1
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
2
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
3
|
Awuah WA, Ahluwalia A, Tan JK, Sanker V, Roy S, Ben-Jaafar A, Shah DM, Tenkorang PO, Aderinto N, Abdul-Rahman T, Atallah O, Alexiou A. Theranostics Advances in the Treatment and Diagnosis of Neurological and Neurosurgical Diseases. Arch Med Res 2025; 56:103085. [PMID: 39369666 DOI: 10.1016/j.arcmed.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Theranostics represents a significant advance in the fields of neurology and neurosurgery, offering innovative approaches that combine the diagnosis and treatment of various neurological disorders. This innovation serves as a cornerstone of personalized medicine, where therapeutic strategies are closely integrated with diagnostic tools to enable precise and targeted interventions. Primary research results emphasize the profound impact of theranostics in Neuro Oncol. In this context, it has provided valuable insights into the complexity of the tumor microenvironment and mechanisms of resistance. In addition, in the field of neurodegenerative diseases (NDs), theranostics has facilitated the identification of distinct disease subtypes and novel therapeutic targets. It has also unravelled the intricate pathophysiology underlying conditions such as cerebrovascular disease (CVD) and epilepsy, setting the stage for more refined treatment approaches. As theranostics continues to evolve through ongoing research and refinement, its goals include further advancing the field of precision medicine, developing practical biomarkers for clinical use, and opening doors to new therapeutic opportunities. Nevertheless, the integration of these approaches into clinical settings presents challenges, including ethical considerations, the need for advanced data interpretation, standardization of procedures, and ensuring cost-effectiveness. Despite these obstacles, the promise of theranostics to significantly improve patient outcomes in the fields of neurology and neurosurgery remains a source of optimism for the future of healthcare.
Collapse
Affiliation(s)
| | - Arjun Ahluwalia
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | - Devansh Mitesh Shah
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research and Development, Funogen, Athens, Greece; Department of Research and Development, AFNP Med, Wien, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
4
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
5
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
6
|
Meng J, Wang ZG, Zhao X, Wang Y, Chen DY, Liu DL, Ji CC, Wang TF, Zhang LM, Bai HX, Li BY, Liu Y, Wang L, Yu WG, Yin ZT. Silica nanoparticle design for colorectal cancer treatment: Recent progress and clinical potential. World J Clin Oncol 2024; 15:667-673. [PMID: 38946830 PMCID: PMC11212613 DOI: 10.5306/wjco.v15.i6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 06/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
Collapse
Affiliation(s)
- Jin Meng
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Gang Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Xiu Zhao
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Ying Wang
- Acupuncture and Tuina College, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - De-Yu Chen
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - De-Long Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Cheng-Chun Ji
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Tian-Fu Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Li-Mei Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian 116001, Liaoning Province, China
| | - Hai-Xia Bai
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Bo-Yang Li
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Yuan Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Lei Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Wei-Gang Yu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Tao Yin
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
7
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
8
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24:8. [PMID: 38240834 PMCID: PMC10799106 DOI: 10.1007/s10238-023-01262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Priyanka Roy
- Department of Chemistry, Jamia Hamdard University, New Delhi, 110062, India
| | - Rishabh Sharma
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Richa Kasana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Pragati Rathore
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Tejendra Kumar Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
10
|
Mojtaba Mousavi S, Alireza Hashemi S, Yari Kalashgrani M, Rahmanian V, Riazi M, Omidifar N, Hamed Althomali R, Rahman MM, Chiang WH, Gholami A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024; 19:e202300359. [PMID: 37916531 DOI: 10.1002/cmdc.202300359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Exosomes are essential indicators of molecular mechanisms involved in interacting with cancer cells and the tumor environment. As nanostructures based on lipids and nucleic acids, exosomes provide a communication pathway for information transfer by transporting biomolecules from the target cell to other cells. Importantly, these extracellular vesicles are released into the bloodstream by the most invasive cells, i. e., cancer cells; in this way, they could be considered a promising specific biomarker for cancer diagnosis. In this matter, CRISPR-Cas systems and microfluidic approaches could be considered practical tools for cancer diagnosis and understanding cancer biology. CRISPR-Cas systems, as a genome editing approach, provide a way to inactivate or even remove a target gene from the cell without affecting intracellular mechanisms. These practical systems provide vital information about the factors involved in cancer development that could lead to more effective cancer treatment. Meanwhile, microfluidic approaches can also significantly benefit cancer research due to their proper sensitivity, high throughput, low material consumption, low cost, and advanced spatial and temporal control. Thereby, employing CRISPR-Cas- and microfluidics-based approaches toward exosome monitoring could be considered a valuable source of information for cancer therapy and diagnosis. This review assesses the recent progress in these promising diagnosis approaches toward accurate cancer therapy and in-depth study of cancer cell behavior.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| |
Collapse
|
11
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
12
|
Sireesha R, Pavani Y, Mallavarapu BD, Abbasi BA, Guttula PK, Subbarao M. Unveiling the anticancer mechanism of 1,2,3-triazole-incorporated thiazole-pyrimidine-isoxazoles: insights from docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 42:13803-13815. [PMID: 38038384 DOI: 10.1080/07391102.2023.2278749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Cancer is a major global health concern, and the constant search for novel, selective anticancer compounds with low toxicity is never ending. Nitrogen heterocyclic compounds such as pyrimidine and triazole have been identified as potential candidates for cancer treatment. A novel series of 1,2,3-triazole incorporated thiazole-pyrimidine-isoxazole derivatives 10 (a-j) were designed, synthesized and evaluated for antitumorigenic activities against human breast cancer (MCF-7), human lung cancer (A549) and human prostate (PC3 & DU-145) various cell-lines by employing MTT assay using etoposide as the positive control. The synthesized hybrids yielded decent efficacy, which was further compared with the standard drug. Among all the molecules, 10h revealed the more potent anticancerous activities, having IC50 values ranging from 0.011 ± 0.0017 µM; 0.063 ± 0.0012 µM; 0.017 ± 0.0094 µM and 0.66 ± 0.072 µM with DU145, PC3, A549, and MCF7 cell-lines, respectively. Tubulin, being a major protein involved with diverse biological actions, also serves, as a crucial target for several clinically practiced anticancer drugs, was utilized for docking analyses to evaluate the binding affinity of ligands. Docking results demonstrates that the selected hybrids 10 (g-j) exhibited good binding affinities with protein. Subsequently, drug likeness studies were carried out on the synthesized compounds to evaluate and analyze their drug like properties such as absorption, distribution, metabolism, excretion, and toxicity (ADMET) for toxicity prediction. Based on these analyses, the selected complexes were further employed for molecular dynamic simulations to analyze stability via an exhaustive cumulative 200 nanoseconds simulation. These results suggest that the selected compounds are stable and might serve as potential inhibitors to tubulin complex. In conclusion, we propose these synthesized compounds 10 (g-j) might provide new insights into cancer treatment and have potential for future development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reddymasu Sireesha
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Y Pavani
- Freshman Engineering Department, Prasad V. Potluri Siddhartha Institute of Technology, Vijayawada, Andhra Pradesh, India
| | - Bala Divya Mallavarapu
- Centre for Chemical sciences and Technology, Institute of Science & Technology, JNTU, Hyderabad, India
| | - Bilal Ahmed Abbasi
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttara Pradesh, India
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital and Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mannam Subbarao
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
13
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
14
|
Tian H, Ou J, Wang Y, Sun J, Gao J, Ye Y, Zhang R, Chen B, Wang F, Huang W, Li H, Liu L, Shao C, Xu Z, Peng F, Tu Y. Bladder microenvironment actuated proteomotors with ammonia amplification for enhanced cancer treatment. Acta Pharm Sin B 2023; 13:3862-3875. [PMID: 37719374 PMCID: PMC10501867 DOI: 10.1016/j.apsb.2023.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Enzyme-driven micro/nanomotors consuming in situ chemical fuels have attracted lots of attention for biomedical applications. However, motor systems composed by organism-derived organics that maximize the therapeutic efficacy of enzymatic products remain challenging. Herein, swimming proteomotors based on biocompatible urease and human serum albumin are constructed for enhanced antitumor therapy via active motion and ammonia amplification. By decomposing urea into carbon dioxide and ammonia, the designed proteomotors are endowed with self-propulsive capability, which leads to improved internalization and enhanced penetration in vitro. As a glutamine synthetase inhibitor, the loaded l-methionine sulfoximine further prevents the conversion of toxic ammonia into non-toxic glutamine in both tumor and stromal cells, resulting in local ammonia amplification. After intravesical instillation, the proteomotors achieve longer bladder retention and thus significantly inhibit the growth of orthotopic bladder tumor in vivo without adverse effects. We envision that the as-developed swimming proteomotors with amplification of the product toxicity may be a potential platform for active cancer treatment.
Collapse
Affiliation(s)
- Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Juanfeng Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, Central Laboratory of Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
15
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Balcer E, Sobiech M, Luliński P. Molecularly Imprinted Carriers for Diagnostics and Therapy-A Critical Appraisal. Pharmaceutics 2023; 15:1647. [PMID: 37376096 DOI: 10.3390/pharmaceutics15061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Simultaneous diagnostics and targeted therapy provide a theranostic approach, an instrument of personalized medicine-one of the most-promising trends in current medicine. Except for the appropriate drug used during the treatment, a strong focus is put on the development of effective drug carriers. Among the various materials applied in the production of drug carriers, molecularly imprinted polymers (MIPs) are one of the candidates with great potential for use in theranostics. MIP properties such as chemical and thermal stability, together with capability to integrate with other materials are important in the case of diagnostics and therapy. Moreover, the MIP specificity, which is important for targeted drug delivery and bioimaging of particular cells, is a result of the preparation process, conducted in the presence of the template molecule, which often is the same as the target compound. This review focused on the application of MIPs in theranostics. As a an introduction, the current trends in theranostics are described prior to the characterization of the concept of molecular imprinting technology. Next, a detailed discussion of the construction strategies of MIPs for diagnostics and therapy according to targeting and theranostic approaches is provided. Finally, frontiers and future prospects are presented, stating the direction for further development of this class of materials.
Collapse
Affiliation(s)
- Emilia Balcer
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
17
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
18
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
19
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Oral Bioactive Self-Nanoemulsifying Drug Delivery Systems of Remdesivir and Baricitinib: A Paradigmatic Case of Drug Repositioning for Cancer Management. Molecules 2023; 28:molecules28052237. [PMID: 36903483 PMCID: PMC10005540 DOI: 10.3390/molecules28052237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Oral anticancer therapy mostly faces the challenges of low aqueous solubility, poor and irregular absorption from the gastrointestinal tract, food-influenced absorption, high first-pass metabolism, non-targeted delivery, and severe systemic and local adverse effects. Interest has been growing in bioactive self-nanoemulsifying drug delivery systems (bio-SNEDDSs) using lipid-based excipients within nanomedicine. This study aimed to develop novel bio-SNEDDS to deliver antiviral remdesivir and baricitinib for the treatment of breast and lung cancers. Pure natural oils used in bio-SNEDDS were analyzed using GC-MS to examine bioactive constituents. The initial evaluation of bio-SNEDDSs were performed based on self-emulsification assessment, particle size analysis, zeta potential, viscosity measurement, and transmission electron microscopy (TEM). The single and combined anticancer effects of remdesivir and baricitinib in different bio-SNEDDS formulations were investigated in MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. The results from the GC-MS analysis of bioactive oils BSO and FSO showed pharmacologically active constituents, such as thymoquinone, isoborneol, paeonol and p-cymenene, and squalene, respectively. The representative F5 bio-SNEDDSs showed relatively uniform, nanosized (247 nm) droplet along with acceptable zeta potential values (+29 mV). The viscosity of the F5 bio-SNEDDS was recorded within 0.69 Cp. The TEM suggested uniform spherical droplets upon aqueous dispersions. Drug-free, remdesivir and baricitinib-loaded bio-SNEDDSs (combined) showed superior anticancer effects with IC50 value that ranged from 1.9-4.2 µg/mL (for breast cancer), 2.4-5.8 µg/mL (for lung cancer), and 3.05-5.44 µg/mL (human fibroblasts cell line). In conclusion, the representative F5 bio-SNEDDS could be a promising candidate for improving the anticancer effect of remdesivir and baricitinib along with their existing antiviral performance in combined dosage form.
Collapse
|
21
|
Bonačić-Koutecký V, Le Guével X, Antoine R. Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications. Chembiochem 2023; 24:e202200524. [PMID: 36285807 DOI: 10.1002/cbic.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Univ. Grenoble Alpes/INSERM1209/CNRS-UMR5309, Grenoble, France
| | - Rodolphe Antoine
- Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS Univ. Lyon, 69622, Villeurbanne cedex, France
| |
Collapse
|
22
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
23
|
Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci 2023; 80:46. [PMID: 36656411 PMCID: PMC9851121 DOI: 10.1007/s00018-023-04694-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Nanoceria or cerium oxide nanoparticles characterised by the co-existing of Ce3+ and Ce4+ that allows self-regenerative, redox-responsive dual-catalytic activities, have attracted interest as an innovative approach to treating cancer. Depending on surface characteristics and immediate environment, nanoceria exerts either anti- or pro-oxidative effects which regulate reactive oxygen species (ROS) levels in biological systems. Nanoceria mimics ROS-related enzymes that protect normal cells at physiological pH from oxidative stress and induce ROS production in the slightly acidic tumour microenvironment to trigger cancer cell death. Nanoceria as nanozymes also generates molecular oxygen that relieves tumour hypoxia, leading to tumour cell sensitisation to improve therapeutic outcomes of photodynamic (PDT), photothermal (PTT) and radiation (RT), targeted and chemotherapies. Nanoceria has been engineered as a nanocarrier to improve drug delivery or in combination with other drugs to produce synergistic anti-cancer effects. Despite reported preclinical successes, there are still knowledge gaps arising from the inadequate number of studies reporting findings based on physiologically relevant disease models that accurately represent the complexities of cancer. This review discusses the dual-catalytic activities of nanoceria responding to pH and oxygen tension gradient in tumour microenvironment, highlights the recent nanoceria-based platforms reported to be feasible direct and indirect anti-cancer agents with protective effects on healthy tissues, and finally addresses the challenges in clinical translation of nanoceria based therapeutics.
Collapse
Affiliation(s)
- Joyce L. Y. Tang
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia
| | - Shehzahdi S. Moonshi
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia
| | - Hang T. Ta
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
24
|
Panda S, Hajra S, Kaushik A, Rubahn H, Mishra Y, Kim H. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. MATERIALS TODAY CHEMISTRY 2022; 26:101182. [DOI: 10.1016/j.mtchem.2022.101182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
26
|
Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022; 153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
|
27
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
28
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
29
|
Dada S, Babanyinah GK, Tetteh MT, Palau VE, Walls ZF, Krishnan K, Croft Z, Khan AU, Liu G, Wiese TE, Glotser E, Mei H. Covalent and Noncovalent Loading of Doxorubicin by Folic Acid-Carbon Dot Nanoparticles for Cancer Theranostics. ACS OMEGA 2022; 7:23322-23331. [PMID: 35847251 PMCID: PMC9280931 DOI: 10.1021/acsomega.2c01482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With special properties such as excellent fluoresce features, low toxicity, good biocompatibility, permeability, and easy clearance from the body, carbon dot (CD)-based nanoparticles (NPs) have the potential to deliver drugs and use in vivo diagnostics through molecular imaging. In this work, folic acid-CD (FA-CD) NPs were prepared to deliver doxorubicin (Dox) covalently and noncovalently as cancer theranostics. FA was conjugated to the surface of CDs for targeting cancer cells with overexpressing folate receptors. CDs prepared with various amounts of precursors lead to their associated NPs with different photoluminescence properties and drug release profiles. The loading of Dox and its releasing data depends on the linkage of drug Dox to FA-CD and CD composition. All NPs were characterized by UV-vis, Fourier transform infrared spectroscopy, and dynamic light scattering. The noncovalent FA-CD-Dox NPs were preferred with a simple preparation process, excellent photoluminescence, and in vitro drug release properties. The noncovalent FA-CD-Dox showed the best efficacy against MDA-MB-231 compared to the CD-Dox and covalent FA-CD-Dox.
Collapse
Affiliation(s)
- Samson
N. Dada
- Department
of Chemistry, East Tennessee State University, Johnson City 37614, Tennessee, United States
| | - Godwin K. Babanyinah
- Department
of Chemistry, East Tennessee State University, Johnson City 37614, Tennessee, United States
| | - Michael T. Tetteh
- Department
of Chemistry, East Tennessee State University, Johnson City 37614, Tennessee, United States
| | - Victoria E. Palau
- Department
of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Zachary F. Walls
- Department
of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Koyamangalath Krishnan
- Department
of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Zacary Croft
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Assad U. Khan
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Guoliang Liu
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas E. Wiese
- Cell
Molecular Biology Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Ellen Glotser
- Cell
Molecular Biology Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hua Mei
- Department
of Chemistry, East Tennessee State University, Johnson City 37614, Tennessee, United States
| |
Collapse
|
30
|
Li X, Shi Y, Xu S. Local delivery of tumor‐targeting nano‐micelles harboring
GSH
‐responsive drug release to improve antitumor efficiency. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoqiang Li
- Research and Development Department Jinan Guo Ke Medical Technology Development Co., Ltd Jinan Shandong China
| | - Yongli Shi
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Shuxin Xu
- Research and Development Department Jinan Guo Ke Medical Technology Development Co., Ltd Jinan Shandong China
| |
Collapse
|
31
|
Battistelli G, Proetto M, Mavridi-Printezi A, Calvaresi M, Danielli A, Constantini PE, Battistella C, Gianneschi NC, Montalti M. Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON. Chem Sci 2022; 13:4884-4892. [PMID: 35655864 PMCID: PMC9067588 DOI: 10.1039/d2sc00304j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorogenic nanoparticles (NPs) able to sense different physiological environments and respond with disaggregation and fluorescence switching OFF/ON are powerful tools in nanomedicine as they can combine diagnostics with therapeutic action. pH-responsive NPs are particularly interesting as they can differentiate cancer tissues from healthy ones, they can drive selective intracellular drug release and they can act as pH biosensors. Controlled polymerization techniques are the basis of such materials as they provide solid routes towards the synthesis of pH-responsive block copolymers that are able to assemble/disassemble following protonation/deprotonation. Ring opening metathesis polymerization (ROMP), in particular, has been recently exploited for the development of experimental nanomedicines owing to the efficient direct polymerization of both natural and synthetic functionalities. Here, we capitalize on these features and provide synthetic routes for the design of pH-responsive fluorogenic micelles via the assembly of ROMP block-copolymers. While detailed photophysical characterization validates the pH response, a proof of concept experiment in a model cancer cell line confirmed the activity of the biocompatible micelles in relevant biological environments, therefore pointing out the potential of this approach in the development of novel nano-theranostic agents.
Collapse
Affiliation(s)
- Giulia Battistelli
- Department of Chemistry "Giacomo Ciamician" Via Selmi 2 Bologna 40126 Italy
| | - Maria Proetto
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | | | - Matteo Calvaresi
- Department of Chemistry "Giacomo Ciamician" Via Selmi 2 Bologna 40126 Italy
| | - Alberto Danielli
- FaBiT, Department of Pharmacy & Biotechnology, University of Bologna via Selmi 3 40126 Bologna Italy
| | - Paolo Emidio Constantini
- FaBiT, Department of Pharmacy & Biotechnology, University of Bologna via Selmi 3 40126 Bologna Italy
| | | | - Nathan C Gianneschi
- Department of Chemistry Northwestern University Evanston IL 60208 USA.,Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA.,Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician" Via Selmi 2 Bologna 40126 Italy
| |
Collapse
|
32
|
Hlaing CB, Chariyakornkul A, Pilapong C, Punvittayagul C, Srichairatanakool S, Wongpoomchai R. Assessment of Systemic Toxicity, Genotoxicity, and Early Phase Hepatocarcinogenicity of Iron (III)-Tannic Acid Nanoparticles in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1040. [PMID: 35407158 PMCID: PMC9000733 DOI: 10.3390/nano12071040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Iron-tannic acid nanoparticles (Fe-TA NPs) presented MRI contrast enhancement in both liver cancer cells and preneoplastic rat livers, while also exhibiting an anti-proliferative effect via enhanced autophagic death of liver cancer cells. Hence, a toxicity assessment of Fe-TA NPs was carried out in the present study. Acute and systemic toxicity of intraperitoneal Fe-TA NPs administration was investigated via a single dose of 55 mg/kg body weight (bw). Doses were then repeated 10 times within a range of 0.22 to 5.5 mg/kg bw every 3 days in rats. Furthermore, clastogenicity was assessed by rat liver micronucleus assay. Carcinogenicity was evaluated by medium-term carcinogenicity assay using glutathione S-transferase placental form positive foci as a preneoplastic marker, while three doses ranging from 0.55 to 17.5 mg/kg bw were administered 10 times weekly via intraperitoneum. Our study found that the LD50 value of Fe-TA NPs was greater than 55 mg/kg bw. Repeated dose administration of Fe-TA NPs over a period of 28 days and 10 weeks revealed no obvious signs of systemic toxicity, clastogenicity, and hepatocarcinogenicity. Furthermore, Fe-TA NPs did not alter liver function or serum iron status, however, increased liver iron content at certain dose in rats. Notably, antioxidant response was observed when a dose of 17.5 mg/kg bw was given to rats. Accordingly, our study found no signs of toxicity, genotoxicity, and early phase hepatocarcinogenicity of Fe-TA NPs in rats.
Collapse
Affiliation(s)
- Chi Be Hlaing
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Research Affairs, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| |
Collapse
|
33
|
Sikorski J, Matczuk M, Kamińska A, Kruszewska J, Trzaskowski M, Timerbaev AR, Jarosz M. Protein-Mediated Transformations of Superparamagnetic Nanoparticles Evidenced by Single-Particle Inductively Coupled Plasma Tandem Mass Spectrometry: A Disaggregation Phenomenon. Int J Mol Sci 2022; 23:ijms23031088. [PMID: 35163012 PMCID: PMC8835430 DOI: 10.3390/ijms23031088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Progress toward translating superparamagnetic iron oxide nanoparticles (SPIONs) with specific diagnostic and therapeutic properties for clinical applications depends on developing and implementing appropriate methodologies that would allow in-depth characterizations of their behavior in a real biological environment. Herein, we report a versatile approach for studying interactions between SPIONs and proteins using single-particle inductively coupled plasma tandem mass spectrometry. By monitoring the changes in the size distribution upon exposure to human serum, the formation of stable protein corona is revealed, accompanied by particle disaggregation.
Collapse
Affiliation(s)
- Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (J.S.); (A.K.); (J.K.); (M.J.)
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (J.S.); (A.K.); (J.K.); (M.J.)
- Correspondence: ; Tel.: +48-(22)-2347719
| | - Agnieszka Kamińska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (J.S.); (A.K.); (J.K.); (M.J.)
| | - Joanna Kruszewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (J.S.); (A.K.); (J.K.); (M.J.)
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT PW, Warsaw University of Technology, Poleczki St. 19, 02-822 Warsaw, Poland;
| | - Andrei R. Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991 Moscow, Russia;
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (J.S.); (A.K.); (J.K.); (M.J.)
| |
Collapse
|
34
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021; 610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Bayan Orainee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
36
|
Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021; 22:13141. [PMID: 34884946 PMCID: PMC8658204 DOI: 10.3390/ijms222313141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.
Collapse
Affiliation(s)
- Elisabetta Canetta
- Faculty of Sport, Applied Health and Performance Science, St Mary's University, Twickenham, London TW1 4SX, UK
| |
Collapse
|
37
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
38
|
Fernández-Álvarez F, García-García G, Arias JL. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021; 13:1232. [PMID: 34452193 PMCID: PMC8401782 DOI: 10.3390/pharmaceutics13081232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
A (core/shell)/shell nanostructure (production performance ≈ 50%, mean diameter ≈ 330 nm) was built using maghemite, PLGA, and chitosan. An extensive characterization proved the complete inclusion of the maghemite nuclei into the PLGA matrix (by nanoprecipitation solvent evaporation) and the disposition of the chitosan shell onto the nanocomposite (by coacervation). Short-term stability and the adequate magnetism of the nanocomposites were demonstrated by size and electrokinetic determinations, and by defining the first magnetization curve and the responsiveness of the colloid to a permanent magnet, respectively. Safety of the nanoparticles was postulated when considering the results from blood compatibility studies, and toxicity assays against human colonic CCD-18 fibroblasts and colon carcinoma T-84 cells. Cisplatin incorporation to the PLGA matrix generated appropriate loading values (≈15%), and a dual pH- and heat (hyperthermia)-responsive drug release behaviour (≈4.7-fold faster release at pH 5.0 and 45 °C compared to pH 7.4 and 37 °C). The half maximal inhibitory concentration of the cisplatin-loaded nanoparticles against human lung adenocarcinoma A-549 cells was ≈1.6-fold less than that of the free chemotherapeutic. Such a biocompatible and tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure may found a promising use for the effective treatment of lung cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
39
|
Kaplan Ö, Gökşen Tosun N, Özgür A, Erden Tayhan S, Bilgin S, Türkekul İ, Gökce İ. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Banstola A, Poudel K, Kim JO, Jeong JH, Yook S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 2021; 337:505-520. [PMID: 34314800 DOI: 10.1016/j.jconrel.2021.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023]
Abstract
Low immunogenicity and immunosuppressive tumor microenvironments are major hurdles in the application of cancer immunotherapy. To date, several immunogenic cell death (ICD) inducers have been reported to boost cancer immunotherapy by triggering ICD. ICD is characterized by the release of proinflammatory cytokines, danger-associated molecular patterns (DAMPs) and tumor associated antigens which will generate anticancer immunity by triggering adaptive immune cells. However, application of ICD inducers is limited due to severe toxicity issues and inefficient localization in the tumor microenvironment. To circumvent these challenges, stimuli-responsive nanoparticles have been exploited for improving cancer immunotherapy by limiting its toxicity. The combination of stimuli-responsive nanoparticles with an ICD inducer serves as a promising strategy for increasing the clinical applications of ICD induction in cancer immunotherapy. Here, we outline recent advances in ICD mediated by stimuli-responsive nanoparticles that may be near-infrared (NIR)-responsive, pH-responsive, redox responsive, pH and enzyme responsive, or pH and redox responsive, and evaluate their significant potential for successful clinical translation in cancer immunotherapy.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
41
|
Cazzagon V, Romano A, Gonella F. Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine. Front Bioeng Biotechnol 2021; 9:709727. [PMID: 34368102 PMCID: PMC8339728 DOI: 10.3389/fbioe.2021.709727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Personalized nanomedicine has rapidly evolved over the past decade to tailor the diagnosis and treatment of several diseases to the individual characteristics of each patient. In oncology, iron oxide nano-biomaterials (NBMs) have become a promising biomedical product in targeted drug delivery as well as in magnetic resonance imaging (MRI) as a contrast agent and magnetic hyperthermia. The combination of diagnosis and therapy in a single nano-enabled product (so-called theranostic agent) in the personalized nanomedicine has been investigated so far mostly in terms of local events, causes-effects, and mutual relationships. However, this approach could fail in capturing the overall complexity of a system, whereas systemic approaches can be used to study the organization of phenomena in terms of dynamic configurations, independent of the nature, type, or spatial and temporal scale of the elements of the system. In medicine, complex descriptions of diseases and their evolution are daily assessed in clinical settings, which can be thus considered as complex systems exhibiting self-organizing and non-linear features, to be investigated through the identification of dynamic feedback-driven behaviors. In this study, a Systems Thinking (ST) approach is proposed to represent the complexity of the theranostic modalities in the context of the personalized nanomedicine through the setting up of a stock-flow diagram. Specifically, the interconnections between the administration of magnetite NBMs for diagnosis and therapy of tumors are fully identified, emphasizing the role of the feedback loops. The presented approach has revealed its suitability for further application in the medical field. In particular, the obtained stock-flow diagram can be adapted for improving the future knowledge of complex systems in personalized nanomedicine as well as in other nanosafety areas.
Collapse
Affiliation(s)
- Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Alessandra Romano
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy.,Scuola Superiore di Catania, Università degli Studi di Catania, Catania, Italy
| | - Francesco Gonella
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.,Research Institute for Complexity, University Ca' Foscari of Venice, Venice, Italy
| |
Collapse
|
42
|
Fatima M, Iqubal MK, Iqubal A, Kaur H, Gilani SJ, Rahman MH, Ahmadi A, Rizwanullah M. Current Insight into the Therapeutic Potential of Phytocompounds and their Nanoparticle-based Systems for Effective Management of Lung Cancer. Anticancer Agents Med Chem 2021; 22:668-686. [PMID: 34238197 DOI: 10.2174/1871520621666210708123750] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is the second most common cancer and the primary cause of cancer-related death in both men and women worldwide. Due to diagnosis at an advanced stage, it is associated with high mortality in the majority of patients. At present, various treatment approaches are available such as chemotherapy, surgery, and radiotherapy. However, all these approaches usually cause serious side effects like degeneration of normal cells, bone marrow depression, alopecia, extensive vomiting, etc. To overcome the aforementioned problems, researchers have focused on the alternative therapeutic approach in which various natural compounds are reported, which possessed anti-lung cancer activity. Phytocompounds exhibit their anti-lung cancer activity via targeting various cell-signaling pathways, apoptosis, cell cycle arrest, and regulating antioxidant status and detoxification. Apart from the excellent anti-cancer activity, clinical administration of phytocompounds is confined because of their high lipophilicity and low bioavailability. Therefore, researchers show their concern in the development of a stable, safe, and effective approach of treatment with minimal side effects by the development of nanoparticle-based delivery of these phytocompounds to the target site. Targeted delivery of phytocompound through nanoparticles overcomes the aforementioned problems. In this article, the molecular mechanism of phytocompounds, their emerging combination therapy, and their nanoparticles-based delivery systems in the treatment of lung cancer have been discussed.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi-110017, India
| | - Sadaf Jamal Gilani
- Department of Basic Health Science, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi -110062, India
| |
Collapse
|
43
|
Rizwanullah M, Ahmad MZ, Garg A, Ahmad J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta Gen Subj 2021; 1865:129936. [PMID: 34058266 DOI: 10.1016/j.bbagen.2021.129936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer development is associated with abnormal, uncontrolled cell growth and causes significant economic and social burdens to society. The global statistics of different cancers have been increasing because of the aging population, and the increasing prevalence of risk factors such as stress condition, overweight, changing reproductive patterns, and smoking. The prognosis of cancer treatment is high, if diagnosed in the early stage. Late-stage diagnosis, however, is still a big challenge for the clinician. The usual treatment scheme involves chemotherapy and surgery followed by radiotherapy. SCOPE OF REVIEW Chemotherapy is the most widely used therapeutic approach against cancer. However, it suffers from the major limitation of poor delivery of anticancer therapeutics to specific cancer-targeted tissues/cells. MAJOR CONCLUSIONS Nanomedicines, particularly nanostructured lipid carriers (NLCs) can improve the efficacy of encapsulated payload either through an active or passive targeting approach against different cancers. The targeted nanomedicine can be helpful in transporting drug carriers to the specifically tumor-targeted tissue/cells while sparing abstaining from the healthy tissue/cells. The active targeting utilizes the binding of a specific cancer ligand to the surface of the NLCs, which improves the therapeutic efficacy and safety of the cancer therapeutics. GENERAL SIGNIFICANCE This review shed light on the utilization of NLCs system for targeted therapy in different cancers. Furthermore, modification of NLCs as cancer theranostics is a recent advancement that is also discussed in the manuscript with a review of contemporary research carried out in this field.
Collapse
Affiliation(s)
- Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
44
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|