1
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2025; 17:740-773. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Zhang X, Zhang Y, Zheng H, Yang X, Zou S, Chen J. Design, fabrication, and evaluation of antimicrobial sponge microneedles for the transdermal delivery of insulin. Eur J Pharm Biopharm 2025; 206:114586. [PMID: 39613270 DOI: 10.1016/j.ejpb.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Transdermal drug delivery systems hold promise, but their effectiveness is often constrained by the skin's barrier. Microneedles (MNs) improve drug permeability by creating micro-channels in the skin, yet they continue to face challenges such as infection risks and safety concerns. To overcome these challenges, a novel antimicrobial sponge MNs (ASMNs@PVP-INS) modified with polyvinylpyrrolidone (PVP) for insulin (INS) delivery was designed. Mechanical testing demonstrated that these MNs possess excellent mechanical strength, capable of withstanding at least 0.11 N per needle without rupture. In vitro drug penetration tests revealed that the MNs consistently released over 75 % of INS within a 6 h. In an animal model, ASMNs@PVP-INS reduced initial blood glucose levels from 22.4 to 5.72 mmol/L, effectively maintaining glucose control for more than 6 h without inducing hypoglycemia. Additionally, agar diffusion assays indicated that INS loading did not compromise the antimicrobial properties of antimicrobial sponge MNs (ASMNs). Skin irritation tests showed that ASMNs@PVP-INS exhibited mild irritation (PII < 0.6), with skin damage fully recovering within 8 h. Safety assessments indicated no significant toxicity to mice, with biochemical markers remaining within normal ranges, thereby confirming their good biocompatibility. In conclusion, ASMNs@PVP-INS hold promise as a novel drug delivery vehicle.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Yuelian Zhang
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Huishan Zheng
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Xue Yang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Shiqi Zou
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Jianmin Chen
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| |
Collapse
|
3
|
Liu X, Pang X, Wan Z, Zhao J, Gao Z, Deng H. Dopamine Inhibits the Expression of Hepatitis B Virus Surface and e Antigens by Activating the JAK/STAT Pathway and Upregulating Interferon-stimulated Gene 15 Expression. J Clin Transl Hepatol 2024; 12:443-456. [PMID: 38779516 PMCID: PMC11106351 DOI: 10.14218/jcth.2024.00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims Hepatitis B virus (HBV) infection is a major risk factor for cirrhosis and liver cancer, and its treatment continues to be difficult. We previously demonstrated that a dopamine analog inhibited the packaging of pregenomic RNA into capsids. The present study aimed to determine the effect of dopamine on the expressions of hepatitis B virus surface and e antigens (HBsAg and HBeAg, respectively) and to elucidate the underlying mechanism. Methods We used dopamine-treated HBV-infected HepG2.2.15 and NTCP-G2 cells to monitor HBsAg and HBeAg expression levels. We analyzed interferon-stimulated gene 15 (ISG15) expression in dopamine-treated cells. We knocked down ISG15 and then monitored HBsAg and HBeAg expression levels. We analyzed the expression of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway factors in dopamine-treated cells. We used dopamine hydrochloride-treated adeno-associated virus/HBV-infected mouse model to evaluate HBV DNA, HBsAg, and HBeAg expression. HBV virus was collected from HepAD38.7 cell culture medium. Results Dopamine inhibited HBsAg and HBeAg expression and upregulated ISG15 expression in HepG2.2.15 and HepG2-NTCP cell lines. ISG15 knockdown increased HBsAg and HBeAg expression in HepG2.2.15 cells. Dopamine-treated cells activated the JAK/STAT pathway, which upregulated ISG15 expression. In the adeno-associated virus-HBV murine infection model, dopamine downregulated HBsAg and HBeAg expression and activated the JAK-STAT/ISG15 axis. Conclusions Dopamine inhibits the expression of HBsAg and HBeAg by activating the JAK/STAT pathway and upregulating ISG15 expression.
Collapse
Affiliation(s)
- Xiaoquan Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Xiuqing Pang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Zhiping Wan
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Jinhua Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Hong Deng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Abstract
In order to improve bioavailability, stability, control release, and target delivery of active pharmaceutical ingredients (APIs), as well as to mask their bitter taste, to increase their efficacy, and to minimize their side effects, a variety of microencapsulation (including nanoencapsulation, particle size <100 nm) technologies have been widely used in the pharmaceutical industry. Commonly used microencapsulation technologies are emulsion, coacervation, extrusion, spray drying, freeze-drying, molecular inclusion, microbubbles and microsponge, fluidized bed coating, supercritical fluid encapsulation, electro spinning/spray, and polymerization. In this review, APIs are categorized by their molecular complexity: small APIs (compounds with low molecular weight, like Aspirin, Ibuprofen, and Cannabidiol), medium APIs (compounds with medium molecular weight like insulin, peptides, and nucleic acids), and living microorganisms (such as probiotics, bacteria, and bacteriophages). This article provides an overview of these microencapsulation technologies including their processes, matrix, and their recent applications in microencapsulation of APIs. Furthermore, the advantages and disadvantages of these common microencapsulation technologies in terms of improving the efficacy of APIs for pharmaceutical treatments are comprehensively analyzed. The objective is to summarize the most recent progresses on microencapsulation of APIs for enhancing their bioavailability, control release, target delivery, masking their bitter taste and stability, and thus increasing their efficacy and minimizing their side effects. At the end, future perspectives on microencapsulation for pharmaceutical applications are highlighted.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
5
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
7
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
8
|
Chen J, Ren H, Zhou P, Zheng S, Du B, Liu X, Xiao F. Microneedle-mediated drug delivery for cutaneous diseases. Front Bioeng Biotechnol 2022; 10:1032041. [PMID: 36324904 PMCID: PMC9618658 DOI: 10.3389/fbioe.2022.1032041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microneedles have garnered significant interest as transdermal drug delivery route owing to the advantages of nonselective loading capacity, minimal invasiveness, simple operation, and good biocompatibility. A number of therapeutics can be loaded into microneedles, including hydrophilic and hydrophobic small molecular drugs, and macromolecular drugs (proteins, mRNA, peptides, vaccines) for treatment of miscellaneous diseases. Microneedles feature with special benefits for cutaneous diseases owing to the direct transdermal delivery of therapeutics to the skin. This review mainly introduces microneedles fabricated with different technologies and transdermal delivery of various therapeutics for cutaneous diseases, such as psoriasis, atopic dermatitis, skin and soft tissue infection, superficial tumors, axillary hyperhidrosis, and plantar warts.
Collapse
Affiliation(s)
- Jian Chen
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Ren
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Fei Xiao
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| |
Collapse
|
9
|
Oh YJ, Kang NW, Jeong HR, Sohn SY, Jeon YE, Yu NY, Hwang Y, Kim S, Kim DD, Park JH. The Relationship between the Drug Delivery Properties of a Formulation of Teriparatide Microneedles and the Pharmacokinetic Evaluation of Teriparatide Administration in Rats. Pharm Res 2022; 39:989-999. [PMID: 35441319 DOI: 10.1007/s11095-022-03254-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Teriparatide is an effective drug for the treatment of osteoporosis. This study examines the relationship between the drug delivery properties of the solid formulation with teriparatide and the pharmacokinetic properties of teriparatide in vivo. METHODS Teriparatide microneedles with different dissolution rates were prepared using sucrose and carboxymethylcellulose (CMC). There were three aspects of this study: (1) The dissolution rate of teriparatide from both formulations (sucrose and CMC) was measured in vitro. (2) After administration into porcine skin ex vivo, the diffusion rate of FITC-dextran was observed using a confocal microscope. (3) Pharmacokinetic studies were performed in rats and pharmacokinetic data compared with the release rate and the diffusion pattern. RESULTS In the in vitro dissolution experiment, 80% of teriparatide was released within 30 min from the CMC MNs, whereas 80% of teriparatide was released within 10 min from the sucrose MNs. After 30 min, the fluorescence intensity on the surface of the MNs was 40% of the initial intensity for sucrose MNs and 90% for CMC MNs. In the pharmacokinetic study, the Cmax values of the CMC and sucrose MNs were 868 pg/mL and 6809 pg/mL, respectively, and the AUClast values were 6771 pg*hr/mL for the CMC MNs and 17,171 pg*hr/mL for the sucrose MNs. CONCLUSIONS When teriparatide is delivered into the skin using microneedles, the release rate from the solid formulation determines the drug's pharmacokinetic properties. The diffusion pattern of fluorescence into the skin can be used to anticipate the pharmacokinetic properties of the drug.
Collapse
Affiliation(s)
- Yu-Jeong Oh
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye-Rin Jeong
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Sohn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yae-Eun Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Na-Young Yu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yura Hwang
- Hanlim Pharmaceutical.Co.,Ltd, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sunkyung Kim
- Hanlim Pharmaceutical.Co.,Ltd, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jung-Hwan Park
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, Republic of Korea. .,QuadMedicine R&D Centre, QuadMedicine Co., Ltd, Seongnam, Republic of Korea.
| |
Collapse
|
10
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
11
|
Song X, Wang Y, Chen H, Jin Y, Wang Z, Lu Y, Wang Y. Dosage-efficacy relationship and pharmacodynamics validation of brucine dissolving microneedles against rheumatoid arthritis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Ovalbumin and cholera toxin delivery to buccal mucus for immunization using microneedles and comparison of immunological response to transmucosal delivery. Drug Deliv Transl Res 2021; 11:1390-1400. [PMID: 33759112 DOI: 10.1007/s13346-021-00964-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
The oral mucosa is an effective site for vaccination. However, for oral mucosal vaccines, delivery of the right dose of vaccine is not possible due to the water-rich environment. In this study, the buccal mucosa, which is easy to access using a microneedle array in the oral cavity, was selected as the administration site. The immune responses to the use of microneedles to conventional transmucosal delivery were compared. In addition, the adjuvant effect of the addition of cholera toxin (CT) to the drug formulation was observed. Two kinds of patches were prepared: (1) Ovalbumin (OVA) was dip coated only on the tips of microneedles (C-OVA-MN) and (2) OVA was coated on the surface of a flat disk patch substrate without microneedles (C-OVA-D). The drug delivery properties of C-OVA-MN and C-OVA-D were investigated using fluorescent-labeled OVA (OVA/FITC). Each patch was administered to mice twice, 2 weeks apart, and then antibody titers were measured. A microneedle patch can deliver vaccine into the epithelium of the buccal mucosa in a short period of time compared to transmucosal delivery. A microneedle system of C-OVA-MN showed a high serum IgG titer. In addition, CT triggered CD8+ and CD4+ T cell-mediated immune responses. Through this study, we present the possibility of a new method of vaccination to the buccal mucosa using microneedles and CT adjuvant. Illustration of delivery of vaccine to the oral mucosal epithelium using a microneedle patch: Ovalbumin (OVA)-coated microneedle (C-OVA-MN) consists of tip, step, and coating formulation. Microneedle patch coated with OVA formulation is targeting buccal mucosa, which is easy to access in the oral cavity. OVA is delivered to the buccal epithelium precisely using a microneedle patch, and OVA is delivered by transmucosal route using a disk patch.
Collapse
|
13
|
Tambunlertchai S, Geary SM, Salem AK. Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS JOURNAL 2021; 23:19. [PMID: 33404992 DOI: 10.1208/s12248-020-00544-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer for which there is currently no reliable therapy and is considered one of the leading health issues in the USA. At present, surgery is the most effective and acceptable treatment; however, surgical excision can be impractical in certain circumstances. Topical skin delivery of drugs using topical formulations is a potential alternative approach which can have many advantages aside from being a non-invasive delivery route. Nevertheless, the presence of the stratum corneum (SC) limits the penetration of drugs through the skin, lowering their treatment efficacy and raising concerns among physicians and patients as to their effectiveness. Currently, research groups are trying to circumvent the SC barrier by using skin penetration enhancement (SPE) strategies. The SPE strategies investigated include chemical skin penetration enhancers (CPEs), physical skin penetration enhancers (PPEs), nanocarrier systems, and a combination of SPE strategies (cream). Of these, PPEs and cream are the most advanced approaches in terms of preclinical and clinical studies, respectively.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
14
|
Kim JS, Choi JA, Kim JC, Park H, Yang E, Park JS, Song M, Park JH. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int J Pharm 2020; 591:119928. [PMID: 33069897 DOI: 10.1016/j.ijpharm.2020.119928] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
In this study, dissolving microneedles (DMNs) with dual-release pattern, capable of both bolus release and slow release, were prepared. These DMNs were used with a hepatitis B vaccine that requires multiple shots to achieve immunological efficacy comparable to that obtained when two separate shots are administered. Dissolving microneedles with HBsAg in PLA tips and CMC coating formulation together (HBsAg-PLA/CMC-DMNs) consist of polylactic acid (PLA) tips for slow release, a carboxy-methyl cellulose (CMC) coating formulation for bolus release, and a dissolving base of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) for dissolution in the skin. The in vitro release pattern of HBsAg from the CMC coating formulation and PLA tips was observed. Through an in vivo test, 1) the delivery efficiency of HBsAg-PLA/CMC-DMNs was observed, and 2) the immunological efficacy of this method was compared with the efficacy of two shots delivered by conventional intramuscular (IM) administration and two shots delivered by HBsAg-coated microneedle (CMNs) administration. HBsAg-PLA/CMC-DMNs punctured the skin successfully. The PVA/PVP base was completely dissolved within 10 min of insertion, resulting in the delivery of all microneedle tips into the skin. In the in vitro release experiment, all of the HBsAg in the CMC coating formulation was released within 20 min, and the HBsAg present in the PLA tips was gradually released over more than 55 days. The antibody titer of one shot of HBsAg-PLA/CMC-DMNs was the same as or higher than two shots delivered by conventional IM and CMN methods. DMNs with dual-release pattern can deliver two formulations simultaneously with a single shot, resulting in improved immunological efficacy of HBsAg that requires multiple doses. In addition, this dual-release MN system can be used for the delivery of other drugs that require multiple administrations.
Collapse
Affiliation(s)
- Ji Seok Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jung-Ah Choi
- Science Department, International Vaccine Institute, Seoul, Republic of Korea
| | - Jong Chan Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Hayan Park
- Science Department, International Vaccine Institute, Seoul, Republic of Korea
| | - Eunji Yang
- Science Department, International Vaccine Institute, Seoul, Republic of Korea
| | - Ji Sun Park
- Science Department, International Vaccine Institute, Seoul, Republic of Korea
| | - Manki Song
- Science Department, International Vaccine Institute, Seoul, Republic of Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea.
| |
Collapse
|
15
|
Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm 2020; 587:119673. [PMID: 32739388 PMCID: PMC7392082 DOI: 10.1016/j.ijpharm.2020.119673] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.
Collapse
Affiliation(s)
- Khater Ahmed Saeed AL-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Jayarama Reddy Venugopal
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Ayah Rebhi Hilles
- Faculty of Health Sciences, Department of Medical Science and Technology, PICOMS International University College of Medical Sciences, 68100 Kuala Lumpur, Malaysia
| | - Motia Azmana
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Subashini Raman
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| |
Collapse
|