1
|
Boldori JR, Nogueira JCC, Munieweg FR, Lunardi AG, de Freitas Rodrigues C, Cibin FWS, Denardin CC. Jabuticaba (Myrciaria trunciflora) extract improves metabolic and behavioral markers of obese rats fed on a hypercaloric diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:473-482. [PMID: 39207125 DOI: 10.1002/jsfa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity is a metabolic disease that affects many individuals around the world, related to imbalance between energy consumption and expenditure, which can lead to comorbidities. A healthy diet can significantly contribute to the prevention or treatment of this condition. Jabuticaba is an emerging fruit presenting a wide range of bioactive compounds and is being extensively studied due to its effects on lipid metabolism. The aim of this study was to evaluate the jabuticaba extract in the anxious-like behavior and in the lipid and oxidative metabolism in the context of obesity. METHODS Forty male Wistar rats divided into five groups were used. The animals received a standard diet and/or a hypercaloric diet and after 60 days of induction, interventions were carried out with jabuticaba extract (5% and 10%) via gavage for 30 days. RESULTS It can be observed that the jabuticaba extract was able to reverse the anxious behavior observed in obese animals and modulate parameters of lipid and oxidative metabolism. We observed a reduction in cholesterol and triglyceride levels compared to obese animals. Furthermore, we observed an improvement in oxidative parameters, with a reduction in protein carbonylation in the liver and modulation of antioxidant enzymes such as superoxide dismutase and catalase. Contrary to expectations, we did not observe changes in leptin, adiponectin and tumor necrosis factor alpha (TNF-α) levels. CONCLUSION Our work demonstrates that jabuticaba extract can improve metabolic, oxidative and behavioral changes in animals with obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Jean Carlos Costa Nogueira
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Félix Roman Munieweg
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Annelize Gruppi Lunardi
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Cristiane de Freitas Rodrigues
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | | | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| |
Collapse
|
2
|
Ferreira G, Vieira P, Alves A, Nunes S, Preguiça I, Martins-Marques T, Ribeiro T, Girão H, Figueirinha A, Salgueiro L, Pintado M, Gomes P, Viana S, Reis F. Effect of Blueberry Supplementation on a Diet-Induced Rat Model of Prediabetes-Focus on Hepatic Lipid Deposition, Endoplasmic Stress Response and Autophagy. Nutrients 2024; 16:513. [PMID: 38398840 PMCID: PMC10892331 DOI: 10.3390/nu16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.
Collapse
Affiliation(s)
- Gonçalo Ferreira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Henrique Girão
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- CERES, Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sofia Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| |
Collapse
|
3
|
Shan Z, Fa WH, Tian CR, Yuan CS, Jie N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 2022; 14:2902-2919. [PMID: 35332108 PMCID: PMC9004550 DOI: 10.18632/aging.203969] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of β-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Wei Hong Fa
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Run Tian
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Shi Yuan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Ning Jie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
4
|
Nunes S, Viana SD, Preguiça I, Alves A, Fernandes R, Teodoro JS, Matos P, Figueirinha A, Salgueiro L, André A, Silva S, Jarak I, Carvalho RA, Cavadas C, Rolo AP, Palmeira CM, Pintado MM, Reis F. Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients 2021; 13:4192. [PMID: 34959746 PMCID: PMC8706913 DOI: 10.3390/nu13124192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022] Open
Abstract
The paramount importance of a healthy diet in the prevention of type 2 diabetes is now well recognized. Blueberries (BBs) have been described as attractive functional fruits for this purpose. This study aimed to elucidate the cellular and molecular mechanisms pertaining to the protective impact of blueberry juice (BJ) on prediabetes. Using a hypercaloric diet-induced prediabetic rat model, we evaluated the effects of BJ on glucose, insulin, and lipid profiles; gut microbiota composition; intestinal barrier integrity; and metabolic endotoxemia, as well as on hepatic metabolic surrogates, including several related to mitochondria bioenergetics. BJ supplementation for 14 weeks counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, without a significant impact on the gut microbiota composition and related mechanisms. In addition, BJ treatment effectively alleviated hepatic steatosis and mitochondrial dysfunction observed in the prediabetic animals, as suggested by the amelioration of bioenergetics parameters and key targets of inflammation, insulin signaling, ketogenesis, and fatty acids oxidation. In conclusion, the beneficial metabolic impact of BJ in prediabetes may be mainly explained by the rescue of hepatic mitochondrial bioenergetics. These findings pave the way to support the use of BJ in prediabetes to prevent diabetes and its complications.
Collapse
Affiliation(s)
- Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy/Biomedical Laboratory Sciences, 3046-854 Coimbra, Portugal;
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - João S. Teodoro
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre Research Center, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre Research Center, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Alexandra André
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy/Biomedical Laboratory Sciences, 3046-854 Coimbra, Portugal;
| | - Sara Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Rui A. Carvalho
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Associated Laboratory for Green Chemistry-Clean Technologies and Processes, REQUIMTE, Faculty of Sciences and Technology, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Cavadas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
| | - Anabela P. Rolo
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria M. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Nunes S, Vieira P, Gomes P, Viana SD, Reis F. Blueberry as an Attractive Functional Fruit to Prevent (Pre)Diabetes Progression. Antioxidants (Basel) 2021; 10:1162. [PMID: 34439410 PMCID: PMC8389043 DOI: 10.3390/antiox10081162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prediabetes, a subclinical impairment between euglycemia and hyperglycemia, is a risk factor for the development of type 2 diabetes mellitus (T2DM) and associated micro- and macrovascular complications. Lifestyle therapy, the first-line treatment of prediabetes, includes physical exercise and dietary regimens enriched in phytochemicals with health-related properties. Blueberries (Vaccinium spp.), given their pleasant taste and great abundance in beneficial phytochemicals, have gained public interest all over the world. Along with a high antioxidant activity, this functional fruit is also well-recognized due to its hypoglycemic and insulin-sensitizing effects and has been recommended for overt T2DM management. Yet blueberries target several other pathophysiological traits, namely gut microbiota dysbiosis and hepatic dysmetabolism, that ensue when prediabetes begins and for which pharmacological interventions tend to be delayed. In this work, we revisited preclinical data from in vitro assays, animal models and human studies, aiming to disclose the potential mechanisms by which blueberries may be a fruitful source of phytochemicals able to prevent (pre)diabetes progression. Collectively, future efforts should focus on longer-term studies with standardized interventions and readouts, particularly in humans, that will hopefully bring more robust evidence and concrete guidance for blueberries' effective use in prediabetes.
Collapse
Affiliation(s)
- Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, University of Porto, 4200-450 Porto, Portugal
| | - Sofia Domingues Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Pharmacy/Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| |
Collapse
|