1
|
Chaudhari P, Ghate VM, Nampoothiri M, Lewis SA. Cyclosporine a Eluting Nano Drug Reservoir Film for the Management of Dry Eye Disease. AAPS PharmSciTech 2025; 26:109. [PMID: 40246763 DOI: 10.1208/s12249-025-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Cyclosporine A (CsA) is widely used to treat dry eye disease (DED), and ocular morbidity is on the rise and is a growing concern globally. However, several drug and formulation challenges, such as poor drug solubility, short pre-corneal residence time, and poor patient compliance, have limited the ocular bioavailability of CsA to < 5%. A CsA cyclodextrin-based ternary complex loaded dissolvable nano drug reservoir films were developed to overcome these limitations and efficiently manage DED. Drug-loaded nano-reservoir films were fabricated via lithography using silicone and poly (dimethyl siloxane) (PDMS) molds. Different physicochemical characterizations were performed to confirm the formation of stable CsA-cyclodextrin-based ternary complexes. Formation of nanoreservoirs on the films was confirmed using SEM and AFM. Optimized CsA-complex-loaded nano-reservoir films were evaluated for in vitro drug release, ex vivo corneal permeation, and in vivo precorneal retention. Preclinical efficacy studies were performed to assess the efficacy of CsA-complex-loaded nano-reservoirs in an experimental dry-eye mouse model. Physicochemical characterization confirmed the formation of a stable complex and the improved solubility of CsA. In vitro release and ex vivo permeation studies indicated a controlled drug release and improved permeation, respectively. Furthermore, tear volume measurement and corneal damage assessment using slit-lamp imaging suggested decreased dry eye symptoms, significantly increasing tear volume in the drug-loaded nano-reservoir-treated group. Moreover, histopathological studies corroborated the tear volume and slit-lamp imaging results, with reduced inflammation and neovascularization. The poorly water-soluble drug with cyclodextrin complex incorporated nanoreservoir films presents a potential alternative for managing various ocular diseases.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Chaudhari P, Lewis SA, Ghate V. Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Cont Lens Anterior Eye 2025; 48:102367. [PMID: 39794261 DOI: 10.1016/j.clae.2025.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
The eye is a highly sensitive and vital component that significantly affects human quality of life. Diseases that affect the eye are major contributors to visual impairment and blindness and can have a profound effect on an individual's well-being. Ocular drug delivery is challenging because of physiological and anatomical barriers. Invasive Intravitreal administration is primarily used for the treatment and management of posterior segmental disease. However, frequent intravitreal administration is associated with adverse effects. Furthermore, topical administration results in less than 5% ocular bioavailability, leading to a void in the safe and efficacious management of posterior segment diseases. Nanocarrier-based systems have been well explored as ocular therapeutics to overcome the sub-therapeutic management attributed to conventional eye drops and physiological and anatomical barriers. Since the first report of nanoparticles to date, the nanocarrier system has come a long way with the simplicity and versatility offered by the system. Significant progress has been made in the development of noninvasive nanocarrier systems and their interactions with the ocular surface. The nanocarrier system enhances precorneal retention, limits nontherapeutic absorption, and offers controlled drug release. This review aims to provide an overview of the recent advancements in noninvasive nanocarrier-based topical ocular drug delivery systems, including their interaction with the ocular surface, the barriers to their translation to clinical settings, and the associated scale-up challenges.
Collapse
Affiliation(s)
- Pinal Chaudhari
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, Karnataka, India
| |
Collapse
|
3
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
4
|
Wang S, Yang H, Zheng J, Tong A, Mu S, Wang D, Zhao M, Li J. Recent advances and prospects of nanoparticle-based drug delivery for diabetic ocular complications. Theranostics 2025; 15:3551-3570. [PMID: 40093887 PMCID: PMC11905120 DOI: 10.7150/thno.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that significantly affects various organ systems. The systemic effects of DM lead to numerous complications, with ocular manifestations being of particular concern due to their severity and impact on quality of life. Hyperglycemia-induced ocular damage often results in a range of lesions, including diabetic retinopathy (DR), keratopathy, cataracts, and glaucoma. These conditions impose considerable physical discomfort on patients and place a substantial economic burden on healthcare systems. The advent of nanotechnology has facilitated the development of innovative therapeutic strategies for managing diabetic ocular complications. This review highlights several common ocular complications associated with DM, focusing on their pathogenesis and treatment strategies. Emphasis is placed on the innovative applications and potential of nanotechnology in treating diabetic ocular complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
5
|
Biswal S, Parmanik A, Das D, Sahoo RN, Nayak AK. Gellan gum-based in-situ gel formulations for ocular drug delivery: A practical approach. Int J Biol Macromol 2025; 290:138979. [PMID: 39708866 DOI: 10.1016/j.ijbiomac.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ophthalmic disorders significantly impact global health, affecting millions worldwide. Conventional treatments often face challenges related to poor bioavailability and short residence times on the ocular surface. In recent years, in-situ gels prepared using different natural gums including gellan gum has been investigated as a viable means of improving ocular medication delivery. Gellan gum undergoes ionotropic-gelation in the presence of multivalent cations, making it suitable for ocular formulations. The synthesis and purification of gellan gum involve microbial fermentation processes. Incorporating gellan gum into ophthalmic formulations offers several advantages, including prolonged residence time, enhanced drug retention, and improved bioavailability. Characterisation techniques such as gelling capacity determination, FTIR spectroscopy, TEM, viscosity and rheological studies and ex-vivo or in-vitro release studies are crucial for assessing the structural and functional properties of gellan gum-based in-situ gels. Numerous investigations have exhibited gellan gum's potential in different drug loaded in-situ gels for ophthalmic uses, resulting in extended drug residency on the ocular surface and enhanced therapeutic effects. The current review presents a comprehensive discussion on preparation, characterisation, recent applications and future prospects of gellan gum-based in-situ gels for ocular drug delivery. In addition, it covers molecular structure, synthesis and characterisation of gellan gum.
Collapse
Affiliation(s)
- Snehanjana Biswal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Ankita Parmanik
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Debajyoti Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| |
Collapse
|
6
|
Yanamadala Y, Muthumula CMR, Khare S, Gokulan K. Strategies to Enhance Nanocrystal Formulations for Overcoming Physiological Barriers Across Diverse Routes of Administration. Int J Nanomedicine 2025; 20:367-402. [PMID: 39816376 PMCID: PMC11733173 DOI: 10.2147/ijn.s494224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers. The development of nanocrystal formulation requires comprehensive understanding of these barriers and the biological environment, along with strategic modulation of particle size, surface properties, and charge to facilitate improved bioavailability to the target site. This review focuses on applications of nanocrystals for diverse administration routes and strategies in overcoming anatomical and physiological delivery barriers. The orally administered nanocrystals benefit from increased solubility, prolonged gastrointestinal retention, and enhanced permeation. However, the nanocrystals, due to their small size and high surface area, are susceptible to aggregation in the presence of gastric fluids and are more prone to enzymatic degradation compared to the macrocrystalline form. Although nanocrystal formulations are composed of pure API, the application of excipients like stabilizers reduces the aggregation and improves formulation stability, solubility, and bioavailability. Some excipients can facilitate sustained drug release. Emerging research in nanocrystals include their application in blood-brain barrier transport, intranasal delivery, stimuli responsiveness, multifunctionality, and diagnostic purposes. However, the challenges related to toxicity, scale-up, and clinical translation still need further attention. Overall, nanocrystal engineering serves as a versatile platform for expanding the therapeutic potential of insoluble drugs and enabling dose reduction for existing drugs, which can minimize toxicity and improve bioavailability at lower dosages.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
7
|
Rykowska I, Michałkiewicz O, Nowak I, Nowak R. Drug-Modified Contact Lenses-Properties, Release Kinetics, and Stability of Active Substances with Particular Emphasis on Cyclosporine A: A Review. Molecules 2024; 29:2609. [PMID: 38893485 PMCID: PMC11173495 DOI: 10.3390/molecules29112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The following review focuses on the manufacturing and parameterizing of ocular drug delivery systems (DDS) using polymeric materials to create soft contact lenses. It discusses the types of drugs embedded into contact lenses, the various polymeric materials used in their production, methods for assessing the mechanical properties of polymers, and techniques for studying drug release kinetics. The article also explores strategies for investigating the stability of active substances released from contact lenses. It specifically emphasizes the production of soft contact lenses modified with Cyclosporine A (CyA) for the topical treatment of specific ocular conditions. The review pays attention to methods for monitoring the stability of Cyclosporine A within the discussed DDS, as well as investigating the influence of polymer matrix type on the stability and release of CyA.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Ola Michałkiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Rafał Nowak
- Department of Ophthalmology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland;
| |
Collapse
|
8
|
Signorini S, Delledonne A, Pescina S, Bianchera A, Sissa C, Vivero-Lopez M, Alvarez-Lorenzo C, Santi P, Padula C, Nicoli S. A sterilizable platform based on crosslinked xanthan gum for controlled-release of polymeric micelles: Ocular application for the delivery of neuroprotective compounds to the posterior eye segment. Int J Pharm 2024; 657:124141. [PMID: 38677392 DOI: 10.1016/j.ijpharm.2024.124141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) polymeric micelles show interesting properties for ocular administration thanks to their solubilization capability, nanometric size and tissue penetration ability. However, micelles formulations are generally characterized by low viscosity, poor adhesion and very short retention time at the administration site. Therefore, the idea behind this work is the preparation and characterization of a crosslinked film based on xanthan gum that contains TPGS micelles and is capable of controlling their release. The system was loaded with melatonin and cyclosporin A, neuroprotective compounds to be delivered to the posterior eye segment. Citric acid and heating at different times and temperatures were exploited as crosslinking approach, giving the possibility to tune swelling, micelles release and drug release. The biocompatibility of the platform was confirmed by HET-CAM assay. Ex vivo studies on isolated porcine ocular tissues, conducted using Franz cells and two-photon microscopy, demonstrated the potential of the xanthan gum-based platform and enlightened micelles penetration mechanism. Finally, the sterilization step was approached, and a process to simultaneously crosslink and sterilize the platform was developed.
Collapse
Affiliation(s)
- Sara Signorini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Annalisa Bianchera
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| |
Collapse
|
9
|
Paganini V, Chetoni P, Di Gangi M, Monti D, Tampucci S, Burgalassi S. Nanomicellar eye drops: a review of recent advances. Expert Opin Drug Deliv 2024; 21:381-397. [PMID: 38396342 DOI: 10.1080/17425247.2024.2323208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Research on nanotechnology in medicine has also involved the ocular field and nanomicelles are among the applications developed. This approach is used to increase both the water solubility of hydrophobic drugs and their penetration/permeation within/through the ocular tissues since nanomicelles are able to encapsulate insoluble drug into their core and their small size allows them to penetrate and/or diffuse through the aqueous pores of ocular tissues. AREAS COVERED The present review reports the most significant and recent literature on the use of nanomicelles, made up of both surfactants and amphiphilic polymers, to overcome limitations imposed by the physiology of the eye in achieving a high bioavailability of drugs intended for the therapeutic areas of greatest commercial interest: dry eye, inflammation, and glaucoma. EXPERT OPINION The results of the numerous studies in this field are encouraging and demonstrate that nanomicelles may be the answer to some of the challenges of ocular therapy. In the future, new molecules self-assembling into micelles will be able to meet the regulatory requirements for marketing authorization for their use in ophthalmic formulations.
Collapse
Affiliation(s)
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | | | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Inter-University Center for the Promotion of the Rs Principles in Teaching & Research (CentroR), Pisa, Italy
| |
Collapse
|
10
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
11
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
12
|
Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, Tang Z. Preparation and Characterization of Ion-Sensitive Brimonidine Tartrate In Situ Gel for Ocular Delivery. Pharmaceuticals (Basel) 2023; 16:ph16010090. [PMID: 36678587 PMCID: PMC9866900 DOI: 10.3390/ph16010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Brimonidine tartrate (BRT) is a highly selective α2 adrenergic receptor agonist as treatment for patients with open angle glaucoma and high intraocular pressure. The objective of this study was to formulate an ophthalmic ion-sensitive in situ gel (ISG) of BRT to increase the retention time of the drug and its bioavailability. The optimum formulation of 2 mg/mL BRT-ISG was obtained with 0.45% gellan gum as the gel matrix. In vitro release results showed that the water-soluble drug bromonidine tartrate in ocular in situ gels exhibited a high burst effect and fast release in solution. The results of dialysis membrane permeation showed that there was a significant difference between the commercially available and BRT-ISG groups after 45 min. The results of the pre-corneal retention study indicated that gellan gum can effectively prolong ocular surface retention. Preliminary stability results showed that it should be stored in a cool and dark place, and the formulation under long-term preservation can be basically stable. The pharmacokinetic study of the BRT-ISG in the anterior chamber of the rabbit eye was studied by microdialysis technique, and microdialysis samples were analyzed by LC-MS/MS. The pharmacokinetic study showed that the BRT-ISG reached Cmax (8.16 mg/L) at 93 min after administration, which was 2.7 times that of the BRT eye drops, and the AUC(0-t) (1397.08 mg·min/L) was 3.4 times that of the BRT eye drops. The optimal prescription can prolong the retention time of BRT in front of the cornea and significantly improve the bioavailability of BRT in the eye. Combined with the results of in vitro release, permeation and pre-corneal retention studies, the improvement of BRT-ISG bioavailability in rabbit eyes was found to be mainly due to the retention effect after the mixture of ISG and tears.
Collapse
Affiliation(s)
- Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Lu Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xu Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xinghao Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
- Correspondence: (Q.W.); (Z.T.)
| |
Collapse
|
13
|
Krishnaswami V, Sugumaran A, Perumal V, Manavalan M, Kondeti DP, Basha SK, Ahmed MA, Kumar M, Vijayaraghavalu S. Nanoformulations - Insights Towards Characterization Techniques. Curr Drug Targets 2022; 23:1330-1344. [PMID: 35996238 DOI: 10.2174/1389450123666220822094248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Drug-loaded novel nanoformulations are gaining importance due to their versatile properties compared to conventional pharmaceutical formulations. Nanomaterials, apart from their multifactorial benefits, have a wider scope in the prevention, treatment, and diagnosis of cancer. Understanding the chemistry of drug-loaded nano-formulations to elicit its behaviour both at molecular and systemic levels is critical in the present scenario. Drug-loaded nanoformulations are controlled by their size, shape, surface chemistry, and release behavior. The major pharmaceutical drug loaded nanocarriers reported for anticancer drug delivery for the treatment of various forms of cancers such as lung cancer, liver cancer, breast cancer, colon cancer, etc include nanoparticles, nanospheres, nanodispersions, nanocapsules, nanomicelles, cubosomes, nanoemulsions, liposomes and niosomes. The major objectives in designing anticancer drug-loaded nanoformulations are to manage the particle size/morphology correlating with the drug release to fulfil the specific objectives. Hence, nano characterizations are very critical both at in vitro and in vivo levels. OBJECTIVE The main objective of this review paper is to summarise the major characterization techniques used for the characterization of drug-loaded nanoformulations. Even though information on characterization techniques of various nano-formulations is available in the literature, it is scattered. The proposed review will provide a comprehensive understanding of nanocharacterization techniques. CONCLUSION To conclude, the proposed review will provide insights towards the different nano characterization techniques along with their recent updates, such as particle size, zeta potential, entrapment efficiency, in vitro release studies (chromatographic HPLC, HPTLC, and LC-MS/MS analysis), EPR analysis, X-ray diffraction analysis, thermal analysis, rheometric, morphological analysis etc. Additionally, the challenges encountered by the nano characterization techniques will also be discussed.
Collapse
Affiliation(s)
- Venkateshwaran Krishnaswami
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Venkatesan Perumal
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Murugan Manavalan
- Department of Biomedical Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Durga Prasad Kondeti
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Shaik Kamil Basha
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Mohammed Akmal Ahmed
- Department of Pharmaceutical Chemistry, Narayana College of Pharmacy, Nellore 524003, Andhra Pradesh, India
| | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | | |
Collapse
|
14
|
Chetoni P, Burgalassi S, Zucchetti E, Granchi C, Minutolo F, Tampucci S, Monti D. MAGL inhibitor NanoMicellar formulation (MAGL-NanoMicellar) for the development of an antiglaucoma eye drop. Int J Pharm 2022; 625:122078. [PMID: 35932931 DOI: 10.1016/j.ijpharm.2022.122078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
The ocular endocannabinoid system (ECS) including enzymes and CB1/CB2 receptors determines various substantial effects, such as anti-inflammatory activity and reduction of the intraocular pressure (IOP). The modulation of 2-arachidonoylglycerol (2-AG) levels obtained via MAGL inhibition is considered as a promising pharmacological strategy to activate the ECS. Within the scope of this study, the effect of a selective monoacylglycerol lipase (MAGL) inhibitor (MAGL17b) was investigated by measuring the IOP reduction in normotensive rabbits after performing a solubilisation process of the molecule with non-ionic surfactants, to produce suitable eye drops containing the highest possible concentration of the drug. Furthermore, the study involved the evaluation of cytotoxicity and of in vitro/ex vivo corneal permeation of MAG17b of selected formulations based on polyoxyl(35)castor oil (C-EL) and polyethylene glycol (80) sorbitan monolaurate (TW80). The solubilisation of 0.5 mM MAGL17b with 3% w/w TW80 (TW80/3-17b), through the formation of NanoMicellar structures (diameter of 12.3 nm), determined a significant permeation of MAGL17b, both through excised rabbits corneas and reconstituted corneal epithelium, with a limited corneal epithelial cells death. The blockade of MAGL activity induced a IOP reduction up to 4 mmHg in albino and pigmented rabbits after topical instillation, thus confirming the potential efficacy of the MAGL inhibition approach in the treatment of ocular pathologies.
Collapse
Affiliation(s)
- Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | | | | | | | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Pisa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| |
Collapse
|
15
|
Chaudhari P, Birangal S, Mavlankar N, Pal A, Mallela LS, Roy S, Kodoth AK, Ghate V, Nampoorthiri M, Lewis SA. Oil-free eye drops containing Cyclosporine A/cyclodextrin/PVA supramolecular complex as a treatment modality for dry eye disease. Carbohydr Polym 2022; 297:120007. [DOI: 10.1016/j.carbpol.2022.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
|
16
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
18
|
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112212. [PMID: 34225864 DOI: 10.1016/j.msec.2021.112212] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of people worldwide are affected by eye diseases, eventually leading to visual impairment or complete blindness. Conventional treatment involves the use of eye drops. However, these formulations often confer low ocular bioavailability and frequent dosing is required. Therefore, there is an urgent need to develop more effective drug delivery systems to tackle the current limitations. Hydrogels are multifunctional ophthalmic drug delivery systems capable of extending drug residence time and sustaining release of drugs. In this review, common ocular diseases and corresponding therapeutic drugs are briefly introduced. In addition, various types of hydrogels reported for ophthalmic drug delivery, including in-situ gelling hydrogels, contact lenses, low molecular weight supramolecular hydrogels, cyclodextrin/poly (ethylene glycol)-based supramolecular hydrogels and hydrogel-forming microneedles, are summarized. Besides, marketed hydrogel-based opthalmic formulations and clinical trials are also highlighted. Finally, critical considerations regarding clinical translation of biologics-loaded hydrogels are discussed.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
19
|
Rudko M, Urbaniak T, Musiał W. Recent Developments in Ion-Sensitive Systems for Pharmaceutical Applications. Polymers (Basel) 2021; 13:1641. [PMID: 34070206 PMCID: PMC8158499 DOI: 10.3390/polym13101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022] Open
Abstract
Stimuli-responsive carriers of pharmaceutical agents have been extensively researched in recent decades due to the possibility of distinctively precise targeted drug delivery. One of the potentially beneficial strategies is based on the response of the medical device to changes in the ionic environment. Fluctuations in ionic strength and ionic composition associated with pathological processes may provide triggers sufficient to induce an advantageous carrier response. This review is focused on recent developments and novel strategies in the design of ion-responsive drug delivery systems. A variety of structures i.e., polymeric matrices, lipid carriers, nucleoside constructs, and metal-organic frameworks, were included in the scope of the summary. Recently proposed strategies aim to induce different pharmaceutically beneficial effects: localized drug release in the desired manner, mucoadhesive properties, increased residence time, or diagnostic signal emission. The current state of development of ion-sensitive drug delivery systems enabled the marketing of some responsive topical formulations. Concurrently, ongoing research is focused on more selective and complex systems for different administration routes. The potential benefits in therapeutic efficacy and safety associated with the employment of multi-responsive systems will prospectively result in further research and applicable solutions.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.R.); (T.U.)
| |
Collapse
|