1
|
Banoo T, Ghosh A, Mishra P, Roy S, Nagarajan S. Biocompatible glycolipid derived from bhilawanol as an antibiofilm agent and a promising platform for drug delivery. RSC Med Chem 2025; 16:1715-1728. [PMID: 39925733 PMCID: PMC11799929 DOI: 10.1039/d4md00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Stimuli-responsive smart materials for biomedical applications have gained significant attention because of their potential for selectivity and sensitivity in biological systems. Even though ample stimuli-responsive materials are available, the use of traditional Ayurvedic compounds in the fabrication of pharmaceuticals is limited. Among various materials, gels are one of the essential classes because of their molecular-level tunability with little effort from the environment. In this study, we report a simple synthesis method for multifunctional glycolipids using a starting material derived from biologically significant natural molecules and carbohydrates in good yields. The synthesized glycolipids were prone to form a hydrogel by creating a 3D fibrous architecture. The mechanism of bottom-up assembly involving the molecular-level interaction was studied in detail using SEM, XRD, FTIR, and NMR spectroscopy. The stability, processability, and thixotropic behavior of the hydrogel were investigated through rheological measurements, and it was identified to be more suitable for biomedical applications. To evaluate the potential application of the self-assembled hydrogel in the field of medicine, we encapsulated a natural drug, curcumin, into a gel and studied its pH as a stimuli-responsive release profile. Interestingly, the encapsulated drug was released both in acidic and basic pH levels at a different rate, as identified using UV-vis spectroscopy. It is worth mentioning that the gelator used for fabricating smart soft materials displays significant potential in selectively compacting the biofilm formed by Streptococcus pneumoniae. We believe that the reported multifunctional hydrogel derived from bhilawanol-based glycolipid holds great promise in medicine.
Collapse
Affiliation(s)
- Tohira Banoo
- Assembled Organic and Hybrid Material Lab, Department of Chemistry, National Institute of Technology Warangal Hanumakonda-506004 Telangana India
| | - Abhijit Ghosh
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Priyasha Mishra
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Sanhita Roy
- Dr. Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute Hyderabad - 500034 Telangana India
| | - Subbiah Nagarajan
- Assembled Organic and Hybrid Material Lab, Department of Chemistry, National Institute of Technology Warangal Hanumakonda-506004 Telangana India
| |
Collapse
|
2
|
Nagaraj K, Kamalesu S. State-of-the-art surfactants as biomedical game changers: unlocking their potential in drug delivery, diagnostics, and tissue engineering. Int J Pharm 2025; 676:125590. [PMID: 40228615 DOI: 10.1016/j.ijpharm.2025.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
This review presents a comprehensive analysis of surfactant-based medicinal formulations, highlighting both their advantages and disadvantages. Surfactants enhance drug solubility, enhance targeted delivery, and facilitate controlled release of drugs. Their antimicrobial action is a result of their ability to disrupt microbial membranes, and their application in the delivery of genes and proteins involves stabilizing lipid nanoparticles for messenger ribonucleic acid (mRNA) vaccines and clustered regularly interspaced short palindromic repeats (CRISPR). Surfactants also assist in biomedical imaging and theranostics by enhancing magnetic resonance imaging (MRI) contrast, fluorescence bioimaging, and cancer diagnosis. In tissue engineering, they assist in the manufacturing of scaffolds and coatings of biomaterials. In spite of their broad application, cytotoxicity concerns, environmental impact, and regulatory constraints bar clinical use. Biodegradable biosurfactants, stimuli-responsive intelligent surfactants, and AI-driven formulation design are areas that future studies can focus on to enhance safety and effectiveness in current healthcare applications.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- Biomedical & Nano-Drug Formulation Laboratory, Department of General Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai 602105 Tamil Nadu, India.
| | - S Kamalesu
- Division of Chemistry, School of Science, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli 621105 Tamil Nadu, India
| |
Collapse
|
3
|
Zdziennicka A, Jańczuk B. Adsorption and wetting properties of biosurfactants, Tritons and their mixtures in aqueous and water-ethanol environment. Adv Colloid Interface Sci 2025; 337:103379. [PMID: 39700969 DOI: 10.1016/j.cis.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures. Changes of these interface tensions as a function of concentration and composition of the mixtures were compared to those affected by individual mixture components. In turn, these changes of the interface tension were considered as regards properties of the biosurfactants, Tritons and ethanol layers adsorbed at the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces. Based on the changes of the contact angle of the aqueous and water-ethanol solutions of the biosurfactants and Tritons as well as biosurfactants mixtures with Tritons on PMMA and quartz as a function of mixture concentration and composition, the changes of the PMMA and quartz surface tension were analyzed using various approaches to the surface and interface tension. The thermodynamic functions change as a results of RL, SF, TX100, TX165, ET as well as the mixtures of RL and SF with Tritons adsorption at different interfaces were also analyzed based on the literature data. These considerations allow to describe and/or predict changes of the interface tension, contact angle of the mixtures as a function of their composition based on these properties of individual mixture components.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
4
|
Pérez L, da Silva CR, do Amaral Valente Sá LG, Neto JBDA, Cabral VPDF, Rodrigues DS, Moreira LEA, Silveira MJCB, Ferreira TL, da Silva AR, Cavalcanti BC, Ricardo NMPS, Rodrigues FAM, Júnior HVN. Preventive Activity of an Arginine-Based Surfactant on the Formation of Mixed Biofilms of Fluconazole-Resistant Candida albicans and Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli on Central Venous Catheters. Antibiotics (Basel) 2025; 14:227. [PMID: 40149039 PMCID: PMC11939339 DOI: 10.3390/antibiotics14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Mixed bloodstream infections associated with central venous catheter (CVC) use are a growing problem. The aim of this study was to evaluate the activity of a cationic arginine-based gemini surfactant, C9(LA)2, against mixed biofilms of fluconazole-resistant Candida albicans and extended-spectrum beta-lactamase (ESBL)-producing E. coli, and the preventive effect of this surfactant impregnated in CVCs on the formation of inter-kingdom biofilms. Methods: Broth microdilution assays were performed along with evaluation of the effect against mixed biofilms in formation. The impregnation of CVCs with the surfactant and with a hydrogel containing the cationic surfactant was investigated to assess their potential to prevent the formation of mixed biofilms. Scanning electron microscopy (SEM) was also utilized. Results: Minimum inhibitory concentrations (MICs) for resistant C. albicans ranged from 4-5.3 µg/mL, while for E. coli, the MICs varied from 85.3 to 298.7 µg/mL. Fungicidal and bactericidal action patterns were obtained. In mixed biofilm formation in 96-well plates, there was a significant reduction in the colony-forming unit (CFU) count. The impregnation of the CVC with C9(LA)2 alone resulted in a biofilm reduction of 62% versus C. albicans and 48.7% against E. coli in terms of CFUs. When the CVC was impregnated with the surfactant hydrogel, the effect was improved with an inhibition of 71.7% for C. albicans and 86.7% for E. coli. The images obtained by SEM corroborated the results. Conclusions: C9(LA)2 has potential for use in CVC impregnation to prevent the formation of mixed biofilms of fluconazole-resistant C. albicans and ESBL-producing E. coli.
Collapse
Affiliation(s)
- Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Químicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Cecília Rocha da Silva
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - Lívia Gurgel do Amaral Valente Sá
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - João Batista de Andrade Neto
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
- Christus University Center (UNICHRISTUS), Fortaleza 60160-230, Brazil
| | - Vitória Pessoa de Farias Cabral
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
- Christus University Center (UNICHRISTUS), Fortaleza 60160-230, Brazil
| | - Daniel Sampaio Rodrigues
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
- Christus University Center (UNICHRISTUS), Fortaleza 60160-230, Brazil
| | - Lara Elloyse Almeida Moreira
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - Maria Janielly Castelo Branco Silveira
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - Thais Lima Ferreira
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - Anderson Ramos da Silva
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Químicas (IQAC-CSIC), 08034 Barcelona, Spain;
| | - Bruno Coêlho Cavalcanti
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| | - Nágila Maria Pontes Silva Ricardo
- Polymer and Materials Innovation Laboratory (LABPIM), Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (F.A.M.R.)
| | - Francisco Alessandro Marinho Rodrigues
- Polymer and Materials Innovation Laboratory (LABPIM), Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (F.A.M.R.)
| | - Hélio Vitoriano Nobre Júnior
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), School of Pharmacy, Federal University of Ceará, Fortaleza 60020-181, Brazil; (C.R.d.S.); (L.G.d.A.V.S.); (J.B.d.A.N.); (V.P.d.F.C.); (D.S.R.); (L.E.A.M.); (M.J.C.B.S.); (T.L.F.)
- Center of Drug Research and Development, Federal University of Ceará, Fortaleza 60020-181, Brazil;
| |
Collapse
|
5
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
6
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
7
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Bastos CG, Livio DF, de Oliveira MA, Meira HGR, Tarabal VS, Colares HC, Parreira AG, Chagas RCR, Speziali MG, da Silva JA, Granjeiro JM, Millán RDS, Gonçalves DB, Granjeiro PA. Exploring the biofilm inhibitory potential of Candida sp. UFSJ7A glycolipid on siliconized latex catheters. Braz J Microbiol 2024; 55:2119-2130. [PMID: 38954220 PMCID: PMC11405650 DOI: 10.1007/s42770-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.
Collapse
Affiliation(s)
- Cibele Garcia Bastos
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Diego Fernandes Livio
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Maria Auxiliadora de Oliveira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Hiure Gomes Ramos Meira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Vinícius Souza Tarabal
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Heloísa Carneiro Colares
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Adriano Guimarães Parreira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Rafael César Russo Chagas
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Marcelo Gomes Speziali
- Chemistry Department, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - José Mauro Granjeiro
- National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, 25250-020, Brazil
| | | | - Daniel Bonoto Gonçalves
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
9
|
Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: chemistry, key applications and research perspectives. RSC Adv 2024; 14:25429-25471. [PMID: 39139242 PMCID: PMC11320967 DOI: 10.1039/d4ra04684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Surfactants, a group of amphiphilic molecules (i.e. with hydrophobic(water insoluble) as well as hydrophilic(water soluble) properties) can modulate interfacial tension. Currently, the majority of surfactants depend on petrochemical feedstocks (such as oil and gas). However, deployment of these petrochemical surfactants produces high toxicity and also has poor biodegradability which can cause more environmental issues. To address these concerns, the current research is moving toward natural resources to produce sustainable surfactants. Among the available natural resources, Cashew Nut Shell Liquid (CNSL) is the preferred choice for industrial scenarios to meet their goals of sustainability. CNSL is an oil extracted from non-edible cashew nut shells, which doesn't affect the food supply chain. The unique structural properties and diverse range of use cases of CNSL are key to developing eco-friendly surfactants that replace petro-based surfactants. Against this backdrop, this article discusses various state-of-the-art developments in key cardanol-based surfactants such as anionic, cationic, non-ionic, and zwitterionic. In addition to this, the efficiency and characteristics of these surfactants are also analyzed and compared with those of the synthetic surfactants (petro-based). Furthermore, the present paper also focuses on various market aspects and different applications in various industries. Finally, this article describes various future research perspectives including Artificial Intelligence technology which, of late, is having a huge impact on society.
Collapse
Affiliation(s)
- Ashokkumar Veeramanoharan
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| | - Seok-Chan Kim
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| |
Collapse
|
10
|
Bami MS, Khazaeli P, Lahiji SF, Dehghannoudeh G, Banat IM, Ohadi M. Potential of biosurfactant as green pharmaceutical excipients for coating of microneedles: A mini review. AIMS Microbiol 2024; 10:596-607. [PMID: 39219752 PMCID: PMC11362267 DOI: 10.3934/microbiol.2024028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Microneedles, a novel transdermal delivery system, were designed to improve drug delivery and address the challenges typically encountered with traditional injection practices. Discovering new and safe excipients for microneedle coating to replace existing chemical surfactants is advantageous to minimize their side effect on viable tissues. However, some side effects have also been observed for this application. The vast majority of studies suggest that using synthetic surfactants in microneedle formulations may result in skin irritation among other adverse effects. Hence, increasing knowledge about these components and their potential impacts on skin paves the way for finding preventive strategies to improve their application safety and potential efficacy. Biosurfactants, which are naturally produced surface active microbial products, are proposed as an alternative to synthetic surfactants with reduced side effects. The current review sheds light on potential and regulatory aspects of biosurfactants as safe excipients in the coating of microneedles.
Collapse
Affiliation(s)
- Marzieh Sajadi Bami
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Fakhraei Lahiji
- Department of Bioengineering, Biopharmaceutical Research Laboratory, Hanyang University, Seoul, South Korea
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Chabhadiya S, Acharya D, Mangrola A, Shah R, Pithawala EA. Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:111-119. [PMID: 39416688 PMCID: PMC11446356 DOI: 10.1016/j.biotno.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/19/2024]
Abstract
Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering Pseudomonas aeruginosa for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like Escherichia coli. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.
Collapse
Affiliation(s)
- Sameer Chabhadiya
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - D.K. Acharya
- Department of Microbiology, Gandhinagar University, Kalol, Gujarat, India
| | - Amitsinh Mangrola
- Department of Biochemistry, Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, Gujarat, India
| | - Rupal Shah
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| | - Edwin A. Pithawala
- Department of Microbiology, Silver Oak University, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Ben Ammar A, Ben Ali M, Cherif B, Gargouri B, Tahri Y, Rouis S, Ghribi D. Lactiplantibacillus plantarum OL5 biosurfactants as alternative to chemical surfactants for application in eco-friendly cosmetics and skincare products. Bioprocess Biosyst Eng 2024; 47:1039-1056. [PMID: 38744689 DOI: 10.1007/s00449-024-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Cosmetics have been extremely popular throughout history and continue to be so today. Cosmetic and personal care products, including toothpaste, shampoo, lotions, and makeup, are typically made with petroleum-based surfactants. Currently, there is an increasing demand to enhance the sustainability of surface-active compounds in dermal formulations. Biosurfactants, derived from living cells, are considered more environmentally friendly than synthetic surfactants. Thus, the use of biosurfactants is a promising strategy for formulating more environmentally friendly and sustainable dermal products. Biosurfactants have the potential to replace chemical surface-active agents in the cosmetic sector due to their multifunctional qualities, such as foaming, emulsifying, and skin-moisturizing activities.In this study, two glycolipopeptide biosurfactants derived from Lactiplantibacillus plantarum OL5 were used as stabilizing factors in oil-in-water emulsions in the presence of coconut oils. Both biosurfactants increased emulsion stability, particularly in the 1:3 ratio, dispersion, and droplet size. Moreover, the cytotoxicity of the two Lactiplantibacillus plantarum biosurfactants was assessed on B lymphocytes and MCF-7 cells. Overall, the results gathered herein are very promising for the development of new green cosmetic formulations.
Collapse
Affiliation(s)
- Ameni Ben Ammar
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
- Bioréacteur Couplé À Un, Ultra Filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| | - Mariem Ben Ali
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Boutheina Cherif
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Bochra Gargouri
- Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Yosra Tahri
- Faculté Des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Souad Rouis
- Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | - Dhouha Ghribi
- Laboratoire d'Amélioration Des Plantes Et de Valorisation Des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
- Bioréacteur Couplé À Un, Ultra Filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
13
|
Khairunnisa Z, Tuygunov N, Cahyanto A, Aznita WH, Purwasena IA, Noor NSM, Azami NH, Zakaria MN. Potential of microbial-derived biosurfactants for oral applications-a systematic review. BMC Oral Health 2024; 24:707. [PMID: 38898470 PMCID: PMC11186162 DOI: 10.1186/s12903-024-04479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biosurfactants are amphiphilic compounds produced by various microorganisms. Current research evaluates diverse types of biosurfactants against a range of oral pathogens. OBJECTIVES This systematic review aims to explore the potential of microbial-derived biosurfactants for oral applications. METHODOLOGY A systematic literature search was performed utilizing PubMed-MEDLINE, Scopus, and Web of Science databases with designated keywords. The results were registered in the PROSPERO database and conducted following the PRISMA checklist. Criteria for eligibility, guided by the PICOS framework, were established for both inclusion and exclusion criteria. The QUIN tool was used to assess the bias risk for in vitro dentistry studies. RESULTS Among the initial 357 findings, ten studies were selected for further analysis. The outcomes of this systematic review reveal that both crude and purified forms of biosurfactants exhibit antimicrobial and antibiofilm properties against various oral pathogens. Noteworthy applications of biosurfactants in oral products include mouthwash, toothpaste, and implant coating. CONCLUSION Biosurfactants have garnered considerable interest and demonstrated their potential for application in oral health. This is attributed to their surface-active properties, antiadhesive activity, biodegradability, and antimicrobial effectiveness against a variety of oral microorganisms, including bacteria and fungi.
Collapse
Affiliation(s)
- Z Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Oral Biology, Faculty of Dentistry, University of Jenderal Achmad Yani, Cimahi, 40525, Indonesia
| | - N Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - W H Aznita
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - I A Purwasena
- Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - N S M Noor
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - N H Azami
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M N Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
14
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
15
|
Alghamrawy BT, Hegazy GE, Sabry SA, Ghozlan H. Production, characterization and biomedical potential of biosurfactants produced by haloalkaliphilic archaea from Wadi El-Natrun, Egypt. Microb Cell Fact 2024; 23:84. [PMID: 38486239 PMCID: PMC10941367 DOI: 10.1186/s12934-024-02351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Extreme halophilic archaea that can live in high saline environments can offer potential applications in different biotechnological fields. This study delves into the fascinating field of halophilic archaea and their ability to produce biosurfactants. Some strains of haloarchaea were isolated from Wadi El-Natrun and were screened for biosurfactants production in a standard basal medium using emulsification index assay. Two strains were chosen as the potential strains for surface tension reduction. They were identified as Natrialba sp. BG1 and N3. The biosurfactants production was optimized and the produced emulsifiers were partially purified and identified using FTIR and NMR. Sequential statistical optimization, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were carried out using 5 factors: oil, NaCl, casamino acids, pH, and inoculum size. The most significant factors were used for the next Response Surface Methodology experiment. The final optimal conditions for biosurfactants production were the inoculum size 2% pH 11 and NaCl 250 g/L, for Natrialba sp. BG1 and inoculum size 2.2%, pH 10 and NaCl 100 g/L for Natrialba sp. N3. The produced biosurfactants were tested for wound healing and the results indicated that Natrialba sp. BG1 biosurfactants is more efficient than Natrialba sp. N3 biosurfactants. Biosurfactants extracts were tested for their cytotoxic effects on normal cell line as well as on different cancer cells using MTT assay. The findings demonstrated that varying concentrations of the biosurfactants (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) exhibited cytotoxic effects on the cell lines being tested. Additionally, the outcomes unveiled the presence of anti-inflammatory and antioxidant properties for both biosurfactants. Consequently, they could potentially serve as natural, safe, and efficient novel agents for combating cancer, promoting wound healing, and providing anti-inflammatory and antioxidant benefits.
Collapse
Affiliation(s)
- Basma T Alghamrawy
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Alexandria, Egypt.
| | - Soraya A Sabry
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan Ghozlan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Bhuiyan HA, Anis-Ul-Haque KM, Joy MTR, Rana S, Khan JM, Kumar D, Rehman MT, Goni MA, Hoque MA, Kabir SE. Aggregation phenomena and physico-chemical properties of tetradecyltrimethylammonium bromide and protein (bovine serum albumin) mixture: Influence of electrolytes and temperature. Int J Biol Macromol 2023; 253:127101. [PMID: 37769770 DOI: 10.1016/j.ijbiomac.2023.127101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
It is important for biological, pharmaceutical, and cosmetic industries to understand how proteins and surfactants interact. Herein, the interaction of bovine serum albumin (BSA) with tetradecyltrimethylammonium bromide (TTAB) in different inorganic salts (KCl, K2SO4, K3PO4.H2O) has been explored through the conductivity measurement method at different temperatures (300.55 to 325.55 K) with a specific salt concentration and at a fixed temperature (310.55 K) using different salts concentrations. The extent of micelle ionization (α) and different thermodynamic parameters associated with BSA and TTAB mixtures in salt solutions were calculated. Evaluation of the magnitudes of ∆Hm0 and ∆Sm0 showed that the association was exothermic and primarily an enthalpy-operated process in all cases at lower contents of BSA, but the system became endothermic, and entropy driven in the presence of K3PO4.H2O at a relatively higher concentration of BSA. The enthalpy-entropy compensation variables were determined, which explained the types and nature of interactions between TTAB and BSA in salt media. Molecular docking analysis revealed that the main stabilizing factors in the BSA-TTAB complex are electrostatic and hydrophobic interactions. These findings aligned with the significant results obtained from the conductometry method regarding the nature and characteristics of binding forces observed between BSA and TTAB.
Collapse
Affiliation(s)
| | - K M Anis-Ul-Haque
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tuhinur R Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shahed Rana
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117, USA
| | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Shariff E Kabir
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| |
Collapse
|
17
|
Motelica L, Vasile BS, Ficai A, Surdu AV, Ficai D, Oprea OC, Andronescu E, Mustățea G, Ungureanu EL, Dobre AA. Antibacterial Activity of Zinc Oxide Nanoparticles Loaded with Essential Oils. Pharmaceutics 2023; 15:2470. [PMID: 37896230 PMCID: PMC10610287 DOI: 10.3390/pharmaceutics15102470] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.
Collapse
Affiliation(s)
- Ludmila Motelica
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Anton Ficai
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Adrian-Vasile Surdu
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (L.M.); (E.A.)
- National Research Center for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Mustățea
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| | - Elena Loredana Ungureanu
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| | - Alina Alexandra Dobre
- National R&D Institute for Food Bioresources—IBA Bucharest, Dinu Vintila Street 6, 021102 Bucharest, Romania
| |
Collapse
|
18
|
Tambone E, Ceresa C, Marchetti A, Chiera S, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Rhamnolipid 89 Biosurfactant Is Effective against Streptococcus oralis Biofilm and Preserves Osteoblast Behavior: Perspectives in Dental Implantology. Int J Mol Sci 2023; 24:14014. [PMID: 37762317 PMCID: PMC10530769 DOI: 10.3390/ijms241814014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilm-related peri-implant diseases represent the major complication for osteointegrated dental implants, requiring complex treatments or implant removal. Microbial biosurfactants emerged as new antibiofilm coating agents for implantable devices thanks to their high biocompatibility. This study aimed to assess the efficacy of the rhamnolipid 89 biosurfactant (R89BS) in limiting Streptococcus oralis biofilm formation and dislodging sessile cells from medical grade titanium, but preserving adhesion and proliferation of human osteoblasts. The inhibitory activity of a R89BS coating on S. oralis biofilm formation was assayed by quantifying biofilm biomass and microbial cells on titanium discs incubated up to 72 h. R89BS dispersal activity was addressed by measuring residual biomass of pre-formed biofilms after rhamnolipid treatment up to 24 h. Adhesion and proliferation of human primary osteoblasts on R89BS-coated titanium were evaluated by cell count and adenosine-triphosphate quantification, while cell differentiation was studied by measuring alkaline phosphatase activity and observing mineral deposition. Results showed that R89BS coating inhibited S. oralis biofilm formation by 80% at 72 h and dislodged 63-86% of pre-formed biofilms in 24 h according to concentration. No change in the adhesion of human osteoblasts was observed, whereas proliferation was reduced accompanied by an increase in cell differentiation. R89BS effectively counteracts S. oralis biofilm formation on titanium and preserves overall osteoblasts behavior representing a promising preventive strategy against biofilm-related peri-implant diseases.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Silvia Chiera
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (S.C.); (G.N.); (F.T.)
| |
Collapse
|
19
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
20
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
21
|
Adu SA, Twigg MS, Naughton PJ, Marchant R, Banat IM. Characterisation of cytotoxicity and immunomodulatory effects of glycolipid biosurfactants on human keratinocytes. Appl Microbiol Biotechnol 2023; 107:137-152. [PMID: 36441210 PMCID: PMC9750927 DOI: 10.1007/s00253-022-12302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Skin irritation and allergic reactions associated with the use of skincare products formulated with synthetically derived surfactants such as sodium lauryl ether sulphate (SLES) have encouraged the search for naturally derived and biocompatible alternatives. Glycolipid biosurfactants such as sophorolipids (SL) and rhamnolipids (RL) offer a potential alternative to SLES. However, most studies on the bioactive properties of microbial glycolipids were determined using their mixed congeners, resulting in significant inter-study variations. This study aims to compare the effects of highly purified SL (acidic and lactonic) and RL (mono-RL and di-RL) congeners and SLES on a spontaneously transformed human keratinocyte cell line (HaCaT cells) to assess glycolipids' safety for potential skincare applications. Preparations of acidic SL congeners were 100% pure, lactonic SL were 100% pure, mono-RL were 96% pure, and di-RL were 97% pure. Cell viability using XTT assays, cell morphological analyses, and immunoassays revealed that microbial glycolipids have differing effects on HaCaT cells dependent on chemical structure. Compared with SLES, acidic SL and mono-RL have negligible effects on cell viability, cell morphology, and production of pro-inflammatory cytokines. Furthermore, at non-inhibitory concentrations, di-RL significantly attenuated IL-8 production and CXCL8 expression while increasing IL-1RA production and IL1RN expression in lipopolysaccharide-stimulated HaCaT cells. Although further studies would be required, these results demonstrate that as potential innocuous and bioactive compounds, microbial glycolipids could provide a substitute to synthetic surfactants in skincare formulations and perform immunopharmacological roles in topical skin infections such as psoriasis. KEY POINTS: • Purified glycolipid congeners have differing effects on human keratinocytes. • Compared with SLES, acidic sophorolipids and mono-rhamnolipids have innocuous effects on keratinocytes. • Di-rhamnolipids and mono-rhamnolipids modulate cytokine production in lipopolysaccharide stimulated human keratinocytes.
Collapse
Affiliation(s)
- Simms A Adu
- School of Biomedical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Matthew S Twigg
- School of Biomedical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Patrick J Naughton
- School of Biomedical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Roger Marchant
- School of Biomedical Science, Ulster University, Coleraine, BT52 1SA, UK
| | - Ibrahim M Banat
- School of Biomedical Science, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
22
|
Microbial Natural Products with Wound-Healing Properties. Processes (Basel) 2022. [DOI: 10.3390/pr11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wound healing continues to pose a challenge in clinical settings. Moreover, wound management must be performed properly and efficiently. Acute wound healing involves multiple cell divisions, a new extracellular matrix, and the process of formation, such as growth factors and cytokines, which are released at the site of the wound to regulate the process. Any changes that disrupt the healing process could cause tissue damage and prolong the healing process. Various factors, such as microbial infection, oxidation, and inflammation, can delay wound healing. In order to counter these problems, utilizing natural products with wound-healing effects has been reported to promote this process. Several natural products have been associated with wound healing, most of which are from medicinal plants. However, secondary microbial metabolites have not been extensively studied for their wound-healing properties. Further, investigations on the wound-healing control of natural microbial products are required due to a lack of studies. This review discussed the in vivo and in vitro research on the wound healing activities of natural microbial products, which may assist in the development of better wound treatments in the future.
Collapse
|
23
|
Singh S, Sequeira RA, Kumar P, Ghadge VA, Vaghela P, Mohanty AK, Ghosh A, Prasad K, Shinde PB. Selective Partition of Lipopeptides from Fermentation Broth: A Green and Sustainable Approach. ACS OMEGA 2022; 7:46646-46652. [PMID: 36570225 PMCID: PMC9774373 DOI: 10.1021/acsomega.2c05587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Lipopeptide (LP) biosurfactants from microbes have the potential to gradually replace chemical synthetic surfactants and fit the contemporary green and sustainable industrial production concept. However, their active participation is comparatively low in the global market pertaining to their low yield in microbial broth and costly downstream processes arising due to tedious isolation and purification methods. Herein, an efficient extraction method is developed that utilizes an aqueous biphasic system (ABS) comprising ionic liquids and polypropylene glycol 400 (PPG) to selectively extract a mixture of cyclic lipopeptides, namely, surfactin and fengycin from the culture broth of Bacillus amyloliquefaciens 5NPA-1, isolated from the halophyte Salicornia brachiata Roxb. Out of four different ABSs, the ABS composed of 2-hydroxyethyl ammonium formate and PPG displayed a maximum extraction efficiency of 82.30%. PPG-rich phase containing lipopeptides exhibited excellent antimicrobial and mosquito larvicidal properties with no toxic effect on plants. The developed method is simple, novel and accelerates the application of cyclic lipopeptides produced by the microbial source.
Collapse
Affiliation(s)
- Sanju Singh
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Rosy Alphons Sequeira
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pankaj Kumar
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Vishal A. Ghadge
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pradipkumar Vaghela
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Applied
Phycology and Biotechnology Division, CSIR-Central
Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council
of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
| | - Ajeet Kumar Mohanty
- ICMR-National
Institute of Malaria Research, Field Unit, Campal, Panaji403001Goa, India
| | - Arup Ghosh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Applied
Phycology and Biotechnology Division, CSIR-Central
Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council
of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
| | - Kamalesh Prasad
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pramod B. Shinde
- Natural
Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI),
Council of Scientific and Industrial Research (CSIR), Bhavnagar364002Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
24
|
Motelica L, Vasile BS, Ficai A, Surdu AV, Ficai D, Oprea OC, Andronescu E, Jinga DC, Holban AM. Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities. Pharmaceutics 2022; 14:2842. [PMID: 36559334 PMCID: PMC9783502 DOI: 10.3390/pharmaceutics14122842] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc oxide (ZnO) nanomaterials are used in various health-related applications, from antimicrobial textiles to wound dressing composites and from sunscreens to antimicrobial packaging. Purity, surface defects, size, and morphology of the nanoparticles are the main factors that influence the antimicrobial properties. In this study, we are comparing the properties of the ZnO nanoparticles obtained by solvolysis using a series of alcohols: primary from methanol to 1-hexanol, secondary (2-propanol and 2-butanol), and tertiary (tert-butanol). While the synthesis of ZnO nanoparticles is successfully accomplished in all primary alcohols, the use of secondary or tertiary alcohols does not lead to ZnO as final product, underlining the importance of the used solvent. The shape of the obtained nanoparticles depends on the alcohol used, from quasi-spherical to rods, and consequently, different properties are reported, including photocatalytic and antimicrobial activities. In the photocatalytic study, the ZnO obtained in 1-butanol exhibited the best performance against methylene blue (MB) dye solution, attaining a degradation efficiency of 98.24%. The comparative study among a series of usual model dyes revealed that triarylmethane dyes are less susceptible to photo-degradation. The obtained ZnO nanoparticles present a strong antimicrobial activity on a broad range of microorganisms (bacterial and fungal strains), the size and shape being the important factors. This permits further tailoring for use in medical applications.
Collapse
Affiliation(s)
- Ludmila Motelica
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Anton Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Adrian-Vasile Surdu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Dan Corneliu Jinga
- Department of Medical Oncology, Neolife Medical Center, Ficusului Bd. 40, 077190 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| |
Collapse
|
25
|
Mono-Rhamnolipid Biosurfactants Synthesized by Pseudomonas aeruginosa Detrimentally Affect Colorectal Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122799. [PMID: 36559292 PMCID: PMC9782318 DOI: 10.3390/pharmaceutics14122799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past 15 years, glycolipid-type biosurfactant compounds have been postulated as novel, naturally synthesized anticancer agents. This study utilized a recombinant strain of Pseudomonas aeruginosa to biosynthesize a preparation of mono-rhamnolipids that were purified via both liquid and solid-phase extraction, characterized by HPLC-MS, and utilized to treat two colorectal cancer cell lines (HCT-116 and Caco2) and a healthy colonic epithelial cell line CCD-841-CoN. Additionally, the anticancer activity of these mono-rhamnolipids was compared to an alternative naturally derived anticancer agent, Piceatannol. XTT cell viability assays showed that treatment with mono-rhamnolipid significantly reduced the viability of both colorectal cancer cell lines whilst having little effect on the healthy colonic epithelial cell line. At the concentrations tested mono-rhamnolipids were also shown to be more cytotoxic to the colorectal cancer cells than Piceatannol. Staining of mono-rhamnolipid-treated cells with propidium iodine and acridine orange appeared to show that these compounds induced necrosis in both colorectal cancer cell lines. These data provide an early in vitro proof-of-principle for utilizing these compounds either as active pharmaceutical ingredient for the treatment of colorectal cancer or incorporations into nutraceutical formulations to potentially prevent gastrointestinal tract cancer.
Collapse
|
26
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
27
|
Filipe GA, Silveira VAI, Gonçalves MC, Beltrame Machado RR, Nakamura CV, Baldo C, Mali S, Kobayashi RKT, Colabone Celligoi MAP. Bioactive films for the control of skin pathogens with sophorolipids from Starmerella bombicola. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Handa S, Aggarwal Y, Puri S, Chatterjee M. Pharmaceutical prospects of biosurfactants produced from fungal species. J Basic Microbiol 2022; 62:1307-1318. [PMID: 36257786 DOI: 10.1002/jobm.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022]
Abstract
The development of novel types of biogenic surface-active compounds is of greater interest for combating many diseases and infections. In this respect research and development of biosurfactant has gained immense importance. Substantially, biosurfactant is defined as a class of active amphiphilic chemical compounds that comprise hydrophobic and hydrophilic moieties on their surfaces. It is generally known that many kinds of microorganisms can be used to produce these surfactants or surface-active compounds. Hosting interesting features such as biodegradability, emulsifying/de-emulsifying capacity, low toxicity, and antimicrobial activities; these amphiphilic compounds in recent years have flourished as an ideal replacement for the chemically synthesized surfactant, and also have various commercial attractions. Both bacteria and fungi are the producers of these amphiphilic molecules; however, the pathogenicity of certain bacterial strains has caused a shift in interest toward fungi. Therefore, various fungi species have been reported for the production of biosurfactants amongst which Candida species have been the most studied strains. Biosurfactants uphold desired properties like antibacterial, antifungal, antiviral, antiadhesion, and anticancer activity which proves them an ideal candidate for the application in various fields like pharmaceutical, gene therapy, medical insertion safety, immunotherapy to fight against many chronic diseases, and so forth. Hence, this review article discusses the pharmaceutical prospects of biosurfactants produced from different fungal species, providing new directions toward the discovery and development of molecules with novel structures and diverse functions for advanced application in the medical field.
Collapse
Affiliation(s)
- Shristi Handa
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Yadu Aggarwal
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
29
|
Gill SP, Hunter WR, Coulson LE, Banat IM, Schelker J. Synthetic and biological surfactant effects on freshwater biofilm community composition and metabolic activity. Appl Microbiol Biotechnol 2022; 106:6847-6859. [PMID: 36121483 PMCID: PMC9529700 DOI: 10.1007/s00253-022-12179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Surfactants are used to control microbial biofilms in industrial and medical settings. Their known toxicity on aquatic biota, and their longevity in the environment, has encouraged research on biodegradable alternatives such as rhamnolipids. While previous research has investigated the effects of biological surfactants on single species biofilms, there remains a lack of information regarding the effects of synthetic and biological surfactants in freshwater ecosystems. We conducted a mesocosm experiment to test how the surfactant sodium dodecyl sulfate (SDS) and the biological surfactant rhamnolipid altered community composition and metabolic activity of freshwater biofilms. Biofilms were cultured in the flumes using lake water from Lake Lunz in Austria, under high (300 ppm) and low (150 ppm) concentrations of either surfactant over a four-week period. Our results show that both surfactants significantly affected microbial diversity. Up to 36% of microbial operational taxonomic units were lost after surfactant exposure. Rhamnolipid exposure also increased the production of the extracellular enzymes, leucine aminopeptidase, and glucosidase, while SDS exposure reduced leucine aminopeptidase and glucosidase. This study demonstrates that exposure of freshwater biofilms to chemical and biological surfactants caused a reduction of microbial diversity and changes in biofilm metabolism, exemplified by shifts in extracellular enzyme activities. KEY POINTS: • Microbial biofilm diversity decreased significantly after surfactant exposure. • Exposure to either surfactant altered extracellular enzyme activity. • Overall metabolic activity was not altered, suggesting functional redundancy.
Collapse
Affiliation(s)
- Stephanie P Gill
- Department of Geography and Environmental Studies, Ulster University, Coleraine, BT52 1SA, N. Ireland, UK.
| | - William R Hunter
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, N. Ireland, UK
| | - Laura E Coulson
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Jakob Schelker
- WasserCluster Lunz, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Behzadnia A, Moosavi-Nasab M, Mohammadi A, Babajafari S, Tiwari BK. Production of an ultrasound-assisted biosurfactant postbiotic from agro-industrial wastes and its activity against Newcastle virus. Front Nutr 2022; 9:966338. [PMID: 36225870 PMCID: PMC9549457 DOI: 10.3389/fnut.2022.966338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study is to optimize the biosurfactant production by Lactobacillus plantarum ATCC 8014 using low-cost substrates from industrial sources applying ultrasonication at 28 kHz frequency (power of 100 W). Given this, whey permeate and sugar cane molasses were screened to continue optimization using a central composite design to improve the production. Then, the effect of ultrasound was examined at different stages of microbial growth. The combination of whey permeate and sugar cane molasses with yeast extract (2.4 g/L) and inoculum size of 4.8% for 26 h of fermentation time significantly influenced biosurfactant production by reducing the surface tension of water (41.86 ± 0.24 mN/m). Moreover, ultrasonication led to the further reduction in surface tension value (39.95 ± 0.35 mN/m). Further, no significant differences were observed between products from synthetic and waste-based media. The biosurfactants exhibited antiviral activity against Newcastle disease virus (NDV) LaSota strain. It was discovered that biosurfactant produced in agro-food wastes with a significant antiviral effectiveness could be used to develop commercial application instead of chemical surfactants and biosurfactants from expensive synthetic media.
Collapse
Affiliation(s)
- Asma Behzadnia
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Seafood Processing Research Centre, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Seafood Processing Research Centre, School of Agriculture, Shiraz University, Shiraz, Iran
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
31
|
Hsiao YC, Hung YH, Horng YJ, Chang CW. Antimicrobial effects of automobile screenwashes against Legionella pneumophila. J Appl Microbiol 2022; 133:3596-3604. [PMID: 36000381 DOI: 10.1111/jam.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
AIMS Legionella pneumophila (Lp), a human pathogen, has been detected in windscreen wiper fluid reservoirs (WWFRs) where commercial screenwashes (CSWs) are commonly added. Limited information is available on CSWs against planktonic Lp; however, responses of sessile Lp and planktonic Lp pre-acclimated in nutrient-limited water to CSWs remain unknown. This study thus investigates the antibacterial effects of CSWs on sessile and starved planktonic Lp, in comparison with unstarved Lp. METHODS AND RESULTS Lp biofilms were produced on glass and WWFR materials of high-density polyethylene (HDPE) and polypropylene (PP). Planktonic Lp with and without acclimation in tap water were prepared. Log reductions in cell counts averaged 0.4-5.0 for ten brands of CSWs against sessile Lp and 1.0-3.9 and 0.9-4.9, respectively, against starved and unstarved planktonic Lp for five CSWs. Both biofilm formation and acclimation in tap water enhanced Lp resistance to CSWs. Significantly different log-reduction values among CSW brands were observed for sessile Lp on HDPE and planktonic Lp regardless of acclimation (p<0.05). CONCLUSIONS Biofilm formation, starvation acclimation, and CSW brand are crucial factors influencing Lp response to CSWs. SIGNIFICANCE AND IMPACT OF STUDY This study advances the knowledge of Lp reaction in anthropogenic water systems with CSWs.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Hsin Hung
- Department of Public Health, National Taiwan University, Taiwan
| | - Yu-Ju Horng
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| | - Ching-Wen Chang
- Department of Public Health, National Taiwan University, Taiwan.,Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taiwan
| |
Collapse
|
32
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
33
|
Callaghan B, Twigg MS, Baccile N, Van Bogaert INA, Marchant R, Mitchell CA, Banat IM. Microbial sophorolipids inhibit colorectal tumour cell growth in vitro and restore haematocrit in Apc min+/- mice. Appl Microbiol Biotechnol 2022; 106:6003-6016. [PMID: 35965289 PMCID: PMC9467956 DOI: 10.1007/s00253-022-12115-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Sophorolipids are glycolipid biosurfactants consisting of a carbohydrate sophorose head with a fatty acid tail and exist in either an acidic or lactonic form. Sophorolipids are gaining interest as potential cancer chemotherapeutics due to their inhibitory effects on a range of tumour cell lines. Currently, most anti-cancer studies reporting the effects of sophorolipids have focused on lactonic preparations with the effects of acidic sophorolipids yet to be elucidated. We produced a 94% pure acidic sophorolipid preparation which proved to be non-toxic to normal human colonic and lung cells. In contrast, we observed a dose-dependent reduction in viability of colorectal cancer lines treated with the same preparation. Acidic sophorolipids induced apoptosis and necrosis, reduced migration, and inhibited colony formation in all cancer cell lines tested. Furthermore, oral administration of 50 mg kg−1 acidic sophorolipids over 70 days to Apcmin+/− mice was well tolerated and resulted in an increased haematocrit, as well as reducing splenic size and red pulp area. Oral feeding did not affect tumour numbers or sizes in this model. This is the first study to show that acidic sophorolipids dose-dependently and specifically reduces colon cancer cell viability in addition to reducing tumour-associated bleeding in the Apcmin+/− mouse model. Key points • Acidic sophorolipids are produced by yeast species such as Starmerella bombicola. • Acidic sophorolipids selectively killed colorectal cells with no effect on healthy gut epithelia. • Acidic sophorolipids reduced tumour-associated gut bleed in a colorectal mouse model. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12115-6.
Collapse
Affiliation(s)
- Breedge Callaghan
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Matthew S Twigg
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de La Matière Condensée de Paris, UMR 7574, 75005, Paris, France
| | - Inge N A Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
34
|
Lipopeptide Biosurfactants from Bacillus spp.: Types, Production, Biological Activities, and Applications in Food. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biosurfactants are a functionally and structurally heterogeneous group of biomolecules produced by multiple filamentous fungi, yeast, and bacteria, and characterized by their distinct surface and emulsifying ability. The genus Bacillus is well studied for biosurfactant production as it produces various types of lipopeptides, for example, lichenysins, bacillomycin, fengycins, and surfactins. Bacillus lipopeptides possess a broad spectrum of biological activities such as antimicrobial, antitumor, immunosuppressant, and antidiabetic, in addition to their use in skincare. Moreover, Bacillus lipopeptides are also involved in various food products to increase the antimicrobial, surfactant, and emulsification impact. From the previously published articles, it can be concluded that biosurfactants have strong potential to be used in food, healthcare, and agriculture. In this review article, we discuss the versatile functions of lipopeptide Bacillus species with particular emphasis on the biological activities and their applications in food.
Collapse
|
35
|
Singh V, Waris Z, Banat IM, Saha S, Padmanabhan P. Assessment of Rheological Behaviour of Water-in-Oil Emulsions Mediated by Glycolipid Biosurfactant Produced by Bacillus megaterium SPSW1001. Appl Biochem Biotechnol 2022; 194:1310-1326. [PMID: 34694553 DOI: 10.1007/s12010-021-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
A screening programme using mineral salt medium supplemented with n-hexadecane resulted in isolating a Bacillus megaterium SPSW1001 which was capable of producing surface active molecules lowering culture medium surface tension to 27.43 ± 0.029 mN/m and interfacial tension to 0.38 ± 0.03 mN/m at 72 h and an emulsification index (E24) (85.63%). The biosurfactant product was further used to assess its effects on the rheological characteristics of water-in-oil emulsion prepared with engine oil. Structural characterization of the biosurfactant product by FTIR revealed a C-O-C stretch in sugar moiety and ester carbonyl linkage group between sugar and fatty acids, respectively, while mass spectral analysis revealed its glycolipid nature, with an m/z value of 662.44. The fluid behaviour of water-in-oil emulsion showed a non-Newtonian viscoelastic dilatant flow after yielding exemplified appropriately by Herschel-Bulkley model with 100% confidence of fit. The present study is significant in formulation and handling, processing, and transport of emulsion and in understanding flocculation characteristics.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Zairah Waris
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology, Patna, Bihar, 801106, India
| | - Padmini Padmanabhan
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
36
|
Human Lactobacillus Biosurfactants as Natural Excipients for Nasal drug Delivery of Hydrocortisone. Pharmaceutics 2022; 14:pharmaceutics14030524. [PMID: 35335901 PMCID: PMC8952429 DOI: 10.3390/pharmaceutics14030524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
The inclusion of a chemical permeation enhancer in a dosage form is considered an effective approach to improve absorption across the nasal mucosa. Herein we evaluated the possibility of exploiting biosurfactants (BS) produced by Lactobacillus gasseri BC9 as innovative natural excipients to improve nasal delivery of hydrocortisone (HC). BC9-BS ability to improve HC solubility and the BS mucoadhesive potential were investigated using the surfactant at a concentration below and above the critical micelle concentration (CMC). In vitro diffusion studies through the biomimetic membrane PermeaPad® and the same synthetic barrier functionalized with a mucin layer were assessed to determine BC9-BS absorption enhancing properties in the absence and presence of the mucus layer. Lastly, the diffusion study was performed across the sheep nasal mucosa using BC9-BS at a concentration below the CMC. Results showed that BC9-BS was able to interact with the main component of the nasal mucosa, and that it allowed for a greater solubilization and also permeation of the drug when it was employed at a low concentration. Overall, it seems that BC9-BS could be a promising alternative to chemical surfactants in the nasal drug delivery field.
Collapse
|
37
|
Marchant R, Banat IM. Achieving Commercial Applications for Microbial Biosurfactants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:181-193. [DOI: 10.1007/10_2021_191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Biosurfactants: Opportunities for the development of a sustainable future. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Soberón-Chávez G, Hausmann R, Déziel E. Editorial: Biosurfactants: New Insights in Their Biosynthesis, Production and Applications. Front Bioeng Biotechnol 2021; 9:769899. [PMID: 34676204 PMCID: PMC8523918 DOI: 10.3389/fbioe.2021.769899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| |
Collapse
|
40
|
Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants (Basel) 2021; 10:1472. [PMID: 34573103 PMCID: PMC8469275 DOI: 10.3390/antiox10091472] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.
Collapse
Affiliation(s)
- Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Sandeep Kumar Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Chandra Kant
- Department of Botany, Dharma Samaj College, Aligarh 202001, India;
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College, Sonbhadra, Duddhi 231218, India;
| | - Dharmendra Kumar
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Prem Pratap Singh
- Centre of Advance Study in Botany, Banaras Hindu University, Varanasi 221005, India; (S.K.S.); (D.K.); (P.P.S.)
| | - Arpan Modi
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Samir Droby
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel; (A.K.); (A.M.); (S.D.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | | | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul 10326, Korea;
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| |
Collapse
|
41
|
Allegrone G, Ceresa C, Rinaldi M, Fracchia L. Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm. Pharmaceutics 2021; 13:1172. [PMID: 34452132 PMCID: PMC8402037 DOI: 10.3390/pharmaceutics13081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.
Collapse
|
42
|
Tambone E, Marchetti A, Ceresa C, Piccoli F, Anesi A, Nollo G, Caola I, Bosetti M, Fracchia L, Ghensi P, Tessarolo F. Counter-Acting Candida albicans- Staphylococcus aureus Mixed Biofilm on Titanium Implants Using Microbial Biosurfactants. Polymers (Basel) 2021; 13:polym13152420. [PMID: 34372023 PMCID: PMC8348062 DOI: 10.3390/polym13152420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to grow a fungal-bacterial mixed biofilm on medical-grade titanium and assess the ability of the biosurfactant R89 (R89BS) coating to inhibit biofilm formation. Coated titanium discs (TDs) were obtained by physical absorption of R89BS. Candida albicans-Staphylococcus aureus biofilm on TDs was grown in Yeast Nitrogen Base, supplemented with dextrose and fetal bovine serum, renewing growth medium every 24 h and incubating at 37 °C under agitation. The anti-biofilm activity was evaluated by quantifying total biomass, microbial metabolic activity and microbial viability at 24, 48, and 72 h on coated and uncoated TDs. Scanning electron microscopy was used to evaluate biofilm architecture. R89BS cytotoxicity on human primary osteoblasts was assayed on solutions at concentrations from 0 to 200 μg/mL and using eluates from coated TDs. Mixed biofilm was significantly inhibited by R89BS coating, with similar effects on biofilm biomass, cell metabolic activity and cell viability. A biofilm inhibition >90% was observed at 24 h. A lower but significant inhibition was still present at 48 h of incubation. Viability tests on primary osteoblasts showed no cytotoxicity of coated TDs. R89BS coating was effective in reducing C. albicans-S. aureus mixed biofilm on titanium surfaces and is a promising strategy to prevent dental implants microbial colonization.
Collapse
Affiliation(s)
- Erica Tambone
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Alice Marchetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Federico Piccoli
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Adriano Anesi
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Giandomenico Nollo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
| | - Iole Caola
- Department of Laboratory Medicine, Azienda Provinciale per i Servizi Sanitari, 38122 Trento, Italy; (F.P.); (A.A.); (I.C.)
| | - Michela Bosetti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (A.M.); (C.C.); (M.B.); (L.F.)
| | - Paolo Ghensi
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Francesco Tessarolo
- Department of Industrial Engineering & BIOtech, University of Trento, 38123 Trento, Italy; (E.T.); (G.N.)
- Correspondence: ; Tel.: +39-0461-282775
| |
Collapse
|
43
|
da Silva AF, Banat IM, Giachini AJ, Robl D. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 2021; 44:2003-2034. [PMID: 34131819 PMCID: PMC8205652 DOI: 10.1007/s00449-021-02597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Biosurfactants are in demand by the global market as natural commodities that can be added to commercial products or use in environmental applications. These biomolecules reduce the surface/interfacial tension between fluid phases and exhibit superior stability to chemical surfactants under different physico-chemical conditions. Biotechnological production of biosurfactants is still emerging. Fungi are promising producers of these molecules with unique chemical structures, such as sophorolipids, mannosylerythritol lipids, cellobiose lipids, xylolipids, polyol lipids and hydrophobins. In this review, we aimed to contextualize concepts related to fungal biosurfactant production and its application in industry and the environment. Concepts related to the thermodynamic and physico-chemical properties of biosurfactants are presented, which allows detailed analysis of their structural and application. Promising niches for isolating biosurfactant-producing fungi are presented, as well as screening methodologies are discussed. Finally, strategies related to process parameters and variables, simultaneous production, process optimization through statistical and genetic tools, downstream processing and some aspects of commercial products formulations are presented.
Collapse
Affiliation(s)
- André Felipe da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Admir José Giachini
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|