1
|
Saha S, Tandon R, Sanku J, Kumari A, Shukla R, Srivastava N. siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. Int J Pharm 2025; 674:125463. [PMID: 40081431 DOI: 10.1016/j.ijpharm.2025.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hormone-related cancers, also known as hormone-sensitive or hormone-dependent cancers, rely on hormones such as estrogen, testosterone, and progesterone for growth. These malignancies, including breast, pituitary, thyroid, ovarian, uterine, cervical, and prostate cancers, often exhibit accelerated progression in response to hormonal signaling. Small interfering RNA (siRNA) has emerged as a groundbreaking gene suppression therapy since the FDA approval of its first product in 2018. With over 200 ongoing clinical trials, siRNA is being actively explored as a targeted treatment for hormone-related cancers. Its ability to silence specific oncogenes offers significant advantages over conventional therapies, which are often associated with toxicity, resistance, and non-specific targeting. However, challenges in siRNA delivery remain a major barrier to its clinical translation, limiting its ability to reach target cells effectively. This review evaluates the potential of siRNA in hormone-related cancers, addressing the shortcomings of traditional treatments while examining novel strategies to enhance siRNA delivery and overcome tumor microenvironment obstacles. Notably, no existing literature comprehensively consolidates siRNA-based therapies for these cancers, emphasizing the importance of this manuscript in bridging current knowledge gaps and advancing the translational application of siRNA therapeutics.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Jhansi Sanku
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Anchala Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
2
|
Liu J, Wang S, Tan G, Tong B, Wu Y, Zhang L, Jiang B. Chitosan-Artesunate nanoparticles: A dual anti-fibrotic and anti-inflammatory strategy for preventing bleb fibrosis post-glaucoma filtration surgery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01819-7. [PMID: 40019651 DOI: 10.1007/s13346-025-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Glaucoma filtration surgery (GFS) effectively lowers intraocular pressure in glaucoma patients, but postoperative bleb fibrosis often leads to surgical failure. Artesunate (ART) has demonstrated antifibrotic potential; however, its clinical use is limited by poor solubility and rapid degradation. This study aimed to develop chitosan-ART nanoparticles (CS@ART NPs) to improve ART's therapeutic efficacy in preventing bleb fibrosis. CS@ART NPs were synthesized using an ionic gelation method for chitosan encapsulation. Their characterization, including analyses of morphology, hydrodynamic properties, surface charge, encapsulation efficiency, drug release kinetics, stability, chemical structure, and mucoadhesive interactions, was carried out using various techniques such as TEM, DLS, zeta potential analysis, HPLC, FT-IR, 1H-NMR, and adhesion assays. The antifibrotic effects were evaluated in a rabbit GFS model through subconjunctival injection. Histological analysis as well as immunohistochemistry for fibrosis markers α-SMA and fibronectin were detected. In vitro studies were conducted using human primary ocular fibroblasts stimulated with TGF-β1 to assess anti-inflammatory and anti-proliferative effects, measured by EdU incorporation, Western blot for signaling pathway components, and cytokine expression. CS@ART NPs exhibited a uniform size distribution (135.73 ± 0.90 nm), stable dispersion, high encapsulation efficiency (86.4%), and sustained drug release. In the GFS model, a single subconjunctival injection of CS@ART significantly reduced collagen deposition, as well as α-SMA and fibronectin expression at the surgical site. In vitro, CS@ART demonstrated superior antifibrotic effects with a significantly lower IC50 for inhibiting fibroblast proliferation compared to ART alone. Mechanically, CS@ART suppressed the Cyclin D1-CDK4/6, TGF-β1/SMAD, and PI3K/Akt signaling pathways. Additionally, CS@ART showed marked anti-inflammatory effects, reducing inflammatory cell infiltration and IL-6 expression. CS@ART NPs play a dual role both alleviate bleb fibrosis and inflammation after GFS as a promising therapeutic strategy for improving surgical outcomes in glaucoma patients.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Menezes Ferreira A, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa
dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 PMCID: PMC11815637 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira,
Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
4
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
5
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024; 113:3413-3433. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
6
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Saroj S, Us P, Patil S, Paul D, Saha S, Ali A, Pal S, Lochab B, Rakshit T. Herb Extracellular Vesicle-Chitosan-PEGylated Graphene Oxide Conjugate Delivers Estrogen Receptor α Targeting siRNA to Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2741-2751. [PMID: 38630629 DOI: 10.1021/acsabm.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.
Collapse
Affiliation(s)
- Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Poornima Us
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sachin Patil
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sunita Saha
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Akbar Ali
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
| | - Suchetan Pal
- Department of Chemistry, IIT Bhilai, Durg, Chhattisgarh 491001, India
- Department of Bioscience and Biomedical Engineering, IIT Bhilai, Durg 491001, India
| | - Bimlesh Lochab
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
8
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
9
|
Atkova EL, Krakhovetskiy NN, Fokina ND, Murakhovskaya YK, Kulish KK, Avagyan AS, Smirnova NS. [Pharmacological prevention of fibrosis in dacryosurgery]. Vestn Oftalmol 2024; 140:180-189. [PMID: 38739149 DOI: 10.17116/oftalma2024140022180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Chronic inflammatory process in the lacrimal drainage system is the main etiological factor leading to dacryostenosis and consequent obliteration - partial and total nasolacrimal duct obstruction. Prevention of this process is an urgent problem in dacryology. Currently, there is very little research on the development and use of conservative methods for treating dacryostenosis using anti-inflammatory, as well as anti-fibrotic drugs. In this regard, the main method of treating lacrimal drainage obstruction is dacryocystorhinostomy. However, the problem of recurrence after this operation has not been resolved. The causes of recurrence can be cicatricial healing of dacryocystorhinostomy ostium, canalicular obstruction, formation of granulations and synechiae in its area. Surgical methods of recurrence prevention are associated with possible complications, and there is conflicting data on the feasibility of their use. Based on this, the development of pharmacological methods for the prevention of fibrosis in dacryology is promising, among which the antitumor antibiotic Mitomycin C is the most studied. However, there are no specific scientifically substantiated recommendations for the use of this drug, and the data on its effectiveness vary. This has prompted researchers to look for and study alternative anti-fibrotic agents, such as antitumor drugs, glucocorticoids, hyaluronic acid, small molecule, biological, immunological and genetically engineered drugs, as well as nanoparticles. This review presents the current data on the efficacy and prospects of the use of these drugs in dacryology.
Collapse
Affiliation(s)
- E L Atkova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | | | - N D Fokina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu K Murakhovskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - K K Kulish
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - A S Avagyan
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - N S Smirnova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
Carels N, Sgariglia D, Junior MGV, Lima CR, Carneiro FRG, da Silva GF, da Silva FAB, Scardini R, Tuszynski JA, de Andrade CV, Monteiro AC, Martins MG, da Silva TG, Ferraz H, Finotelli PV, Balbino TA, Pinto JC. A Strategy Utilizing Protein-Protein Interaction Hubs for the Treatment of Cancer Diseases. Int J Mol Sci 2023; 24:16098. [PMID: 38003288 PMCID: PMC10671768 DOI: 10.3390/ijms242216098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023] Open
Abstract
We describe a strategy for the development of a rational approach of neoplastic disease therapy based on the demonstration that scale-free networks are susceptible to specific attacks directed against its connective hubs. This strategy involves the (i) selection of up-regulated hubs of connectivity in the tumors interactome, (ii) drug repurposing of these hubs, (iii) RNA silencing of non-druggable hubs, (iv) in vitro hub validation, (v) tumor-on-a-chip, (vi) in vivo validation, and (vii) clinical trial. Hubs are protein targets that are assessed as targets for rational therapy of cancer in the context of personalized oncology. We confirmed the existence of a negative correlation between malignant cell aggressivity and the target number needed for specific drugs or RNA interference (RNAi) to maximize the benefit to the patient's overall survival. Interestingly, we found that some additional proteins not generally targeted by drug treatments might justify the addition of inhibitors designed against them in order to improve therapeutic outcomes. However, many proteins are not druggable, or the available pharmacopeia for these targets is limited, which justifies a therapy based on encapsulated RNAi.
Collapse
Affiliation(s)
- Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Domenico Sgariglia
- Engenharia de Sistemas e Computação, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, RJ, Brazil;
| | - Marcos Guilherme Vieira Junior
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Carlyle Ribeiro Lima
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
| | - Gilberto Ferreira da Silva
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Fabricio Alves Barbosa da Silva
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Rafaela Scardini
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-255, RJ, Brazil
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
| | - Cecilia Vianna de Andrade
- Department of Pathology, Instituto Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22250-020, RJ, Brazil;
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro 24210-201, RJ, Brazil;
| | - Marcel Guimarães Martins
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Talita Goulart da Silva
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Helen Ferraz
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Priscilla Vanessa Finotelli
- Laboratório de Nanotecnologia Biofuncional, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Tiago Albertini Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil;
| | - José Carlos Pinto
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| |
Collapse
|
11
|
Lin Y, Cheng Q, Wei T. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. BIOPHYSICS REPORTS 2023; 9:255-278. [PMID: 38516300 PMCID: PMC10951480 DOI: 10.52601/bpr.2023.230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, we describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. We then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, we comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, we provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the "proof of concept" from the laboratory into the clinic. We believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, Purohit A, Welsby PJ, Harashima H, Yu‐Wai‐Man C, Tagalakis AD. The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipid-Based Nanoparticles for mRNA and DNA Delivery. Adv Healthc Mater 2023; 12:e2203022. [PMID: 36906918 PMCID: PMC11468535 DOI: 10.1002/adhm.202203022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/16/2023] [Indexed: 03/13/2023]
Abstract
Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated. The medium-term stability of the nanoparticles was evaluated by monitoring their physicochemical characteristics, entrapment and transfection efficiency, every two weeks over one month. It is demonstrated, that the use of cryoprotectants protects nanoparticles against loss of function and degradation in all storage conditions. Moreover, it is shown that the addition of sucrose enables all nanoparticles to remain stable and maintain their efficacy for up to a month when stored at -80 °C, regardless of cargo or type of nanoparticle. DNA-loaded nanoparticles also remain stable in a wider variety of storage conditions than mRNA-loaded ones. Importantly, these novel LNPs show increased GFP expression that can signify their future use in gene therapies, beyond the established role of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
| | | | - Elisha McNulty
- Department of BiologyEdge Hill UniversityOrmskirkL39 4QPUK
| | - Kai X. Thong
- Faculty of Life Sciences & MedicineKing's College LondonLondonSE1 7EHUK
| | - Yusuke Sato
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | - Aleksandr Mironov
- Electron Microscopy Core Facility (RRID: SCR_021147)Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterM13 9PTUK
| | - Atul Purohit
- Oncology Drug Discovery & Women's Health GroupDepartment of MetabolismDigestion & ReproductionImperial College LondonLondonW12 0HSUK
| | | | - Hideyoshi Harashima
- Faculty of Pharmaceutical SciencesHokkaido UniversityKita‐12, Nishi‐6, Kita‐kuSapporo060–0812Japan
| | | | | |
Collapse
|
13
|
Chapa González C, Martínez Saráoz JV, Roacho Pérez JA, Olivas Armendáriz I. Lipid nanoparticles for gene therapy in ocular diseases. Daru 2023; 31:75-82. [PMID: 36790734 PMCID: PMC10238339 DOI: 10.1007/s40199-023-00455-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVES Lipid nanoparticles, as a nucleic acid delivery system, have been used as an alternative to treat ocular diseases, since they can cross the ocular barrier and efficiently transfecting nucleic acids to various cells of the eye. The size influences the transfection of genes, biological distribution, diffusion, and cellular uptake. It is therefore important to establish a relationship between size, formulation, and encapsulation percentage. EVIDENCE ACQUISITION In this review, we used a search strategy to compare studies of nanomedicine systems aimed at eye diseases where the size of the nanoparticles and the efficiency of encapsulation of genetic material are reported based on the criteria of Preferred Reporting Items for Systematic Reviews (PRISMA ScR 2020 guidelines). RESULTS Out of the initial 5932, 169 studies met the inclusion criteria and were included to form the basis of the analysis. Nanoparticles reported are composed mainly of PEG-modified lipids, cholesterol, and cationic lipids, that in combination with messenger or interference RNA, allow the formulation of a nanoparticle with an encapsulation efficiency greater than 95%. The diseases treated mainly focus on conditions related to the retina and cornea. Certain characteristics of nanoparticles increase encapsulation efficiency, such as the size of the nanoparticle and the charge of the outer layer of the nanoparticle. CONCLUSION It is still unknown what characteristics lipid nanoparticles should have to successfully treat human eye illnesses. The in vitro and in vivo investigations covered in this review, however, present encouraging results. To improve encapsulation effectiveness and disease gene silencing, nanoparticle formulation is essential. The most stable nanoparticles are those made mostly of cationic lipids, PEG lipids, and cholesterol, which also effectively encapsulate RNA. The encapsulation efficiency is not only influenced by size, but also by other factors such as methods of preparation.
Collapse
Affiliation(s)
- Christian Chapa González
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico.
| | - Jessica Victoria Martínez Saráoz
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Centro de Investigación en Materiales Avanzados, 66600, Apodaca, Nuevo León, Mexico
| | - Jorge Alberto Roacho Pérez
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, 64460, Monterrey, Nuevo León, Mexico
| | - Imelda Olivas Armendáriz
- Departamento de Física y Matemáticas de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
| |
Collapse
|
14
|
Ioannou N, Luo J, Qin M, Di Luca M, Mathew E, Tagalakis AD, Lamprou DA, Yu-Wai-Man C. 3D-printed long-acting 5-fluorouracil implant to prevent conjunctival fibrosis in glaucoma. J Pharm Pharmacol 2023; 75:276-286. [PMID: 36617180 PMCID: PMC10813237 DOI: 10.1093/jpp/rgac100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery. METHODS 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology. The 5-FU concentration released over 8 weeks was measured by ultraviolet visible spectroscopy. The effects on cell viability, fibroblast contractility and the expression of key fibrotic genes were assessed in human conjunctival fibroblasts. KEY FINDINGS The PCL-CS-5-FU implant sustainably released 5-FU over 8 weeks and the peak concentration was over 6.1 μg/ml during weeks 1 and 2. The implant had a smooth surface and its total weight decreased by 3.5% after 8 weeks. The PCL-CS-5-FU implant did not affect cell viability in conjunctival fibroblasts and sustainably suppressed fibroblast contractility and key fibrotic genes for 8 weeks. CONCLUSIONS The PCL-CS-5-FU implant was biocompatible and degradable with a significant effect in suppressing fibroblast contractility. The PCL-CS-5-FU implant could be used as a sustained release drug implant, replacing the need for repeated 5-FU injections in clinic, to prevent conjunctival fibrosis after glaucoma surgery.
Collapse
Affiliation(s)
- Nicole Ioannou
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jinyuan Luo
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Matteo Di Luca
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | | | | | | | | |
Collapse
|
15
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
16
|
Luo J, Tan G, Thong KX, Kafetzis KN, Vallabh N, Sheridan CM, Sato Y, Harashima H, Tagalakis AD, Yu-Wai-Man C. Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery. Pharmaceutics 2022; 14:pharmaceutics14112472. [PMID: 36432663 PMCID: PMC9693853 DOI: 10.3390/pharmaceutics14112472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide cΥ, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of MRTF-B silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced MRTF-B gene and were non-cytotoxic in TM and FF cells. The presence of cΥ made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with cΥ achieved a greater decrease in contractility compared to LNPs without cΥ. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.
Collapse
Affiliation(s)
- Jinyuan Luo
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Greymi Tan
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
| | | | - Neeru Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Aristides D. Tagalakis
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK
- Correspondence: (A.D.T.); (C.Y.-W.-M.); Tel.: +44-(0)1695-650923 (A.D.T.); +44-(0)2071-881504 (C.Y.-W.-M.)
| | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
- Correspondence: (A.D.T.); (C.Y.-W.-M.); Tel.: +44-(0)1695-650923 (A.D.T.); +44-(0)2071-881504 (C.Y.-W.-M.)
| |
Collapse
|
17
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
18
|
Tan G, Ioannou N, Mathew E, Tagalakis AD, Lamprou DA, Yu-Wai-Man C. 3D printing in Ophthalmology: From medical implants to personalised medicine. Int J Pharm 2022; 625:122094. [PMID: 35952803 DOI: 10.1016/j.ijpharm.2022.122094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems. In addition, 3D printed medical devices and implants can be customised for each patient to provide a more tailored treatment approach. The advantages and applications of 3D printing can be used to treat patients with different eye conditions, with advances in 3D bioprinting offering novel therapy applications in ophthalmology. The purpose of this review paper is to provide an in-depth understanding of the applications and advantages of 3D printing in treating different ocular conditions in the cornea, glaucoma, retina, lids and orbits.
Collapse
Affiliation(s)
- Greymi Tan
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Nicole Ioannou
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
19
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Sanghani A, Andriesei P, Kafetzis KN, Tagalakis AD, Yu‐Wai‐Man C. Advances in exosome therapies in ophthalmology-From bench to clinical trial. Acta Ophthalmol 2022; 100:243-252. [PMID: 34114746 DOI: 10.1111/aos.14932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice.
Collapse
Affiliation(s)
- Amisha Sanghani
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | - Petru Andriesei
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| | | | | | - Cynthia Yu‐Wai‐Man
- Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Ophthalmology St Thomas’ Hospital London UK
| |
Collapse
|
21
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
22
|
Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021; 13:2053. [PMID: 34959335 PMCID: PMC8708541 DOI: 10.3390/pharmaceutics13122053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| |
Collapse
|
23
|
Quagliarini E, Renzi S, Digiacomo L, Giulimondi F, Sartori B, Amenitsch H, Tassinari V, Masuelli L, Bei R, Cui L, Wang J, Amici A, Marchini C, Pozzi D, Caracciolo G. Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery. Pharmaceutics 2021; 13:1292. [PMID: 34452253 PMCID: PMC8400491 DOI: 10.3390/pharmaceutics13081292] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have gained considerable attention in numerous research fields ranging from gene therapy to cancer immunotherapy and DNA vaccination. While some RNA-encapsulating LNP formulations passed clinical trials, DNA-loaded LNPs have been only marginally explored so far. To fulfil this gap, herein we investigated the effect of several factors influencing the microfluidic formulation and transfection behavior of DNA-loaded LNPs such as PEGylation, total flow rate (TFR), concentration and particle density at the cell surface. We show that PEGylation and post-synthesis sample concentration facilitated formulation of homogeneous and small size LNPs with high transfection efficiency and minor, if any, cytotoxicity on human Embryonic Kidney293 (HEK-293), spontaneously immortalized human keratinocytes (HaCaT), immortalized keratinocytes (N/TERT) generated from the transduction of human primary keratinocytes, and epidermoid cervical cancer (CaSki) cell lines. On the other side, increasing TFR had a detrimental effect both on the physicochemical properties and transfection properties of LNPs. Lastly, the effect of particle concentration at the cell surface on the transfection efficiency (TE) and cell viability was largely dependent on the cell line, suggesting that its case-by-case optimization would be necessary. Overall, we demonstrate that fine tuning formulation and microfluidic parameters is a vital step for the generation of highly efficient DNA-loaded LNPs.
Collapse
Affiliation(s)
- Erica Quagliarini
- Department of Chemistry, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Serena Renzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| | - Luca Digiacomo
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| | - Francesca Giulimondi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| | - Barbara Sartori
- Institute of inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria; (B.S.); (H.A.)
| | - Heinz Amenitsch
- Institute of inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria; (B.S.); (H.A.)
| | - Valentina Tassinari
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (L.C.); (J.W.); (A.A.); (C.M.)
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (L.C.); (J.W.); (A.A.); (C.M.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (L.C.); (J.W.); (A.A.); (C.M.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (L.C.); (J.W.); (A.A.); (C.M.)
| | - Daniela Pozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| | - Giulio Caracciolo
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (S.R.); (L.D.); (F.G.); (V.T.)
| |
Collapse
|
24
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|