitro studies and clinical studies, mainly because most in vitro studies use supraphysiological cytokine doses. Moreover, clinical studies demonstrate considerable variability in terms of methodology and inconsistencies in evaluation of the inflammatory state. In conclusion, we find inflammation and pro-inflammatory cytokines to be important factors in regulation of drug-metabolizing enzymes and transporters. The observed downregulation is clinically relevant, and we emphasize caution when treating patients in an inflammatory state with narrow therapeutic index drugs. Further research is needed to identify the full extent of inflammation-mediated changes in DMETs and to further support personalized medicine.
Collapse
Affiliation(s)
- Ann-Cathrine Dalgård Dunvald
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Christina Mortensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Tore B Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
21
|
Yamashita T, Inui T, Yokota J, Kawakami K, Morinaga G, Takatani M, Hirayama D, Nomoto R, Ito K, Cui Y, Ruez S, Harada K, Kishimoto W, Nakase H, Mizuguchi H. Monolayer platform using human biopsy-derived duodenal organoids for pharmaceutical research. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:263-278. [PMID: 34485610 PMCID: PMC8399089 DOI: 10.1016/j.omtm.2021.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023]
Abstract
The human small intestine is the key organ for absorption, metabolism, and excretion of orally administered drugs. To preclinically predict these reactions in drug discovery research, a cell model that can precisely recapitulate the in vivo human intestinal monolayer is desired. In this study, we developed a monolayer platform using human biopsy-derived duodenal organoids for application to pharmacokinetic studies. The human duodenal organoid-derived monolayer was prepared by a simple method in 3-8 days. It consisted of polarized absorptive cells and had tight junctions. It showed much higher cytochrome P450 (CYP)3A4 and carboxylesterase (CES)2 activities than did the existing models (Caco-2 cells). It also showed efflux activity of P-glycoprotein (P-gp) and inducibility of CYP3A4. Finally, its gene expression profile was closer to the adult human duodenum, compared to the profile of Caco-2 cells. Based on these findings, this monolayer assay system using biopsy-derived human intestinal organoids is likely to be widely adopted.
Collapse
Affiliation(s)
- Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
| | - Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Kawakami
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido 003-0027, Japan
| | - Gaku Morinaga
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Masahito Takatani
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Ryuga Nomoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kohei Ito
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Yunhai Cui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Stephanie Ruez
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
- Corresponding author: Hiroyuki Mizuguchi, PhD, Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 2021; 335:247-268. [PMID: 34033859 DOI: 10.1016/j.jconrel.2021.05.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Absorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles. However, numerous models are ineffective in recapitulating the key features of the human small intestine epithelium and lack of prediction potential for drug absorption and metabolism during the preclinical stage. In this review, we provide an overview of in vitro models aimed at mimicking the intestinal barrier for pharmaceutical screening. After briefly describing how the human small intestine works, we present i) conventional 2D synthetic and cell-based systems, ii) 3D models replicating the main features of the intestinal architecture, iii) micro-physiological systems (MPSs) reproducing the dynamic stimuli to which cells are exposed in the native microenvironment. In this review, we will highlight the benefits and drawbacks of the leading intestinal models used for drug absorption and metabolism studies.
Collapse
Affiliation(s)
- Arianna Fedi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Giulia Ponschin
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | | | - Marco Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy.
| |
Collapse
|
23
|
Parvathaneni V, Elbatanony RS, Shukla SK, Kulkarni NS, Kanabar DD, Chauhan G, Ayehunie S, Chen ZS, Muth A, Gupta V. Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation – Evaluation of intestinal absorption and anti-cancer activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Drug Disposition in the Lower Gastrointestinal Tract: Targeting and Monitoring. Pharmaceutics 2021; 13:pharmaceutics13020161. [PMID: 33530468 PMCID: PMC7912393 DOI: 10.3390/pharmaceutics13020161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing prevalence of colonic diseases calls for a better understanding of the various colonic drug absorption barriers of colon-targeted formulations, and for reliable in vitro tools that accurately predict local drug disposition. In vivo relevant incubation conditions have been shown to better capture the composition of the limited colonic fluid and have resulted in relevant degradation and dissolution kinetics of drugs and formulations. Furthermore, drug hurdles such as efflux transporters and metabolising enzymes, and the presence of mucus and microbiome are slowly integrated into drug stability- and permeation assays. Traditionally, the well characterized Caco-2 cell line and the Ussing chamber technique are used to assess the absorption characteristics of small drug molecules. Recently, various stem cell-derived intestinal systems have emerged, closely mimicking epithelial physiology. Models that can assess microbiome-mediated drug metabolism or enable coculturing of gut microbiome with epithelial cells are also increasingly explored. Here we provide a comprehensive overview of the colonic physiology in relation to drug absorption, and review colon-targeting formulation strategies and in vitro tools to characterize colonic drug disposition.
Collapse
|
25
|
Zhao YY, Fan Y, Wang M, Wang J, Cheng JX, Zou JB, Zhang XF, Shi YJ, Guo DY. Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro. Biomed Pharmacother 2020; 132:110809. [DOI: 10.1016/j.biopha.2020.110809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
|
26
|
Markus J, Landry T, Stevens Z, Scott H, Llanos P, Debatis M, Armento A, Klausner M, Ayehunie S. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 2020; 57:160-173. [PMID: 33237403 PMCID: PMC7687576 DOI: 10.1007/s11626-020-00526-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo–like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek’s intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.
Collapse
Affiliation(s)
- Jan Markus
- In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|