1
|
Moswatsi B, Mahumane GD, Kumar P, Choonara YE. A review of bigels for neurotrauma therapeutics: Structural insights for tissue microenvironment alignment. BIOMATERIALS ADVANCES 2025; 174:214315. [PMID: 40245812 DOI: 10.1016/j.bioadv.2025.214315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Neural injuries pose a significant clinical challenge due to the brain's limited regenerative capacity and the complexity of developing biomaterials that can provide mechanical support and localized therapeutic delivery. Conventional biomaterials such as hydrogels and electrospun scaffolds exhibit limitations, including suboptimal mechanical integrity and uncontrolled drug diffusion. Bigels, biphasic systems composed of interpenetrating hydrophilic and hydrophobic phases, offer tunable viscoelasticity, enhanced drug loading capacity, and structural adaptability, making them promising candidates for addressing the multifaceted requirements of neurotherapeutics applications. Despite their established applications in the transdermal application, the potential of bigels in neurotherapeutics remains underexplored. This review critically examines bigel formulation strategies, physicochemical characteristics, and neuroregenerative potential. Key analytical techniques, including oscillatory rheology, scanning electron microscopy, and Fourier-transform infrared spectroscopy, are explored to assess pore morphology, viscoelastic behavior, and molecular interactions. The role of bigels in neuronal survival, axonal regeneration, and neuroinflammation modulation is highlighted, alongside considerations for scalability, batch-to-batch reproducibility, and regulatory compliance under Good Manufacturing Practices (GMP). Future research should focus on optimizing biodegradation kinetics, neurotrophic factor release profiles, and preclinical validation in traumatic brain injury and spinal cord injury models. Advancing bigel technology could facilitate their clinical translation as neuroprotective scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Botle Moswatsi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Gillian Dumsile Mahumane
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| |
Collapse
|
2
|
Lee C, Fiocco G, Vigani B, Recca T, Milanese C, Delledonne C, Licchelli M, Rossi S, Chung Y, Volpi F, Weththimuni ML, Malagodi M. Chemically Crosslinked Alginate Hydrogel with Polyaziridine: Effects on Physicochemical Properties and Promising Applications. Chempluschem 2025; 90:e202400649. [PMID: 39655502 PMCID: PMC11912103 DOI: 10.1002/cplu.202400649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Alginate biopolymer is widely employed in many industrial fields thanks to its pleasing features of biodegradability, biocompatibility, low toxicity, and relatively low cost. The gelling process of alginate with divalent cations is fairly simple and thus it is used as a versatile biomaterial to tailor the desired mechanical and moisture properties. This study focused on developing new gel formulations to enhance the properties of calcium-alginate hydrogel (CA). The newly synthesized hydrogels, referred to as CA-CHEM gels, were chemically cross-linked with different ratios of pentaerythritol tris[3-(1-aziridinyl)propionate] (PTAP) through the reaction between the carboxylic groups of alginate and aziridines of PTAP. The reaction was successfully monitored by NMR. The new CA-CHEM gels were chemically characterized using FTIR-ATR, while SEM analysis confirmed the changes in the porosity and homogeneity of the network. Additionally, thermogravimetric analyses and mechanical properties showed improvement in degradation stability and in structural strength, compared to plain CA, with an increasing PTAP content up to 1 % w/w. Finally, the new CA-CHEM gels effectively controlled water absorption and release. In particular, CA-CHEM-1 performed as the most controlled system, making it promising for delivering aqueous cleaning solutions on water-sensitive surfaces such as a wooden historical musical instrument.
Collapse
Affiliation(s)
- Chaehoon Lee
- Department of ChemistryUniversity of PaviaVia Taramelli 1227100PaviaItaly
- Arvedi Laboratory of Non-invasive DiagnosticsUniversity of Paviavia Bell'Aspa 326100CremonaItaly
| | - Giacomo Fiocco
- Arvedi Laboratory of Non-invasive DiagnosticsUniversity of Paviavia Bell'Aspa 326100CremonaItaly
- Department of Musicology and Cultural HeritageUniversity of PaviaCorso Garibaldi 17826100CremonaItaly
| | - Barbara Vigani
- Department of Drug SciencesUniversity of PaviaVia Taramelli 1227100PaviaItaly
| | - Teresa Recca
- Department of ChemistryUniversity of PaviaVia Taramelli 1227100PaviaItaly
- Centro Grandi StrumentiUniversity of PaviaVia Bassi 2127100PaviaItaly
| | - Chiara Milanese
- Department of ChemistryUniversity of PaviaVia Taramelli 1227100PaviaItaly
| | - Chiara Delledonne
- Arvedi Laboratory of Non-invasive DiagnosticsUniversity of Paviavia Bell'Aspa 326100CremonaItaly
- Department of PhysicsUniversity of PaviaVia Bassi 627100PaviaItaly
| | - Maurizio Licchelli
- Department of ChemistryUniversity of PaviaVia Taramelli 1227100PaviaItaly
| | - Silvia Rossi
- Department of Drug SciencesUniversity of PaviaVia Taramelli 1227100PaviaItaly
| | - Yongjae Chung
- Department of Heritage Science and Technology StudiesGraduate School of Korea HeritageKorea National University of HeritageBuyeo, Chungcheongnam-Do33115Korea
| | - Francesca Volpi
- Arvedi Laboratory of Non-invasive DiagnosticsUniversity of Paviavia Bell'Aspa 326100CremonaItaly
- Department of Musicology and Cultural HeritageUniversity of PaviaCorso Garibaldi 17826100CremonaItaly
| | | | - Marco Malagodi
- Arvedi Laboratory of Non-invasive DiagnosticsUniversity of Paviavia Bell'Aspa 326100CremonaItaly
- Department of Musicology and Cultural HeritageUniversity of PaviaCorso Garibaldi 17826100CremonaItaly
| |
Collapse
|
3
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
4
|
Pérez Gutiérrez CL, Cottone F, Pagano C, Di Michele A, Puglia D, Luzi F, Dominici F, Sinisi R, Ricci M, Viseras Iborra CA, Perioli L. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D Printing Parameters for the Development of Sustainable Starch-Based Patches. Polymers (Basel) 2023; 15:3792. [PMID: 37765648 PMCID: PMC10537393 DOI: 10.3390/polym15183792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to develop sustainable patches for wound application, using the biopolymer starch, created using a low-cost 3D printing PAM device. The composition of a starch gel was optimized for PAM extrusion: corn starch 10% w/w, β-glucan water suspension (filler, 1% w/w), glycerol (plasticizer, 29% w/w), and water 60% w/w. The most suitable 3D printing parameters were optimized as well (nozzle size 0.8 mm, layer height 0.2 mm, infill 100%, volumetric flow rate 3.02 mm3/s, and print speed 15 mm/s). The suitable conditions for post-printing drying were set at 37 °C for 24 h. The obtained patch was homogenous but with low mechanical resistance. To solve this problem, the starch gel was extruded over an alginate support, which, after drying, becomes an integral part of the product, constituting the backing layer of the final formulation. This approach significantly improved the physicochemical and post-printing properties of the final bilayer patch, showing suitable mechanical properties such as elastic modulus (3.80 ± 0.82 MPa), strength (0.92 ± 0.08 MPa), and deformation at break (50 ± 1%). The obtained results suggest the possibility of low-cost production of patches for wound treatment by additive manufacturing technology.
Collapse
Affiliation(s)
- Carmen Laura Pérez Gutiérrez
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Francesco Cottone
- Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy;
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | | | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), 60131 Ancona, Italy;
| | - Franco Dominici
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Rossella Sinisi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| |
Collapse
|
5
|
Shanthi Chede L, Donovan MD. Evaluation of bioadhesive gels for local action in the esophagus. Int J Pharm 2023; 642:123115. [PMID: 37302670 DOI: 10.1016/j.ijpharm.2023.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Direct drug administration to the esophagus faces several obstacles, including continuous salivary dilution and removal of the dosage form from the tissue surface due to esophageal peristalsis. These actions often result in short exposure times and reduced concentrations of drug at the esophageal surface, providing limited opportunities for drug absorption into or across the esophageal mucosa. A variety of bioadhesive polymers were investigated for their ability to resist removal by salivary washings using an ex vivo porcine esophageal tissue model. Hydroxypropylmethylcellulose and carboxymethylcellulose both have reported bioadhesive properties, but neither was able to withstand repeated exposure to saliva, and the gels formulated with these polymers were quickly removed from the esophageal surface. Two polyacrylic polymers, carbomer and polycarbophil, also showed limited esophageal surface retention when exposed to salivary washing, likely due to the ionic composition of saliva affecting the inter-polymer interactions necessary for these polymers to maintain their increased viscosities. In situ gel forming polysaccharide gels (ion-triggered), including xanthan gum, gellan gum, and sodium alginate, showed superior tissue surface retention, and formulations containing these bioadhesive polymers along with ciclesonide, an anti-inflammatory soft prodrug, were investigated as potential, locally-acting esophageal delivery systems. Exposure of a segment of esophagus to the ciclesonide-containing gels resulted in therapeutic concentrations of des-ciclesonide, the active drug metabolite, in the tissues within 30 min. Increasing des-CIC concentrations were also observed over a 3-hour exposure interval suggesting continued release and absorption of ciclesonide into the esophageal tissues. These results demonstrate the ability to achieve therapeutic drug concentrations in the esophageal tissues using in situ gel-forming bioadhesive polymer delivery systems, and these systems provide promising opportunities for the local treatment of esophageal disease.
Collapse
Affiliation(s)
- Laxmi Shanthi Chede
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, Iowa City, Iowa, 52242-1112, USA
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, Iowa City, Iowa, 52242-1112, USA.
| |
Collapse
|
6
|
Di Michele A, Gutiérrez CLP, Pagano C, Beccari T, Ceccarini MR, Luzi F, Puglia D, Tensi L, D'Agosto E, Iborra CAV, Ricci M, Perioli L. Formulation and characterization of sustainable bioadhesive films for wound treatment based on barley β-glucan extract obtained using the high power ultrasonic technique. Int J Pharm 2023; 638:122925. [PMID: 37028573 DOI: 10.1016/j.ijpharm.2023.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
β-glucan is a well-known functional and bioactive food ingredient. Recently, some studies highlighted several interesting pharmacological activities, such as hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor, antioxidant and anti-inflammatory. The aim of this study is to evaluate a novel application of β-glucan, obtained from barley, for the development of formulations for skin use. Several water suspensions were obtained from barley flour of different particle sizes treated by high power ultrasonic (HPU) technique. Barley flour fraction in the range of 400-500 μm allowed to obtain a stable suspension, represented both by a water soluble and water insoluble fraction of β-glucans, that showed excellent film forming ability. The plasticizer sorbitol as well as the bioadhesive biopolymer acacia gum were added to this suspension in order to obtain a gel suitable to prepare films by casting. The obtained films demonstrated suitable mechanical properties and ability to stimulate in vitro keratinocytes growth suggesting its possible application in dermatological field as for wound treatment. This study demonstrated the dual use of barley suspension: as excipient and as active ingredient.
Collapse
Affiliation(s)
| | - Carmen Laura Pérez Gutiérrez
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), 60131 Ancona, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elena D'Agosto
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Li J, Zeng C, Huang Q, Zheng MM, Chen J, Ma D. Control release of α-mangostin by a novel dual-polysaccharides delivery system for colitis treatment under simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Pudžiuvelytė L, Drulytė E, Bernatonienė J. Nitrocellulose Based Film-Forming Gels with Cinnamon Essential Oil for Covering Surface Wounds. Polymers (Basel) 2023; 15:1057. [PMID: 36850340 PMCID: PMC9959663 DOI: 10.3390/polym15041057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Acute and chronic wounds caused by assorted reasons impact patient's quality of life. Films are one of the main types of moisture retentive dressings for wounds. To improve the healing of the wound, films must ensure there is no microorganism contamination, protect from negative environmental effects, and support optimal moisture content. The aim of this study was to formulate optimal film-forming gel compositions that would have good physico-chemical properties and be suitable for wound treatment. Nitrocellulose, castor oil, ethanol (96%), ethyl acetate, and cinnamon leaf essential oil were used to create formulations. During the study, the drying rate, adhesion, flexibility, tensile strength, cohesiveness, swelling, water vapor penetration, pH value, and morphology properties of films were examined. Results showed that optimal concentrations of nitrocellulose for film-forming gel production were 13.4% and 15%. The concentrations of nitrocellulose and cinnamon leaf essential oil impacted the films' physicochemical properties (drying rate, swelling, adhesion, flexibility, etc.). The swelling test showed that films of formulations could absorb significant amounts of simulant wound exudate. Film-forming gels and films showed no microbial contamination and were stable three months after production.
Collapse
Affiliation(s)
- Lauryna Pudžiuvelytė
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Evelina Drulytė
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Jurga Bernatonienė
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Chelu M, Musuc AM, Aricov L, Ozon EA, Iosageanu A, Stefan LM, Prelipcean AM, Popa M, Moreno JC. Antibacterial Aloe vera Based Biocompatible Hydrogel for Use in Dermatological Applications. Int J Mol Sci 2023; 24:ijms24043893. [PMID: 36835300 PMCID: PMC9959823 DOI: 10.3390/ijms24043893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The present research aims to describe a new methodology to obtain biocompatible hydrogels based on Aloe vera used for wound healing applications. The properties of two hydrogels (differing in Aloe vera concentration, AV5 and AV10) prepared by an all-green synthesis method from raw, natural, renewable and bioavailable materials such as salicylic acid, allantoin and xanthan gum were investigated. The morphology of the Aloe vera based hydrogel biomaterials was studied by SEM analysis. The rheological properties of the hydrogels, as well as their cell viability, biocompatibility and cytotoxicity, were determined. The antibacterial activity of Aloe vera based hydrogels was evaluated both on Gram-positive, Staphylococcus aureus and on Gram-negative, Pseudomonas aeruginosa strains. The obtained novel green Aloe vera based hydrogels showed good antibacterial properties. In vitro scratch assay demonstrated the capacity of both AV5 and AV10 hydrogels to accelerate cell proliferation and migration and induce closure of a wounded area. A corroboration of all morphological, rheological, cytocompatibility and cell viability results indicates that this Aloe vera based hydrogel may be suitable for wound healing applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| | - Ludmila Aricov
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Laura M. Stefan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (A.M.M.); (J.C.M.)
| |
Collapse
|
10
|
Novel exopolysaccharide produced by the marine dinoflagellate Heterocapsa AC210: Production, characterization, and biological properties. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
11
|
Jadav M, Pooja D, Adams DJ, Kulhari H. Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics 2023; 15:402. [PMID: 36839724 PMCID: PMC9967536 DOI: 10.3390/pharmaceutics15020402] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In the last three decades, polymers have contributed significantly to the improvement of drug delivery technologies by enabling the controlled and sustained release of therapeutic agents, versatility in designing different delivery systems, and feasibility of encapsulation of both hydrophobic and hydrophilic molecules. Both natural and synthetic polymers have been explored for the delivery of various therapeutic agents. However, due to the disadvantages of synthetic polymers, such as lack of intrinsic biocompatibility and bioactivity, hydrophobicity, and expensive and complex procedure of synthesis, there is a move toward the use of naturally occurring polymers. The biopolymers are generally derived from either plants or microorganisms and have shown a wide range of applications in drug administration due to their hydrophilic nature, biodegradability, biocompatibility, no or low toxicity, abundance, and readily available, ease of chemical modification, etc. This review describes the applications of a biopolymer, xanthan gum (XG), in the delivery of various therapeutic agents such as drugs, genetic materials, proteins, and peptides. XG is a high molecular weight, microbial heteropolysaccharide and is produced as a fermented product of Gram-negative bacteria, Xanthomonas campestris. Traditionally, it has been used as a thickener in liquid formulations and an emulsion stabiliser. XG has several favourable properties for designing various forms of drug delivery systems. Furthermore, the structure of XG can be easily modified using different temperature and pH conditions. Therefore, XG and its derivatives have been explored for various applications in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar 382007, Gujarat, India
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| |
Collapse
|
12
|
Biomaterial Inks from Peptide-Functionalized Silk Fibers for 3D Printing of Futuristic Wound-Healing and Sensing Materials. Int J Mol Sci 2023; 24:ijms24020947. [PMID: 36674467 PMCID: PMC9864705 DOI: 10.3390/ijms24020947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
This study illustrates the sensing and wound healing properties of silk fibroin in combination with peptide patterns, with an emphasis on the printability of multilayered grids, and envisions possible applications of these next-generation silk-based materials. Functionalized silk fibers covalently linked to an arginine-glycine-aspartic acid (RGD) peptide create a platform for preparing a biomaterial ink for 3D printing of grid-like piezoresistors with wound-healing and sensing properties. The culture medium obtained from 3D-printed silk fibroin enriched with RGD peptide improves cell adhesion, accelerating skin repair. Specifically, RGD peptide-modified silk fibroin demonstrated biocompatibility, enhanced cell adhesion, and higher wound closure rates at lower concentration than the neat peptide. It was also shown that the printing of peptide-modified silk fibroin produces a piezoresistive transducer that is the active component of a sensor based on a Schottky diode harmonic transponder encoding information about pressure. We discovered that such biomaterial ink printed in a multilayered grid can be used as a humidity sensor. Furthermore, humidity activates a transition between low and high conductivity states in this medium that is retained unless a negative voltage is applied, paving the way for utilization in non-volatile organic memory devices. Globally, these results pave the way for promising applications, such as monitoring parameters such as human wound care and being integrated in bio-implantable processors.
Collapse
|
13
|
Concórdio-Reis P, Pereira JR, Alves VD, Nabais AR, Neves LA, Marques AC, Fortunato E, Moppert X, Guézennec J, Reis MA, Freitas F. Characterisation of Films Based on Exopolysaccharides from Alteromonas Strains Isolated from French Polynesia Marine Environments. Polymers (Basel) 2022; 14:4442. [PMID: 36298020 PMCID: PMC9611721 DOI: 10.3390/polym14204442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023] Open
Abstract
This work assessed the film-forming capacity of exopolysaccharides (EPS) produced by six Alteromonas strains recently isolated from different marine environments in French Polynesia atolls. The films were transparent and resulted in small colour alterations when applied over a coloured surface (ΔEab below 12.6 in the five different colours tested). Moreover, scanning electron microscopy showed that the EPS films were dense and compact, with a smooth surface. High water vapour permeabilities were observed (2.7-6.1 × 10-11 mol m-1 s-1 Pa-1), which are characteristic of hydrophilic polysaccharide films. The films were also characterised in terms of barrier properties to oxygen and carbon dioxide. Interestingly, different behaviours in terms of their mechanical properties under tensile tests were observed: three of the EPS films were ductile with high elongation at break (ε) (35.6-47.0%), low tensile strength at break (Ꞇ) (4.55-11.7 MPa) and low Young's modulus (εm) (10-93 MPa), whereas the other three were stiffer and more resistant with a higher Ꞇ (16.6-23.6 MPa), lower ε (2.80-5.58%), and higher εm (597-1100 MPa). These properties demonstrate the potential of Alteromonas sp. EPS films to be applied in different areas such as biomedicine, pharmaceuticals, or food packaging.
Collapse
Grants
- UIDP/04378/2020, UIDB/04378/2020, LA/P/0140/202019, UID/AGR/04129/2020, SFRH/BD/131947/2017, SFRH/BD/147518/2019, LA/P/0037/2020, UIDP/50025/2020, UIDB/50025/2020, UIDB/50006/2020, UIDP/50006/2020 Fundação para a Ciência e Tecnologia
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João R. Pereira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Ana R. Nabais
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luísa A. Neves
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C. Marques
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Xavier Moppert
- Pacific Biotech BP 140 289, Arue Tahiti 98 701, French Polynesia
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France
| | - Maria A.M. Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Mitu MA, Musuc AM, Petrescu S, Atkinson I, Rusu A, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Dumitru E, Badea V. Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC. Antioxidants (Basel) 2022; 11:1801. [PMID: 36139875 PMCID: PMC9495557 DOI: 10.3390/antiox11091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Eugen Dumitru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
15
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Karampelas O, Musuc AM, Atkinson I, Rusu A, Petrescu S, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Badea V. Evaluation of Usnea barbata (L.) Weber ex F.H. Wigg Extract in Canola Oil Loaded in Bioadhesive Oral Films for Potential Applications in Oral Cavity Infections and Malignancy. Antioxidants (Basel) 2022; 11:antiox11081601. [PMID: 36009320 PMCID: PMC9404812 DOI: 10.3390/antiox11081601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/16/2022] Open
Abstract
Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Călimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film’s weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (E.M.); (V.S.); (E.A.O.); (O.K.); (A.M.M.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
16
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
17
|
Pagano C, Ceccarini MR, Faieta M, di Michele A, Blasi F, Cossignani L, Beccari T, Oliva E, Pittia P, Sergi M, Primavilla S, Serafini D, Benedetti L, Ricci M, Perioli L. Starch-based sustainable hydrogel loaded with Crocus sativus petals extract: A new product for wound care. Int J Pharm 2022; 625:122067. [PMID: 35931396 DOI: 10.1016/j.ijpharm.2022.122067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The aim of the present study was to valorize Crocus sativus petals, the main waste deriving from saffron stigma harvesting, as source of bioactive molecules to be used in health field. Three different dry extracts were prepared by eco-friendly methods (maceration and ultrasound bath assisted maceration) using saffron petals as raw material and ethanol 70 % either ethanol 96 % as extraction solvents. A preliminary evaluation of the antioxidant activity (measured by ABTS*+, DPPH* and FRAP) highlighted that the most suitable extraction solvent is represented by ethanol 70 %. By in vitro studies on keratinocytes emerged that the extract obtained by maceration (rich in gallic and chlorogenic acids) stimulates their growth in a safe concentration range (0.02-0.4 mg/mL) suggesting a potential application in skin diseases such as superficial wounds. Due to the low manageability, the extract was firstly supported on corn starch powder particles and then formulated as starch gel. The obtained formulation showed both suitable rheological properties and spreadability necessary for an easy and pain free application on damaged skin. Moreover, in vitro microbiological studies of starch gel demonstrated antimicrobial activity toward S. epidermidis and self-preserving capacity.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Marco Faieta
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Eleonora Oliva
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Manuel Sergi
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Domiziana Serafini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lucia Benedetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
18
|
Patel J, Maiti S, Moorthy NHN. Repaglinide-laden hydrogel particles of xanthan gum derivatives for the management of diabetes. Carbohydr Polym 2022; 287:119354. [DOI: 10.1016/j.carbpol.2022.119354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
|
19
|
Xanthan and alginate-matrix used as transdermal delivery carrier for piroxicam and ketoconazole. Int J Biol Macromol 2022; 209:2084-2096. [PMID: 35500769 DOI: 10.1016/j.ijbiomac.2022.04.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
This study presents new drug delivery systems based on xanthan, unmodified or modified by esterification with oleic acid, and alginate for controlled release of bioactive substances with anti-inflammatory (piroxicam) and antifungal properties (ketoconazole). The mechanical properties of the developed drug carriers showed that their compressive strength was affected by the encapsulation of the bioactive principles. When ketoconazole was added into the xanthan/alginate matrix, an increment in the mechanical strength was recorded (66.68% compression). The release of the active principles from the materials was best described by the Korsmeyer-Peppas model, with non-Fickian or Fickian diffusion (the values of the exponent of release are between 0.29 and 0.75), depending on the composition of the polymeric matrix. The release rate constant presents smaller values for the materials based on chemically modified xanthan (between 0.89 and 20.11) as compared with materials based on the unmodified form (between 4.27 and 25.00). All materials were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The designed systems prove to have antimicrobial and anti-inflammatory activity. The findings make prone these biomaterials for the manufacture of transdermal drug delivery systems.
Collapse
|
20
|
Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics 2022; 14:pharmaceutics14030485. [PMID: 35335859 PMCID: PMC8948950 DOI: 10.3390/pharmaceutics14030485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The success of wound treatment is conditioned by the combination of both suitable active ingredients and formulation. Grape seed extract (GSE), a waste by-product obtained by grape processing, is a natural source rich in many phenolic compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities and for this reason useful to be used in a wound care product. Bioadhesive polymeric patches have been realized by combining acacia gum (AG) and polyvinylpyrrolidone (PVP). Prototypes were prepared by considering different AG/PVP ratios and the most suitable in terms of mechanical and bioadhesion properties resulted in the 9.5/1.0 ratio. This patch was loaded with GSE combined with cyclic dextrin (CD) to obtain the molecular dispersion of the active ingredient in the dried formulation. The loaded patch resulted mechanically resistant and able to release GSE by a sustained mechanism reaching concentrations able to stimulate keratinocytes’ growth, to exert both antibacterial and antioxidant activities.
Collapse
|
21
|
Demir GC, Erdemli Ö, Keskin D, Tezcaner A. Xanthan-gelatin and xanthan-gelatin-keratin wound dressings for local delivery of Vitamin C. Int J Pharm 2021; 614:121436. [PMID: 34974152 DOI: 10.1016/j.ijpharm.2021.121436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 01/17/2023]
Abstract
Recently, functional dressings that can protect the wound area from dehydration and bacterial infection and support healing have gained importance in place of passive dressings. This study aimed to develop temporary and regenerative xanthan/gelatin (XGH) and keratin/xanthan/gelatin hydrogels (KXGHs) that have high absorption capacity and applicability as a wound dressing that can provide local delivery of Vitamin C (VC). Firstly, xanthan/gelatin hydrogels were produced by crosslinking with different glycerol concentrations and characterized to determine the hydrogel composition. According to their weight ratios, xanthan, gelatin, and glycerol hydrogels are named. If their weight ratio is 1:1:2 (w/w/w), the group name is selected as X1:GEL1:GLY2. X1:GEL1:GLY2 hydrogel was selected for biocompatibility, mechanical property, water vapor transmission rate (WVTR), and porosity. The addition of keratin to X1:GEL1:GLY2 improved L929 fibroblasts viability and increased protein release. Water vapor transmission of XGHs and KXGHs was between 3059.09 ± 126 and 4523 ± 133 g m-2 d-1; therefore, they can be suitable for granulating, low to moderate exudate wounds. XGH and KXGHs loaded with VC had higher water uptake, making it more convenient for exudate wounds. VC was released for 100 h, and VC containing XGHs and KXGHs increased the collagen synthesis of L929 fibroblasts. All of the hydrogels (XGH, KXGH, and VC-KXGHs) inhibited the bacteria transmission. In conclusion, our results suggest that VC-XGH and VC-KXGH can be candidates for temporary wound dressing materials for skin wounds.
Collapse
Affiliation(s)
- Gizem Cigdem Demir
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Özge Erdemli
- Department of Molecular Biology and Genetics, Başkent University, Turkey
| | - Dilek Keskin
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey.
| |
Collapse
|
22
|
Li J, Yu X, Martinez EE, Zhu J, Wang T, Shi S, Shin SR, Hassan S, Guo C. Emerging Biopolymer-Based Bioadhesives. Macromol Biosci 2021; 22:e2100340. [PMID: 34957668 DOI: 10.1002/mabi.202100340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Bioadhesives have been widely used in healthcare and biomedical applications due to their ease-of-operation for wound closure and repair compared to conventional suturing and stapling. However, several challenges remain for developing ideal bioadhesives, such as unsatisfied mechanical properties, non-tunable biodegradability, and limited biological functions. Considering these concerns, naturally derived biopolymers have been considered good candidates for making bioadhesives owing to their ready availability, facile modification, tunable mechanical properties, and desired biocompatibility and biodegradability. Over the past several years, remarkable progress has been made on biopolymer-based adhesives, covering topics from novel materials designs and advanced processing to clinical translation. The developed bioadhesives have been applied for diverse applications, including tissue adhesion, hemostasis, antimicrobial, wound repair/tissue regeneration, and skin-interfaced bioelectronics. Here in this comprehensive review, recent progress on biopolymer-based bioadhesives is summarized with focuses on clinical translations and multifunctional bioadhesives. Furthermore, challenges and opportunities such as weak adhesion strength at the hydrated state, mechanical mismatch with tissues, and unfavorable immune responses are discussed with an aim to facilitate the future development of high-performance biopolymer-based bioadhesives.
Collapse
Affiliation(s)
- Jinghang Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China.,School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Xin Yu
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| | | | - Jiaqing Zhu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Shengwei Shi
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
23
|
Bandyopadhyay S, Sáha T, Sanétrník D, Saha N, Sáha P. Thermo Compression of Thermoplastic Agar-Xanthan Gum-Carboxymethyl Cellulose Blend. Polymers (Basel) 2021; 13:3472. [PMID: 34685232 PMCID: PMC8541485 DOI: 10.3390/polym13203472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
There is a gap in the literature for the preparation of agar-xanthan gum-carboxymethyl cellulose-based films by thermo compression methods. The present work aims to fill this gap by blending the polysaccharides in a plastograph and preparation of films under high pressure and temperature for a short duration of time. The pivotal aim of this work is also to know the effect of different mixing conditions on the physical, chemical, mechanical and thermal properties of the films. The films are assessed based on results from microscopic, infrared spectroscopic, permeability (WVTR), transmittance, mechanical, rheological and thermogravimetric analysis. The results revealed that the mixing volume and mixing duration had negative effects on the films' transparency. WVTR was independent of the mixing conditions and ranged between 1078 and 1082 g/m2·d. The mixing RPM and mixing duration had a positive effect on the film tensile strength. The films from the blends mixed at higher RPM for a longer time gave elongation percentage up to 78%. Blending also altered the crystallinity and thermal behavior of the polysaccharides. The blend prepared at 80 RPM for 7 min and pressed at 140 °C showed better percent elongation and light barrier properties.
Collapse
Affiliation(s)
- Smarak Bandyopadhyay
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (D.S.); (N.S.); (P.S.)
| | - Tomáš Sáha
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic;
| | - Daniel Sanétrník
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (D.S.); (N.S.); (P.S.)
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (D.S.); (N.S.); (P.S.)
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic;
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (D.S.); (N.S.); (P.S.)
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV, 3685 Zlin, Czech Republic;
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| |
Collapse
|