1
|
Schoenfelder H, Reuter M, Evers DH, Herbig ME, Lunter DJ. Ceramide Profiling of Porcine Skin and Systematic Investigation of the Impact of Sorbitan Esters (SEs) on the Barrier Function of the Skin. Mol Pharm 2025; 22:2019-2028. [PMID: 40066742 PMCID: PMC11979889 DOI: 10.1021/acs.molpharmaceut.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/08/2025]
Abstract
The stratum corneum (SC) lipids provide the main barrier of the skin against the environment. Ceramides make up about half of the lipids by weight and are thus of particular interest. Emulsifiers are used in a multitude of topical formulations, e.g., to stabilize emulsions against coalescence. Investigations showed that some emulsifiers have the potential to impair skin barrier function. Sorbitan esters (SEs) are frequently used emulsifiers in pharmaceutical and cosmetic dermal formulations. Further, cholesterol and lecithin were used as natural alternatives. However, information on their impact on ceramides is very scarce. Thus, we first analyzed the SEs by LC-MS with regard to their composition. Then we developed an LC-MS method to identify and quantify the ceramides in porcine skin and subsequently investigated the impact of emulsifiers on the ceramide profile. Besides the LC-MS measurements, the effect of emulsifiers on the skin barrier function was investigated by trans-epidermal water loss (TEWL) measurements and confocal Raman spectroscopy (CRS). Throughout the experiments, water was used as a negative control and sodium lauryl sulfate (SLS) as a positive control. It was found that SEs are mixtures of mono-, di-, and triesters, partially with a complex fatty acid distribution. LC-MS measurements of the total ceramide content of the SC samples revealed the SE 60 and cholesterol-treated samples to be those showing the least ceramide depletion, implying a high skin tolerability in general. The TEWL measurements showed that SEs 40, 60, 80, and 120 showed no significant changes in skin barrier function. The lipid content, measured by CRS, was mostly decreased except for SE 120. Conformation, chain order, and SC thickness, also measured by CRS, showed no significant differences. These detailed investigations lead to the view that SEs are skin-friendly substances and can be used for topical applications, e.g., those commonly used to treat skin diseases.
Collapse
Affiliation(s)
- Hans Schoenfelder
- Department
of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Moritz Reuter
- Department
of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | | | | | - Dominique Jasmin Lunter
- Department
of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| |
Collapse
|
2
|
Steiner K, Hübel P, Srndic A, Klang V. Optimizing ex vivo penetration tests via quantitative confocal Raman spectroscopy: Impact of incubation time, skin hydration, surfactant treatment and UVA irradiation on caffeine distribution. Int J Pharm 2024; 667:124932. [PMID: 39528143 DOI: 10.1016/j.ijpharm.2024.124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
Collapse
Affiliation(s)
- Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Pia Hübel
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Azra Srndic
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| |
Collapse
|
3
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Mojsiewicz-Pieńkowska K, Bazar D, Filipecki J, Chamerski K. Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS). Int J Mol Sci 2024; 25:6472. [PMID: 38928177 PMCID: PMC11203785 DOI: 10.3390/ijms25126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao-Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains.
Collapse
Affiliation(s)
- Krystyna Mojsiewicz-Pieńkowska
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Dagmara Bazar
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland;
| | - Jacek Filipecki
- Institute of Physics, Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (J.F.); (K.C.)
| | - Kordian Chamerski
- Institute of Physics, Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (J.F.); (K.C.)
| |
Collapse
|
5
|
Mias C, Stennevin A, Doat G, Catté A, Chlasta J, Bessou-Touya S, Duplan H. Effect of a low-mineralized thermal spring water on skin barrier mechanical properties using atomic force microscopy. Exp Dermatol 2024; 33:e15113. [PMID: 38855894 DOI: 10.1111/exd.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
The mineral content of thermal spring water (TSW) applied to the skin surface can directly influence the skin barrier. Indeed, our previous study showed that Avène TSW (ATSW), a low mineral content thermal spring water, protects the stratum corneum from dehydration compared to a mineral-rich TSW (MR-TSW) and maintains skin surface ultrastructure. While many TSWs have been recognized to have beneficial effects on skin, little is known about their localized and specific effects on skin barrier biomechanics at the nanometric scale. The aim of this study was to compare the effects of ATSW with a reference, MR-TSW, on the biomechanical barrier properties of the skin under homeostasis conditions using atomic force microscopy (AFM). AFM was used to obtain a precise nanomechanical mapping of the skin surface after three applications of both TSW. This provides specific information on the skin topographical profile and elasticity. The topographic profile of skin samples showed a specific compaction of the skin layers after application of MR-TSW, characterized by an increase of the total number of external skin layers, compared to non-treated samples. By contrast, ATSW did not modify the skin topographic profile. High-resolution force/volume acquisitions to capture the elastic modulus showed that it was directly correlated with skin rigidity. The elastic modulus strongly and significantly increased after MR-TSW application compared to non-treated skin. By contrast, applications of ATSW did not increase elastic modulus. These data demonstrate that applications of MR-TSW significantly modified skin barrier properties by increasing skin surface layer compaction and skin rigidity. By contrast, ATSW did not modify the topographical profile of skin explants nor induce mechanical stress at the level of the stratum corneum, indicating it does not disrupt the biophysical properties linked to skin surface integrity.
Collapse
Affiliation(s)
- C Mias
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | | | - G Doat
- Direction médicale AVENE, Lavaur, France
| | | | | | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Toulouse, France
| |
Collapse
|
6
|
Zhong F, Lu H, Meng R, Feng C, Jia H, Yang HF, Wang F. Effect of Penetration Enhancer on the Structure of Stratum Corneum: On-Site Study by Confocal Polarized Raman Imaging. Mol Pharm 2024; 21:1300-1308. [PMID: 38294949 DOI: 10.1021/acs.molpharmaceut.3c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Keratin and lipid structures in the stratum corneum (SC) are closely related to the SC barrier function. The application of penetration enhancers (PEs) disrupts the structure of SC, thereby promoting infiltration. To quantify these PE-induced structural changes in SC, we used confocal Raman imaging (CRI) and polarized Raman imaging (PRI) to explore the integrity and continuity of keratin and lipid structures in SC. The results showed that water is the safest PE and that oleic acid (OA), sodium dodecyl sulfate (SDS), and low molecular weight protamine (LMWP) disrupted the ordered structure of keratin, while azone and liposomes had less of an effect on keratin. Azone, OA, and SDS also led to significant changes in lipid structure, while LMWP and liposomes had less of an effect. Establishing this non-invasive and efficient strategy will provide new insights into transdermal drug delivery and skin health management.
Collapse
Affiliation(s)
- Feng Zhong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Hangwei Lu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
- Hangzhou Shiguang Xinya Biotechnology Ltd., Hangzhou 310000, P.R. China
| | - Ru Meng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Chunbo Feng
- Shanghai Jahwa United Co., Ltd., Shanghai 200438, P.R. China
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai 200438, P.R. China
| | - Hai-Feng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
7
|
Passos JS, Apolinario AC, Ishida K, Martins TS, Lopes LB. Nanostructured lipid carriers loaded into in situ gels for breast cancer local treatment. Eur J Pharm Sci 2024; 192:106638. [PMID: 37967657 DOI: 10.1016/j.ejps.2023.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
In this study, nanostructured lipid carriers (NLC) were developed and employed to obtain in situ thermosensitive formulations for the ductal administration and prolonged retention of drugs as a new strategy for breast cancer local treatment. NLC size was influenced by the type and concentration of the oil phase, surfactants, and drug incorporation, ranging from 221.6 to 467.5 nm. The type of liquid lipid influenced paclitaxel and 5-fluorouracil cytotoxicity, with tributyrin-containing NLC reducing IC50 values by 2.0-7.0-fold compared to tricaprylin NLC in MCF-7, T-47D and MDA-MB-231 cells. In spheroids, the NLCs reduced IC50 compared to either drug solution (3.2-6.2-fold). Although a significant reduction (1.26 points, p < 0.001) on the health index of Galleria mellonella larvae was observed 5 days after NLC administration, survival was not significantly reduced. To produce thermosensitive gels, the NLCs were incorporated in a poloxamer (11 %, w/w) dispersion, which gained viscosity (2-fold) at 37 °C. After 24 h, ∼53 % of paclitaxel and 83 % of 5-fluorouracil were released from the NLC; incorporation in the poloxamer gel further prolonged release. Intraductal administration of NLC-loaded gel increased the permanence of hydrophilic (2.2-3.0-fold) and lipophilic (2.1-2.3-fold) fluorescent markers in the mammary tissue compared to the NLC (as dispersion) and the markers solutions. In conclusion, these results contribute to improving our understanding of nanocarrier design with increased cytotoxicity and prolonged retention for the intraductal route. Tributyrin incorporation increased the cytotoxicity of paclitaxel and 5-fluorouracil in monolayer and spheroids, while NLC incorporation in thermosensitive gels prolonged tissue retention of both hydrophilic and hydrophobic compounds.
Collapse
Affiliation(s)
- Julia S Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo SP 05508-000, Brazil
| | - Alexsandra C Apolinario
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo SP 05508-000, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Tereza S Martins
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo SP 05508-000, Brazil.
| |
Collapse
|
8
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Şahin Bektay H, Sağıroğlu AA, Bozali K, Güler EM, Güngör S. The Design and Optimization of Ceramide NP-Loaded Liposomes to Restore the Skin Barrier. Pharmaceutics 2023; 15:2685. [PMID: 38140026 PMCID: PMC10747297 DOI: 10.3390/pharmaceutics15122685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/24/2023] Open
Abstract
The impairment of skin integrity derived from derangement of the orthorhombic lateral organization is mainly caused by dysregulation of ceramide amounts in the skin barrier. Ceramides, fatty acids, and cholesterol-containing nano-based formulations have been used to impair the skin barrier. However, there is still a challenge to formulate novel formulations consisting of ceramides due to their chemical structure, poor aqueous solubility, and high molecular weight. In this study, the design and optimization of Ceramide 3 (CER-NP)-loaded liposomes are implemented based on response surface methodology (RSM). The optimum CER-NP-loaded liposome was selected based on its particle size (PS) and polydispersity index (PDI). The optimum CER-NP-loaded liposome was imagined by observing the encapsulation by using a confocal laser scanning microscope (CLSM) within fluorescently labeled CER-NP. The characteristic liquid crystalline phase and lipid chain conformation of CER-NP-loaded liposomes were determined using attenuated total reflectance infrared spectroscopy (ATR-IR). The CER-NP-loaded liposomes were imagined using a field emission scanning electron microscope (FE-SEM). Finally, the in vitro release of CER-NP from liposomes was examined using modified Franz Cells. The experimental and predicted results were well correlated. The CLSM images of optimized liposomes were conformable with the other studies, and the encapsulation efficiency of CER-NP was 93.84 ± 0.87%. ATR-IR analysis supported the characteristics of the CER-NP-loaded liposome. In addition, the lipid chain conformation shows similarity with skin barrier lipid organization. The release pattern of CER-NP liposomes was fitted with the Korsmeyer-Peppas model. The cytotoxicity studies carried out on HaCaT keratinocytes supported the idea that the liposomes for topical administration of CER-NP could be considered relatively safe. In conclusion, the optimized CER-NP-loaded liposomes could have the potential to restore the skin barrier function.
Collapse
Affiliation(s)
- Hümeyra Şahin Bektay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye
- Health Science Institute, Istanbul University, Istanbul 34126, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul 34093, Türkiye
| | - Ali Asram Sağıroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul 34093, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, Istanbul 34500, Türkiye
| | - Kübra Bozali
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Science, Istanbul 34668, Türkiye
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Science, Istanbul 34668, Türkiye
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye
| |
Collapse
|
10
|
Évora AS, Abiakam N, Zhang Z, Johnson SA, Adams MJ, Bader DL, Worsley PR. Characterisation of superficial corneocyte properties over category I pressure ulcers: Insights into topographical and maturation changes. J Dermatol Sci 2023; 112:63-70. [PMID: 37953180 DOI: 10.1016/j.jdermsci.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pressure ulcers (PUs) are chronic wounds that are detrimental to the quality of life of patients. Despite advances in monitoring skin changes, the structure and function of skin cells over the site of pressure ulcers are not fully understood. OBJECTIVE The present study aims to evaluate local changes in the properties of superficial corneocytes in category 1 PU sites sampled from a cohort of hospitalised patients. METHODS Cells were collected from a PU-compromised site and an adjacent control area and their topographical, maturation and mechanical properties were analysed. RESULTS Corneocytes at the PU-compromised site were characterised by higher levels of immature cornified envelopes (p < 0.001) and greater amounts of desmoglein-1 (corneodesmosomal protein) (p < 0.001) compared to the adjacent control area. The cells at the control site presented the typical ridges-and-valleys topographical features of sacrum corneocytes. By contrast, the PU cells presented circular nano-objects at the cell surface, and, for some patients, the cell topography was deformed. CEs at the PU site were also smaller than at the control site. Although differences were not observed in the mechanical properties of the cells, those of the elderly patients were much softer compared with young subjects. CONCLUSION This is the first study investigating the changes in corneocyte properties in category I pressure ulcers. Superficial cells at the PU sites showed altered topographical and maturation characteristics. Further studies are required to elucidate if these changes are a consequence of early loss of skin integrity or a result of mechanical and microclimate insults to the skin surface.
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Nkemjika Abiakam
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Dan L Bader
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Peter R Worsley
- School of Health Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
de Boer FL, van der Molen HF, Kezic S. Epidermal biomarkers of the skin barrier in atopic and contact dermatitis. Contact Dermatitis 2023; 89:221-229. [PMID: 37571977 DOI: 10.1111/cod.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Dysfunction of the skin barrier plays a critical role in the initiation and progression of inflammatory skin diseases, such as atopic dermatitis and contact dermatitis. Epidermal biomarkers can aid in evaluating the functionality of the skin barrier and understanding the mechanisms that underlay its impairment. This narrative review provides an overview of recent studies on epidermal biomarkers associated with the function and integrity of the skin barrier, and their application in research on atopic dermatitis and contact dermatitis. The reviewed studies encompass a wide spectrum of molecular, morphological and biophysical biomarkers, mainly obtained from stratum corneum tape strips and biopsies. Lipids, natural moisturizing factors, and structural proteins are the most frequently reported molecular biomarkers. Additionally, corneocyte surface topography and elasticity show potential as biomarkers for assessing the physical barrier of the skin. In contact dermatitis studies, biomarkers are commonly employed to evaluate skin irritation and differentiate between irritant and allergic contact dermatitis. In atopic dermatitis, biomarkers are primarily utilized to identify differences between atopic and healthy skin, for predictive purposes, and monitoring response to therapies. While this overview identifies potential biomarkers for the skin barrier, their validation as epidermal biomarkers for atopic dermatitis and contact dermatitis has yet to be established.
Collapse
Affiliation(s)
- F L de Boer
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| | - H F van der Molen
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| | - S Kezic
- Public and Occupational Health Department, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Schoenfelder H, Liu Y, Jasmin Lunter D. Systematic investigation of factors, such as the impact of emulsifiers, which influence the measurement of skin barrier integrity by in-vitro trans-epidermal water loss (TEWL). Int J Pharm 2023; 638:122930. [PMID: 37028576 DOI: 10.1016/j.ijpharm.2023.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
Trans-epidermal water loss (TEWL) has been the most widely used method to assess the integrity of the skin barrier and evaluate the irritation potential or the protective properties of topical products for many years. It detects the amount of water that diffuses across the stratum corneum (SC) to the external environment. As one of the most important functions of the skin is to keep water inside the body, an increase in TEWL is used to indicate the skin's impaired barrier function. So far, a variety of commercial instruments are available to measure the TEWL. Their applications mainly focus on the in-vivo TEWL measurements for dermatological examinations or formulation development. Recently, an in-vitro TEWL probe has also been commercially released enabling preliminary tests with excised skin samples. In our study, we first aimed to optimize the experimental procedures for detecting the in-vitro TEWL of porcine skin. Secondly, different kinds of emulsifiers were applied to the skin, including polyethylene glycol-containing emulsifiers (PEG-ylated emulsifiers), sorbitan esters, cholesterol, and lecithin. Sodium lauryl sulfate (SLS) was used as a positive control, and water as a negative control. Based on the findings, we established a protocol for accurately measuring the in-vitro TEWL values, emphasizing that the temperature of the skin sample should be constantly maintained at 32℃. Subsequently, the influences of emulsifiers on the in-vitro TEWL were analyzed. They indicated a significant skin barrier impairment of PEG-20 cetyl ether, PEG-20 stearyl ether, and SLS on in-vitro skin. Furthermore, we interestingly found that there consistently was an alteration of the TEWL values, even after the application of water to the skin. Our findings are of special interest, as the European Medicines Agency (EMA) recommends the use of in-vitro TEWL to determine skin barrier intactness during Franz cell experiments. Thus, this study provides a validated protocol for measuring the in-vitro TEWL and elucidates the impact of emulsifiers on the skin barrier. It also improves the understanding of tolerable variations of in-vitro TEWL and offers recommendations for its use in research.
Collapse
Affiliation(s)
- Hans Schoenfelder
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Yali Liu
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
13
|
Liu M, Sharma M, Lu GL, Zhang Z, Yin N, Wen J. Full factorial design, physicochemical characterization, ex vivo investigation, and biological assessment of glutathione-loaded solid lipid nanoparticles for topical application. Int J Pharm 2022; 630:122381. [PMID: 36427694 DOI: 10.1016/j.ijpharm.2022.122381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
Abstract
l-Glutathione (GSH) has exceptional antioxidant activities against UVA irradiation-induced oxidative stress and is used widely for combatting skin ageing. However, topical administration of GSH is challenging due to its inability to penetrate the stratum corneum (SC). This study aims to evaluate the solid lipid nanoparticles (SLNs) carrier system for improving the skin penetration and stability of GSH. The GSH-loaded SLNs (GSH-SLNs) were prepared by the double emulsion technique and were optimized by a full factorial design. The optimized GSH-SLNs formulation had a mean particle size of 305 ± 0.6 nm and a zeta potential of + 20.1 ± 9.5 mV, suitable for topical delivery. The ex-vivo penetration study using human skin demonstrated a 3.7-fold improvement of GSH penetration across SC with GSH-SLNs when compared with aqueous GSH. GSH-SLNs prolonged antioxidant activity on UVA irradiated fibroblast cells when compared to GSH solution, preventing UVA-induced cell death and promoting cell growth for times over 48 h. This research has illustrated that as a carrier system, SLNs were able to enhance the physicochemical stability, skin penetration, and drug deposition in the viable epidermis and dermis layers of the skin for GSH, while also maintaining the ability to protect human skin fibroblast cells against oxidative stress caused by UVA irradiation. This delivery system shows future promise as a topical delivery platform for the topical delivery of GSH and other chemically similar bioactive compounds for improving skin health.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Structural and Functional Analysis of Excised Skins and Human Reconstructed Epidermis with Confocal Raman Spectroscopy and in Microfluidic Diffusion Chambers. Pharmaceutics 2022; 14:pharmaceutics14081689. [PMID: 36015315 PMCID: PMC9415586 DOI: 10.3390/pharmaceutics14081689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Several ex vivo and in vitro skin models are available in the toolbox of dermatological and cosmetic research. Some of them are widely used in drug penetration testing. The excised skins show higher variability, while the in vitro skins provide more reproducible data. The aim of the current study was to compare the chemical composition of different skin models (excised rat skin, excised human skin and human-reconstructed epidermis) by measurement of ceramides, cholesterol, lactate, urea, protein and water at different depths of the tissues. The second goal was to compile a testing system, which includes a skin-on-a-chip diffusion setup and a confocal Raman spectroscopy for testing drug diffusion across the skin barrier and accumulation in the tissue models. A hydrophilic drug caffeine and the P-glycoprotein substrate quinidine were used in the study as topical cream formulations. The results indicate that although the transdermal diffusion of quinidine is lower, the skin accumulation was comparable for the two drugs. The various skin models showed different chemical compositions. The human skin was abundant in ceramides and cholesterol, while the reconstructed skin contained less water and more urea and protein. Based on these results, it can be concluded that skin-on-a-chip and confocal Raman microspectroscopy are suitable for testing drug penetration and distribution at different skin layers within an exposition window. Furthermore, obese human skin should be treated with caution for skin absorption testing due to its unbalanced composition.
Collapse
|
15
|
Kocsis D, Klang V, Schweiger EM, Varga-Medveczky Z, Mihály A, Pongor C, Révész Z, Somogyi Z, Erdő F. Characterization and ex vivo evaluation of excised skin samples as substitutes for human dermal barrier in pharmaceutical and dermatological studies. Skin Res Technol 2022; 28:664-676. [PMID: 35726964 PMCID: PMC9907592 DOI: 10.1111/srt.13165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excised animal and human skins are frequently used in permeability testing in pharmaceutical research. Several factors exist that may have influence on the results. In the current study some of the skin parameters that may affect drug permeability were analysed for human, mouse, rat and pig skin. MATERIALS AND METHODS Classic biophysical skin parameters were measured (e.g. pH, hydration, permittivity, transepidermal water loss). Physiological characteristics of the skins were also analysed by confocal Raman spectroscopy, scanning electron microscopy and two-photon microscopy. RESULTS Based on biophysical testing, skin barrier function was damaged in psoriatic mouse skin and in marketed pig skin. Hydration and pH values were similar among the species, but freezing and thawing reduced the water content of the skins and shifted the surface pH to acidic. Aging reduced hydration and permittivity, resulting in impaired barrier function. Mechanical sensitization used in permeability studies resulted in proportional thinning of dead epidermis. DISCUSSION Results indicate that depending on the scientific question it should be considered whether fresh or frozen tissue is used, and for certain purposes rodent skins are well usable. The structure of the skin tissue (ceramide, cholesterol, keratin, natural moisturizing factor or urea) is similar in rats and mice, but due to the higher skin thickness the lipid distribution is different in porcine skin. Psoriasis led to irregular chemical composition of the skin. CONCLUSION A comprehensive evaluation of skin samples of four species was performed. The biophysical and microscopic observations should be considered when selecting drug penetration models and experimental conditions.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Victoria Klang
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Schweiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anna Mihály
- Institute of Experimental Medicine, H-1094, Budapest, Hungary
| | - Csaba Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | | | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
16
|
Mijaljica D, Spada F, Harrison IP. Skin Cleansing without or with Compromise: Soaps and Syndets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062010. [PMID: 35335373 PMCID: PMC8954092 DOI: 10.3390/molecules27062010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Products designed to cleanse the skin commonly do so through surfactant action, which leads to the lowering of the surface tension of the skin to facilitate the removal of dirt from its surface. Skin cleansers generally come in one of two types: soap-based and synthetic detergents, or syndets. While the latter can effectively maintain the native skin structure, function and integrity, the former tends to negatively affect the skin by causing barrier disruption, lipid dissolution and pH alteration. Despite this, soap is still often preferred, possibly due to the negative connotations around anything that is not perceived as 'natural'. It is, therefore, important that the science behind cleansers, especially those designed for the maintenance of healthy skin and the management of common skin conditions such as eczema, be understood by both formulators and end-users. Here, we carefully weigh the advantages and disadvantages of the different types of surfactant-the key ingredient(s) in skin cleansers-and provide insight into surfactants' physicochemical properties, biological activity and potential effects. Fine-tuning of the complex characteristics of surfactants can successfully lead to an 'optimal' skin cleanser that can simultaneously be milder in nature, highly effective and beneficial, and offer minimal skin interference and environmental impact.
Collapse
|
17
|
Vater C, Bosch L, Mitter A, Göls T, Seiser S, Heiss E, Elbe-Bürger A, Wirth M, Valenta C, Klang V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur J Pharm Biopharm 2021; 170:1-9. [PMID: 34798283 DOI: 10.1016/j.ejpb.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/11/2023]
Abstract
In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Leonie Bosch
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Alexandra Mitter
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Göls
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Elke Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Esposito T, Mencherini T, Sansone F, Auriemma G, Gazzerro P, Puca RV, Iandoli R, Aquino RP. Development, Characterization, and Clinical Investigation of a New Topical Emulsion System Containing a Castanea sativa Spiny Burs Active Extract. Pharmaceutics 2021; 13:1634. [PMID: 34683927 PMCID: PMC8539921 DOI: 10.3390/pharmaceutics13101634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
The study focused on the development and characterization of an O/W emulsion for skincare containing Castanea sativa spiny burs extract (CSE) as functional agent. The emulsion was stable and had suitable physicochemical and technological properties for dermal application and CSE showed no cytotoxicity in spontaneously immortalized keratinocytes (HaCaT) at active concentrations. A single-blind, placebo-controlled, monocentric study was designed to evaluate the skin tolerability and the skin performance of the CSE-loaded emulsion on healthy human volunteers. An improvement was observed in skin biomechanical properties such as hydration, skin elasticity and a reduction in the periorbital wrinkles in 30 days without altering the skin barrier function, sebum, pH, and erythema values. A significant skin moisturizing effect was detected while the skin barrier function was preserved. The selected natural ingredient combined with the designed formulation and the optimized preparation method has led to a final product that satisfies the physico-chemical and technological requirements underlying the safety of use and the formulative stability over time. With no negative skin reactions and highly significant effects on skin elasticity, wrinkles, and moisturization, the CSE-based emulsion achieved very satisfying outcomes representing a promising functional formulation for skin care.
Collapse
Affiliation(s)
- Tiziana Esposito
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
- COSM-HI Lab,“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
- COSM-HI Lab,“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
- COSM-HI Lab,“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
| | - Rosa Valentina Puca
- Dermatology and Dermosurgery, “San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy; (R.V.P.); (R.I.)
| | - Raffaele Iandoli
- Dermatology and Dermosurgery, “San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy; (R.V.P.); (R.I.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (T.E.); (G.A.); (P.G.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
- COSM-HI Lab,“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy
| |
Collapse
|