1
|
Kaliya K, Bhardwaj N, Ruchika, Saneja A. Synthesis of a Gemcitabine Prodrug and its Encapsulation into Polymeric Nanoparticles for Improved Therapeutic Efficacy. ChemMedChem 2025; 20:e202400532. [PMID: 39778057 DOI: 10.1002/cmdc.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Gemcitabine (GEM), a chemotherapeutic agent, is widely used to treat various neoplastic conditions, such as pancreatic, lung, breast, and ovarian cancer. However, its therapeutic effectiveness is often hindered by its short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new conjugates of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)]. The anticancer potential of these conjugates was evaluated using CCK-8 assay. Among the synthesized conjugates, 4Dec-GEM demonstrated comparable cytotoxic activity to native GEM. The mechanistic insight of 4Dec-GEM was investigated using annexin-V FITC/propidium iodide staining, reactive oxygen species generation, and mitochondrial membrane potential loss assays. To further enhance its therapeutic efficacy, 4Dec-GEM was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using single-emulsion method using high-pressure homogenization. The developed nanoparticles were characterized by various techniques (TEM, FT-IR, DSC, p-XRD) and demonstrated successful entrapment of 4Dec-GEM inside PLGA nanoparticles. Finally, the cytotoxicity of developed nanoparticles demonstrated improved anticancer activity as compared to native GEM in cancerous cell lines. Our study demonstrated that the combination of prodrug and nanoparticle approach can be a promising approach to augment the therapeutic efficacy of GEM.
Collapse
Affiliation(s)
- Kajal Kaliya
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Bhardwaj
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Ansari M, Gupta C, Kulkarni YA, Singh K. Functionalization of polymeric nanomicelles and mixed nanomicelles for targeted retinal delivery in the management of retinoblastoma. Int J Pharm 2025; 671:125235. [PMID: 39826786 DOI: 10.1016/j.ijpharm.2025.125235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and 1H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method. Thereafter, these nanomicelles were evaluated and displayed suitable outcomes for particle size (78.53 nm and 73.17 nm), PDI (0.089 and 0.074), zeta potential (-3.65 mV and -4.17 mv), entrapment efficiency (99.23 % and 99.83 %), in vitro drug release (4 h and 8 h), solid-state analysis, osmolality (290 mOsm/kg and 293 mOsm/kg), pH (7.4 and 7.4), TEM (spherical) and residual solvent analysis (287.90 ppm and 363.49 ppm). The ex vivo transcleral permeation at 8 h was found to be 548.45 ng/cm2 and 281.61 ng/cm2, respectively. Both the drug-loaded nanomicelles displayed a dose-dependent anticancer effect on Y-79 cells at all time points i.e. 6, 12, 18, and 24 h, and were non-toxic to normal retinal pigmented epithelial cell line (ARPE-19) when incubated for 24 h. Furthermore, the formulations were non-irritant (HET-CAM) and stable for 6 months. Hence, the developed technology is safe and efficacious for targeting the retina in managing retinoblastoma.
Collapse
Affiliation(s)
- Mudassir Ansari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India
| | - Chandan Gupta
- Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India.
| |
Collapse
|
3
|
Acharya C, Mishra S, Chaurasia SK, Pandey BK, Dhar R, Pandey JK. Synthesis of metallic nanoparticles using biometabolites: mechanisms and applications. Biometals 2025; 38:21-54. [PMID: 39377881 DOI: 10.1007/s10534-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Bio-metabolites have played a crucial role in the recent green synthesis of nanoparticles, resulting in more versatile, safer, and effective nanoparticles. Various primary and secondary metabolites, such as proteins, carbohydrates, lipids, nucleic acids, enzymes, vitamins, organic acids, alkaloids, flavonoids, and terpenes, have demonstrated strong metal reduction and stabilization properties that can be utilized to synthesize nanomaterials and influence their characters. While physical and chemical methods were previously used to synthesize these nanomaterials, their drawbacks, including high energy consumption, elevated cost, lower yield, and the use of toxic chemicals, have led to a shift towards eco-friendly, rapid, and efficient alternatives. Biomolecules act as reducing agents through deprotonation, nucleophilic reactions, transesterification reactions, ligand binding, and chelation mechanisms, which help sequester metal ions into stable metal nanoparticles (NPs). Engineered NPs have potential applications in various fields due to their optical, electronic, and magnetic properties, offering improved performance compared to bulkier counterparts. NPs can be used in medicine, food and agriculture, chemical catalysts, energy harvesting, electronics, etc. This review provides an overview of the role of primary and secondary metabolites in creating effective nanostructures and their potential applications.
Collapse
Affiliation(s)
- Chinmayee Acharya
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India
| | - Sonam Mishra
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Sandeep Kumar Chaurasia
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| | - Bishnu Kumar Pandey
- Department of Physics, SPM College, University of Allahabad, Prayagraj, 211013, India
| | - Ravindra Dhar
- Centre of Materials Sciences, University of Allahabad, Prayagraj, 211002, India
| | - Jitendra Kumar Pandey
- Department of Botany, Government Post Graduate College, Tikamgarh, 472001, India.
- Maharaja Chhatrasal Bundelkhand University, Chhatarpur, 471001, India.
| |
Collapse
|
4
|
Sohrabi R, Miri AH, Rad-Malekshahi M, Saadatpour F, Pourjabbar B, Keshel SH, Arefian E, Balalaei S, Masoumi A, Khalili F, Haririan I, Akrami M, Shahriari MH. Development of silk fibroin/collagen film containing GI-20 peptide-loaded PLGA nanoparticles against corneal herpes simplex virus-1. Int J Pharm 2025; 669:125022. [PMID: 39674383 DOI: 10.1016/j.ijpharm.2024.125022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Herpes simplex virus-1 (HSV-1) is the primary cause of infectious blindness. Despite impressive therapeutic outcomes of conventional treatments, HSV-1 drug resistance can be easily developed. Thus, more constructive strategies should be implemented. Led by this inspiration, this work describes the potential utility of a biodegradable silk fibroin/collagen (SF/Col) film combined with GI-20-loaded poly lactic-co-glycolic acid (PLGA) nanoparticle to provide efficient and sustained delivery platform for synthetic GI-20 peptide against HSV-1. A non-irritant film containing 90 % SF and 10 % Col incorporated with mentioned nanodrug showed some optimum physicochemical properties including loading efficiency (74.15 % ± 1.12), tensile strength (3.16 ± 0.67 MPa), water uptake ability (∼73 %), cytocompatibility (viable up to 35 µg/mL of GI-20), and sustained release paradigm (∼90 % within 14 days). Also, GI-20 peptide at concentration of 35 µg/mL could prophylactically attenuate viral titration by 5 log10 units. In addition, the corneal uptake was improved without vascular irritation. In accordance with in vitro results, no hallmarks of keratitis and significant neovascularization along with ignorable inflammatory responses were obtained. Taken together, these results could guarantee the potential of mentioned multifunctional biomaterial in the healing of infected corneal tissue.
Collapse
Affiliation(s)
- Razieh Sohrabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaei
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hassan Shahriari
- Department of Biotechnology Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Das A, Shahriar TG, Zehravi M, Sweilam SH, Alshehri MA, Ahmad I, Nafady MH, Emran TB. Clinical management of eye diseases: carotenoids and their nanoformulations as choice of therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:329-349. [PMID: 39167170 DOI: 10.1007/s00210-024-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Eye diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), impose a substantial health cost on a worldwide scale. Carotenoids have emerged as intriguing candidates for pharmacological treatment of various disorders. Their therapeutic effectiveness, however, is hindered by poor solubility and vulnerability to degradation. Nanocarriers, such as nanoparticles, liposomes, and micelles, provide a transformational way to overcome these limits. This review explores the pharmacological potential of carotenoids, namely lutein, zeaxanthin, and astaxanthin, to treat several ocular disorders. The main emphasis is on their anti-inflammatory and antioxidant actions, which help to counteract inflammation and oxidative stress, crucial factors in the development of AMD and DR. The review evaluates the significant benefits of nano-formulated carotenoids, such as improved bioavailability, higher cellular absorption, precise administration to particular ocular tissues, and greater biostability, which make them superior to conventional carotenoids. Some clinical studies on the beneficial properties of carotenoids in eye diseases are discussed. Furthermore, safety and regulatory concerns are also taken into account. Ultimately, carotenoids, especially when created in their nano form, have significant potential for safeguarding eyesight and enhancing the overall well-being of several individuals afflicted with vision-endangering eye diseases.
Collapse
Affiliation(s)
- Amit Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
6
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024; 116:1513-1520. [PMID: 39234898 PMCID: PMC11567784 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
7
|
Shah KA, Razzaq A, You B, Dormocara A, Iqbal H, Cui JH. Unveiling the potential of pulmonary surfactant-based nanocarriers for protein inhalation therapy. Eur J Pharm Biopharm 2024; 205:114574. [PMID: 39521354 DOI: 10.1016/j.ejpb.2024.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The study investigates the effect of pulmonary surfactant (PS) coating on the performance of lysozyme-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The NPs were fabricated using a double emulsification technique and optimized using the Box-Behnken experimental design (BBED). The NPs were assessed for size, polydispersity index (PDI), zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). In addition, the optimized PLGA NPs were modified with either a neutral dipalmitoylphosphatidylcholine DPPC or an anionic dipalmitoyl phosphatidylglycerol (DPPG) with different molar ratios of PS to PLGA (PS: PLGA = 1:2, 1:1 and 2:1). These NPs were assessed for biological activity, drug release, mucus adhesion, mucus penetration, cellular uptake, toxicity, and in vivo destiny after intratracheal (IT) instillation to mice. Results showed a bi-phasic drug release, with no significant effect of PS on the release and biological activities of PLGA NPs. The PS@PLGA NPs improved mucus adhesion, decreased mucus penetration, and increased cellular internalization of PLGA NPs. In addition, ex vivo experiments demonstrated that DPPC@PLGA NPs and DPPG@PLGA NPs could adhere to mucus. These NPs created a thicker layer at the interface of the airway compared to unmodified PLGA NPs. Moreover, interaction of PS@PLGA NPs with BALF suggested improved mucoadhesive characteristics. Finally, the in vivo studies confirmed the precise distribution of all NPs in the lungs after IT administration. The study presents empirical evidence and scientific guidance for developing a lung surfactant-modified nanocarrier system for lung drug delivery.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Bengang You
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Amos Dormocara
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Jing-Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Mhaske A, Kaur J, Naqvi S, Shukla R. Decitabine enclosed biotin-zein conjugated nanoparticles: synthesis, characterization, in vitro and in vivo evaluation. Nanomedicine (Lond) 2024; 19:1743-1760. [PMID: 39041671 PMCID: PMC11418219 DOI: 10.1080/17435889.2024.2374700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.
Collapse
Affiliation(s)
- Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
- Department of Pharmacology & Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| |
Collapse
|
9
|
Kazemi MS, Shoari A, Salehibakhsh N, Aliabadi HAM, Abolhosseini M, Arab SS, Ahmadieh H, Kanavi MR, Behdani M. Anti-angiogenic biomolecules in neovascular age-related macular degeneration; therapeutics and drug delivery systems. Int J Pharm 2024; 659:124258. [PMID: 38782152 DOI: 10.1016/j.ijpharm.2024.124258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Blindness in the elderly is often caused by age-related macular degeneration (AMD). The advanced type of AMD known as neovascular AMD (nAMD) has been linked to being the predominant cause of visual impairment in these people. Multiple neovascular structures including choroidal neovascular (CNV) membranes, fluid exudation, hemorrhages, and subretinal fibrosis, are diagnostic of nAMD. These pathological alterations ultimately lead to anatomical and visual loss. It is known that vascular endothelial growth factor (VEGF), a type of proangiogenic factor, mediates the pathological process underlying nAMD. Therefore, various therapies have evolved to directly target the disease. In this review article, an attempt has been made to discuss general explanations about this disease, all common treatment methods based on anti-VEGF drugs, and the use of drug delivery systems in the treatment of AMD. Initially, the pathophysiology, angiogenesis, and different types of AMD were described. Then we described current treatments and future treatment prospects for AMD and outlined the advantages and disadvantages of each. In this context, we first examined the types of therapeutic biomolecules and anti-VEGF drugs that are used in the treatment of AMD. These biomolecules include aptamers, monoclonal antibodies, small interfering RNAs, microRNAs, peptides, fusion proteins, nanobodies, and other therapeutic biomolecules. Finally, we described drug delivery systems based on liposomes, nanomicelles, nanoemulsions, nanoparticles, cyclodextrin, dendrimers, and composite vehicles that are used in AMD therapy.
Collapse
Affiliation(s)
- Mir Salar Kazemi
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Neda Salehibakhsh
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Abolhosseini
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran.
| |
Collapse
|
10
|
Liu K, Li Y, Zhong X, Hou Y, Fei S, Chen E, Tan M. Protection effect of lutein-loaded Pickering emulsion prepared via ultrasound-assisted Maillard reaction conjugates on dry age-related macular degeneration. Food Funct 2024; 15:6347-6358. [PMID: 38768294 DOI: 10.1039/d4fo00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss among the elderly, and the treatment options for dry AMD (dAMD) are severely limited. Lutein has a favorable effect on the treatment of dAMD. Algae oil, rich in docosahexaenoic acid (DHA), is considered an effective intervention for eye diseases. In this study, casein-mannose conjugates were prepared to form algal oil-in-water Pickering emulsions by ultrasound-assisted Maillard reaction. As the ultrasound time increased from 0 to 25 min, the droplet size decreased to 648.2 ± 21.18 nm, which substantially improved the stability of the Pickering emulsions. The retention of lutein in the Pickering emulsions under ultrasonic treatment for 20 min was significantly improved under different conditions. The simulated gastrointestinal digestion revealed that ultrasound-assisted Pickering emulsions are an effective method for improving the bioaccessibility of lutein (19.76%-53.34%). In vivo studies elucidated that the lutein-loaded Pickering emulsions could effectively alleviate retinal thinning induced by sodium iodate (NaIO3) in mice with dAMD. Mechanistically, lutein-loaded Pickering emulsions significantly reduced oxidative stress by decreasing the MDA level, increasing the SOD production, and reducing the retinal ROS production. These findings explored the protective effects of lutein-loaded Pickering emulsions on dAMD and offered promising prospects for the nutritional intervention of dAMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xu Zhong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yitong Hou
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Fei
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Xu JF, Wang YP, Liu XH. Novel fabrication of anti-VEGF drug ranibizumab loaded PLGA/PLA co-polymeric nanomicelles for long-acting intraocular delivery in the treatment of age-related macular degeneration therapy. Regen Ther 2024; 26:620-634. [PMID: 39281109 PMCID: PMC11399609 DOI: 10.1016/j.reth.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 09/18/2024] Open
Abstract
Age associated macular degeneration is the 3rd primary cause of blind fundus diseases globally. A reliable and long-lasting method of intraocular drug delivery is still needed. Herein, this study was aim to develop the novel fabrication of ranibizumab loaded co-polymeric nanomicelles (Rabz-CP-NMs) for AMD. The CMC of co-polymeric nanomicelles was determined to be low, at 6.2 μg/ml. The ring copolymerization method was employed to fabricate the NMs and characterize via FTIR, XRD, TEM, DLS and Zeta potential. Rabz-CP-NMs was spherical shape with 10-50 nm in size. Stable and prolonged drug release was achieved with the Rabz from CP-NMs at 48 h. D407 and ARPE19 ocular cell lines showed dose-dependent cell viability with Rabz-CP-NMs. The Rabz-CP-NMs also had less toxicity, higher uptake, lower cell death and prolonged VEGF-A inhibition, as shown by cytoviability assay. Thus, Rabz-CP-NMs were safe for ocular use, suggesting that could be used to improve intraocular AMD treatment.
Collapse
Affiliation(s)
- Jin-Feng Xu
- Department of Ophthalmology, Dongying People's Hospital, Dongying 257001, China
| | - Yan-Ping Wang
- Department of Ophthalmology, Dongying People's Hospital, Dongying 257001, China
| | - Xiao-Hua Liu
- Department of Ophthalmology, Dongying People's Hospital, Dongying 257001, China
| |
Collapse
|
12
|
Iorga RE, Moraru AD, Costin D, Munteanu-Dănulescu RS, Brănișteanu DC. Current trends in targeting the oxidative stress in glaucoma (Review). Eur J Ophthalmol 2024; 34:328-337. [PMID: 37974458 DOI: 10.1177/11206721231214297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glaucoma is a progressive optic neuropathy characterised by retinal ganglion cell degeneration and visual field loss. Glaucoma is considered to be the leading cause of blindness in the industrialised countries. Oxidative damage is an important pathogenic factor in glaucoma, which triggers trabecular meshwork (TM) degeneration, which then leads to intraocular hypertension. Neurodegenerative insults during glaucomatous neurodegeneration initiate an immune response to restore tissue homeostasis. However, the oxidative stress (OS) that develops during the pathogenic processes of glaucoma, along with the agerelated OS, plays a critical role in shifting the physiological equilibrium. In the TM from glaucoma donors, proinflammatory markers were found, which were induced by the activation of a stress response. Chronic changes in the composition of antioxidants found in aqueous humour may induce alterations in TM as well as in the optic nerve head cells. Highlighting the pathogenic role of reactive oxygen species (ROS) in glaucoma has implications in preventing this disease. Various clinical trials are available to test the efficacy of antioxidant drugs in glaucoma management. In this review, we discuss the OS as a therapeutic target, suggesting that the modulation of a pro-oxidant/antioxidant status might be a relevant target for glaucoma prevention and therapy.
Collapse
Affiliation(s)
- Raluca Eugenia Iorga
- Department of Ophthalmology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Andreea Dana Moraru
- Department of Ophthalmology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dănuț Costin
- Department of Ophthalmology, "N. Oblu" Clinical Hospital, Iasi, Romania
| | | | | |
Collapse
|
13
|
Zhang G, Zhang M, Pei Y, Qian K, Xie J, Huang Q, Liu S, Xue N, Zu Y, Wang H. Enhancing stability of liposomes using high molecular weight chitosan to promote antioxidative stress effects and lipid-lowering activity of encapsulated lutein in vivo and in vitro. Int J Biol Macromol 2023; 253:126564. [PMID: 37714230 DOI: 10.1016/j.ijbiomac.2023.126564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Lutein is an antioxidant with multiple beneficial functions. However, its therapeutic potential is hampered by its low water solubility and bioavailability. The goal of this study is to compare the stability of lutein-loaded liposomes (Lu-lip) and low (LC)/high molecular weight (HC) chitosan-coated Lu-lip, along with their antioxidant capacity using H2O2-induced HepG2 cells and their lipid-lowering activity using high-fat diet mice. Both LC and HC reduced the lutein degradation rate by 17.5 % and 26.72 % in a challenging environment at pH 6 and T = 4 °C. Compared to LC, the HC coating improved the size- and zeta-potential-stability of Lu-lip at 5 < pH < 7, with the best performance at pH 6. The HC coating prolonged the lutein release profile, increased the cellular uptake of Lu-lip, and reduced the reactive oxygen species (ROS) levels and the H2O2-induced necrotic cell ratios by increasing the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Animal experiments have shown that oral administration of LC and HC coated Lu-lip can significantly reduce body weight levels, total triglycerides (TG), total cholesterol (TC), and non-high-density lipoprotein (n-HDL-C) in high-fat diet mice while significantly increasing the levels of CAT, SOD and GSH-Px in the liver of mice. LC and HC coated Lu-lip can reduce fat accumulation in the liver and epididymal adipose tissue.
Collapse
Affiliation(s)
- Gaoshuai Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Meijing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yiqiao Pei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Kun Qian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China
| | - Qun Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China.
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, China; Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| | - Yujiao Zu
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, United States.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
14
|
Hui P, Zheng X, Dong J, Lu F, Xu C, Qu H, Zhu X, Uemoto Y, Lv X, Yin Z, Sun W, Bao W, Wang H. Metabolomics and Transcriptomics Analyses of Curcumin Alleviation of Ochratoxin A-Induced Hepatotoxicity. Int J Mol Sci 2023; 25:168. [PMID: 38203339 PMCID: PMC10779172 DOI: 10.3390/ijms25010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins that poses a serious threat to human and animal health. Curcumin (CUR) is a major bioactive component of turmeric that provides multiple health benefits. CUR can reduce the toxicities induced by mycotoxins, but the underlying molecular mechanisms remain largely unknown. To explore the effects of CUR on OTA toxicity and identify the key regulators and metabolites involved in the biological processes, we performed metabolomic and transcriptomic analyses of livers from OTA-exposed mice. We found that CUR can alleviate the toxic effects of OTA on body growth and liver functions. In addition, CUR supplementation significantly affects the expressions of 1584 genes and 97 metabolites. Integrated analyses of transcriptomic and metabolomic data showed that the pathways including Arachidonic acid metabolism, Purine metabolism, and Cholesterol metabolism were significantly enriched. Pantothenic acid (PA) was identified as a key metabolite, the exogenous supplementation of which was observed to significantly alleviate the OTA-induced accumulation of reactive oxygen species and cell apoptosis. Further mechanistical analyses revealed that PA can downregulate the expression level of proapoptotic protein BAX, enhance the expression level of apoptosis inhibitory protein BCL2, and decrease the level of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). This study demonstrated that CUR can alleviate the adverse effects of OTA by influencing the transcriptomic and metabolomic profiles of livers, which may contribute to the application of CUR in food and feed products for the prevention of OTA toxicity.
Collapse
Affiliation(s)
- Peng Hui
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiao Dong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Sun
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Corrie L, Ajjarapu S, Banda S, Parvathaneni M, Bolla PK, Kommineni N. HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6616. [PMID: 37895598 PMCID: PMC10608006 DOI: 10.3390/ma16206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Today, therapeutic candidates with low solubility have become increasingly common in pharmaceutical research pipelines. Several techniques such as hot melt extrusion, spray drying, supercritical fluid technology, electrospinning, KinetiSol, etc., have been devised to improve either or both the solubility and dissolution to enhance the bioavailability of these active substances belonging to BCS Class II and IV. The principle involved in all these preparation techniques is similar, where the crystal lattice of the drug is disrupted by either the application of heat or dissolving it in a solvent and the movement of the fine drug particles is arrested with the help of a polymer by either cooling or drying to remove the solvent. The dispersed drug particles in the polymer matrix have higher entropy and enthalpy and, thereby, higher free energy in comparison to the crystalline drug. Povidone, polymethaacrylate derivatives, hydroxypropyl methyl cellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate derivatives are commonly used as polymers in the preparation of ASDs. Specifically, hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based ASDs have become well established in commercially available products and are widely explored to improve the solubility of poorly soluble drugs. This article provides an analysis of two widely used manufacturing techniques for HPMCAS ASDs, namely, hot melt extrusion and spray drying. Additionally, details of HPMCAS-based ASD marketed products and patents have been discussed to emphasize the commercial aspect.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | | | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
| | - Madhukiran Parvathaneni
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA 17101, USA;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
16
|
Marquina S, Ozgul M, Robertson-Brown K, Kenney MC. A review on PLGA particles as a sustained drug-delivery system and its effect on the retina. Exp Eye Res 2023; 235:109626. [PMID: 37652091 DOI: 10.1016/j.exer.2023.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
In this review, the designs and recent developments of polymer-based drug delivery of Poly(lactic-co-glycolic acid) (PLGA) will be discussed for the possible treatment of age-related macular degeneration (AMD). PLGA is a versatile co-polymer that consists of synthetic lactic acid and glycolic acid monomers that are constructed to produce nanoparticles, microparticles, and scaffolds for the intraocular delivery of various drugs. As an FDA-approved polymer, PLGA has historically been well-suited for systemic slow-sustained release therapies due to its performance in biodegradability and biocompatibility. This review will examine recent in vitro and in vivo studies that provide evidence for PLGA-based particles as a therapeutic drug carrier for the treatment of AMD. Anti-angiogenic and antiproliferative effects of small peptides, small molecules, RNA molecules, and proteins within PLGA particles are briefly discussed. AMD is a leading cause of central vision loss in people over 55 years and the number of those afflicted will rise as the aging population increases. AMD has two forms that are often sequential. Dry AMD and wet AMD account for 85-90% and 10-15% of cases, respectively. The distinct categories of PLGA-based drug delivery vehicles are important for dispensing novel small molecules, RNA molecules, peptides, and proteins as a long-term effective treatment of AMD.
Collapse
Affiliation(s)
- Sylvana Marquina
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Mustafa Ozgul
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Kenneth Robertson-Brown
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| |
Collapse
|
17
|
Silva Nieto R, Samaniego López C, Moretton MA, Lizarraga L, Chiappetta DA, Alaimo A, Pérez OE. Chitosan-Based Nanogels Designed for Betanin-Rich Beetroot Extract Transport: Physicochemical and Biological Aspects. Polymers (Basel) 2023; 15:3875. [PMID: 37835924 PMCID: PMC10574865 DOI: 10.3390/polym15193875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Nanotechnology has emerged as a possible solution to improve phytochemicals' limitations. The objective of the present study was to encapsulate beetroot extract (BR Ext) within a chitosan (CS)-based nanogel (NG) designed via ionic crosslinking with tripolyphosphate (TPP) for betanin (Bet) delivery, mainly in the ophthalmic environment. BR Ext is rich in betanin (Bet) according to thin layer chromatography (TLC), UV-visible spectroscopy, and HPLC analysis. NG presented a monodisperse profile with a size of 166 ± 6 nm and low polydispersity (0.30 ± 0.03). ζ potential (ζ-Pot) of +28 ± 1 is indicative of a colloidally stable system. BR Ext encapsulation efficiency (EE) was 45 ± 3%. TEM, with the respective 3D-surface plots and AFM, showed spherical-elliptical-shaped NG. The BR Ext release profile was biphasic with a burst release followed by slow and sustained phase over 12 h. Mucoadhesion assay demonstrated interactions between NG with mucin. Moreover, NG provided photoprotection and pH stability to BR Ext. FRAP and ABTS assays confirmed that BR Ext maintained antioxidant activity into NG. Furthermore, in vitro assays using human retinal cells displayed absence of cytotoxicity as well as an efficient protection against injury agents (LPS and H2O2). NGs are a promising platform for BR Ext encapsulation, exerting controlled release for ophthalmological use.
Collapse
Affiliation(s)
- Ramón Silva Nieto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
| | - Cecilia Samaniego López
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| | - Marcela A. Moretton
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.A.M.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina
| | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBION-CONICET), Buenos Aires C1425FQD, Argentina;
| | - Diego A. Chiappetta
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.A.M.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| |
Collapse
|
18
|
Chen Z, Wei X, Zheng Y, Zhang Z, Gu W, Liao W, Zhang H, Wang X, Liu J, Li H, Xu W. Targeted co-delivery of curcumin and erlotinib by MoS 2 nanosheets for the combination of synergetic chemotherapy and photothermal therapy of lung cancer. J Nanobiotechnology 2023; 21:333. [PMID: 37717020 PMCID: PMC10505307 DOI: 10.1186/s12951-023-02099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Curcumin (Cur), a bioactive component of Chinese traditional medicine, has demonstrated inhibitory properties against cancer cell proliferation while synergistically enhancing the anticancer efficacy of erlotinib (Er). However, the individual limitations of both drugs, including poor aqueous solubility, lack of targeting ability, short half-life, etc., and their distinct pharmacokinetic profiles mitigate or eliminate their combined antitumor potential. RESULTS In this study, we developed a molybdenum disulfide (MoS2)-based delivery system, functionalized with polyethylene glycol (PEG) and biotin, and co-loaded with Cur and Er, to achieve efficient cancer therapy. The MoS2-PEG-Biotin-Cur/Er system effectively converted near-infrared (NIR) light into heat, thereby inducing direct photothermal ablation of cancer cells and promoting controlled release of Cur and Er. Biotin-mediated tumor targeting facilitated the selective accumulation of MoS2-PEG-Biotin-Cur/Er at the tumor site, thus enhancing the synergistic antitumor effects of Cur and Er. Remarkably, MoS2-PEG-Biotin-Cur/Er achieved the combination of synergistic chemotherapy and photothermal therapy (PTT) upon NIR irradiation, effectively suppressing lung cancer cell proliferation and inhabiting tumor growth in vivo. CONCLUSIONS The as-synthesized MoS2-PEG-Biotin-Cur/Er, featuring high targeting ability, NIR light-responsive drug release, and the integration of synergistic chemotherapy and PTT, may provide a promising strategy for the treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Zhihuai Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Xinqi Wei
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Yunru Zheng
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Zongwei Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Wang Gu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Wenjun Liao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Xiaoying Wang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Jian Liu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
19
|
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla K, Kidron H, Terasaki T, Urtti A. Selective drug delivery to the retinal cells: Biological barriers and avenues. J Control Release 2023; 361:1-19. [PMID: 37481214 DOI: 10.1016/j.jconrel.2023.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
| |
Collapse
|
20
|
Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H 2O 2 and CoCl 2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells. Int J Biol Macromol 2023; 240:124378. [PMID: 37030468 DOI: 10.1016/j.ijbiomac.2023.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Lutein plays a crucial role in the protection of retina by diminishing oxidative stress in diabetic retinopathy (DR). However, its poor aqueous solubility, chemical instability and low bioavailability edge its application. Also, beneficial effects of lutein supplementation and lower lutein levels in the serum and retina of DR patients created an interest in nanopreparation. Hence, lutein-loaded chitosan‑sodium alginate nanocarrier comprising oleic acid core (LNCs) was developed and examined its protective effect on hyperglycemia-mediated changes in oxidative stress and angiogenesis in ARPE-19 cells. Results showed that the LNCs have smaller size and a smooth spherical morphology and did not affect the ARPE-19 cell viability (up to 20 μM) and showed higher cellular uptake in both normal and H2O2-induced stress conditions. LNCs pre-treatment suppressed the H2O2-induced oxidative stress and CoCl2-induced hypoxia-mediated elevation of intracellular reactive oxygen species, protein carbonyl and malondialdehyde levels by restoring antioxidant enzymes in ARPE-19 cells. Further, LNCs protected H2O2-mediated down-regulation of Nrf2 and its downstream antioxidant enzymes. LNCs also restored the H2O2-altered angiogenic (Vascular endothelial growth factor (VEGF), X-box binding protein 1 (XBP-1) and Hypoxia-inducible factor 1-alpha (HIF-1α)), endoplasmic reticulum stress (activating transcription factor-4 (ATF4)) and tight junction (Zona occludens 1 (ZO-1)) markers. To conclude, we could successfully develop biodegradable LNCs to improve the cellular uptake of lutein to treat DR by curtailing oxidative stress in retina.
Collapse
Affiliation(s)
- Veeresh Toragall
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J C Muzaffar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - Vallikanan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
21
|
Gogoi NR, Marbaniang D, Pal P, Ray S, Mazumder B. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges. Pharm Nanotechnol 2022; 10:268-278. [PMID: 35946098 DOI: 10.2174/2211738510666220806102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
Collapse
Affiliation(s)
- Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- Department of Pharmaceutical Sciences, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
22
|
Renukuntla J, Palakurthi SS, Bolla PK, Clark BA, Boddu SHS, Manda P, Sockwell S, Charbe NB, Palakurthi S. Advances in in-vitro bioequivalence testing methods for complex ophthalmic generic products. Int J Pharm 2022; 627:122209. [PMID: 36162609 DOI: 10.1016/j.ijpharm.2022.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
The United States Food and Drug Administration (USFDA) demands that the generic industry prove topical ocular products' pharmaceutical and bioequivalence (BE). In contrast to generic oral drugs, topical ocular product BE testing has proved difficult. New generic versions are compared to an authorized drug product known as a Reference Listed Drug (RLD) to demonstrate their bioequivalence. If the excellent in-vitro results may support the presumption of equivalence in-vivo performance and the only clinically significant difference between the generic and RLD is in its physicochemical qualities and drug release rate, then in-vivo BE studies may be waived. Proving BE through dissolution tests is a golden standard for most conventional dosage forms. However, due to the limited number of biorelevant in-vitro drug release testing (IVRT) approaches capable of differentiating their performance based on product quality and physicochemical properties, the development of generic ophthalmic products has been slow and time-consuming. Often, BE of topical ophthalmic formulations cannot be proved using a single in-vitro test; therefore, an elaborated discussion on various IVRT methods performed to demonstrate bioequivalence of complex generis like ophthalmic emulsions, suspensions, ointments, and gels is necessary. This manuscript aims to review the status of biowaiver criteria for complex ophthalmic products concerning the product-specific FDA guidance to the generic industry.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Pradeep Kumar Bolla
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA; Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Bradley A Clark
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Prashanth Manda
- Department of Pharmaceutics, College of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Samuel Sockwell
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
23
|
Garkal A, Bangar P, Mehta T. Thin-film nanofibers for treatment of age-related macular degeneration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Galindo-Camacho RM, Blanco-Llamero C, da Ana R, Fuertes MA, Señoráns FJ, Silva AM, García ML, Souto EB. Therapeutic Approaches for Age-Related Macular Degeneration. Int J Mol Sci 2022; 23:11769. [PMID: 36233066 PMCID: PMC9570118 DOI: 10.3390/ijms231911769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Damage to the retinal pigment epithelium, Bruch's membrane and/or tissues underlying macula is known to increase the risk of age-related macular degeneration (AMD). AMD is commonly categorized in two distinct types, namely, the nonexudative (dry form) and the exudative (wet form). Currently, there is no ideal treatment available for AMD. Recommended standard treatments are based on the use of vascular endothelial growth factor (VEGF), with the disadvantage of requiring repeated intravitreal injections which hinder patient's compliance to the therapy. In recent years, several synthetic and natural active compounds have been proposed as innovative therapeutic strategies against this disease. There is a growing interest in the development of formulations based on nanotechnology because of its important role in the management of posterior eye segment disorders, without the use of intravitreal injections, and furthermore, with the potential to prolong drug release and thus reduce adverse effects. In the same way, 3D bioprinting constitutes an alternative to regeneration therapies for the human retina to restore its functions. The application of 3D bioprinting may change the current and future perspectives of the treatment of patients with AMD, especially those who do not respond to conventional treatment. To monitor the progress of AMD treatment and disease, retinal images are used. In this work, we revised the recent challenges encountered in the treatment of different forms of AMD, innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress.
Collapse
Affiliation(s)
- Ruth M. Galindo-Camacho
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Blanco-Llamero
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mayra A. Fuertes
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Francisco J. Señoráns
- Healthy Lipids Group, Departmental Section of Food Sciences, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - María L. García
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Jv DJ, Ji TH, Xu Z, Li A, Chen ZY. The Remarkable Enhancement of Photo-Stability and Antioxidant Protection of Lutein Coupled with Carbon-dot. Food Chem 2022; 405:134551. [DOI: 10.1016/j.foodchem.2022.134551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
|
26
|
Nanoscale Delivery Systems of Lutein: An Updated Review from a Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14091852. [PMID: 36145601 PMCID: PMC9501598 DOI: 10.3390/pharmaceutics14091852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are natural lipid-soluble pigments that produce yellow to red colors in plants as well as providing bright coloration in vegetables and fruits. Lutein belongs to the xanthophyll subgroup of the carotenoid family, which plays an essential role in photosynthesis and photoprotection in nature. In the human body, lutein, together with its isomer zeaxanthin and its metabolite meso-zeaxanthin, accumulates in the macula of the eye retina, which is responsible for central, high-resolution, and color vision. As a bioactive phytochemical, lutein has essential physiological functions, providing photoprotection against damaging blue light, along with the neutralization of oxidants and the preservation of the structural and functional integrity of cellular membranes. As a potent antioxidant and anti-inflammatory agent, lutein unfortunately has a low bioavailability because of its lipophilicity and a low stability as a result of its conjugated double bonds. In order to enhance lutein stability and bioavailability and achieve its controlled delivery to a target, nanoscale delivery systems, which have great potential for the delivery of bioactive compounds, are starting to be employed. The current review highlights the advantages and innovations associated with incorporating lutein within promising nanoscale delivery systems, such as liposomes, nanoemulsions, polymer nanoparticles, and polymer–lipid hybrid nanoparticles, as well as their unique physiochemical properties.
Collapse
|
27
|
Rocha F, Marques CS, de Sousa LS, Minim VPR, Pires ACDS, Minim LA, Stringheta PC, Jones OG, Vidigal MCTR. Betalains nanodispersions: Effects on betalains stability and on rheological properties of Greek yogurt. Food Res Int 2022; 159:111583. [DOI: 10.1016/j.foodres.2022.111583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
|
28
|
Wu J, Ma K, Li H, Zhang Y, Wang X, Abbas N, Yin C, Zhang Y. Stability assessment of lutein under the existence of different phenolic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
30
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
31
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|
32
|
Mitra S, Rauf A, Tareq AM, Jahan S, Emran TB, Shahriar TG, Dhama K, Alhumaydhi FA, Aljohani ASM, Rebezov M, Uddin MS, Jeandet P, Shah ZA, Shariati MA, Rengasamy KR. Potential health benefits of carotenoid lutein: An updated review. Food Chem Toxicol 2021; 154:112328. [PMID: 34111488 DOI: 10.1016/j.fct.2021.112328] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Carotenoids in food substances are believed to have health benefits by lowering the risk of diseases. Lutein, a carotenoid compound, is one of the essential nutrients available in green leafy vegetables (kale, broccoli, spinach, lettuce, and peas), along with other foods, such as eggs. As nutrition plays a pivotal role in maintaining human health, lutein, as a nutritional substance, confers promising benefits against numerous health issues, including neurological disorders, eye diseases, skin irritation, etc. This review describes the in-depth health beneficial effects of lutein. As yet, a minimal amount of literature has been undertaken to consider all its promising bioactivities. The step-by-step biosynthesis of lutein has also been taken into account in this review. Besides, this review demonstrates the drug interactions of lutein with β-carotene, as well as safety concerns and dosage. The potential benefits of lutein have been assessed against neurological disorders, eye diseases, cardiac complications, microbial infections, skin irritation, bone decay, etc. Additionally, recent studies ascertained the significance of lutein nanoformulations in the amelioration of eye disorders, which are also considered in this review. Moreover, a possible approach for the use of lutein in bioactive functional foods will be discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Shamima Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims Cedex 2, France
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University (MSUTM), Russian Federation
| | - Kannan Rr Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Polokwane, Sovenga, 0727, South Africa.
| |
Collapse
|
33
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
34
|
Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, Kesharwani P. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift. Int J Pharm 2021; 600:120499. [PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia; Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India.
| |
Collapse
|
35
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
36
|
Self-Assembling Tacrolimus Nanomicelles for Retinal Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12111072. [PMID: 33182620 PMCID: PMC7698121 DOI: 10.3390/pharmaceutics12111072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neovascular age-related macular degeneration (AMD) is characterized by an increase in reactive oxygen species (ROS) and pro-inflammatory cytokines in the retinal pigment epithelium cells. The primary purpose of this study was the development of a clear, tacrolimus nanomicellar formulation (TAC-NMF) for AMD. The optimized formulation had a mean diameter of 15.41 nm, a zeta potential of 0.5 mV, and an entrapment efficiency of 97.13%. In-vitro cytotoxicity studies revealed the dose-dependent cytotoxicity of TAC-NMF on various ocular cell lines, such as human retinal pigment epithelium (D407), monkey retinal choroidal endothelial (RF/6A) cells, and human corneal epithelium (CCL 20.2) cells. Cellular uptake and in-vitro distribution studies using flow cytometry and confocal microscopy, respectively, indicated an elevated uptake of TAC-NMF in a time-dependent manner. Biocompatibility assay using macrophage RAW 264.7 cell line resulted in low production of inflammatory cytokines such as IL-6, IL-1β and TNF-α after treatment with TAC-NMF. There was a decrease in ROS in D407 cells pre-treated with sodium iodate (ROS inducing agent) after treating with TAC-NMF and tacrolimus drug. Similarly, there was a reduction in the pro-inflammatory cytokines and VEGF-A in D407 cells pretreated with sodium iodate. This indicates that TAC-NMF could lower pro-inflammatory cytokines and ROS commonly seen in AMD.
Collapse
|