1
|
Negi A. Environmental Impact of Textile Materials: Challenges in Fiber-Dye Chemistry and Implication of Microbial Biodegradation. Polymers (Basel) 2025; 17:871. [PMID: 40219261 PMCID: PMC11991193 DOI: 10.3390/polym17070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides (like nylon). Due to significant differences in their chemistry, distinct dyeing processes are required, each generating specific waste. For example, cellulose fibers exhibit chemical inertness toward dyes, necessitating chemical auxiliaries that contribute to wastewater contamination, whereas synthetic fibers are a major source of non-biodegradable microplastic emissions. Addressing the environmental impact of fiber processing requires a deep molecular-level understanding to enable informed decision-making. This manuscript emphasizes potential solutions, particularly through the biodegradation of textile materials and related chemical waste, aligning with the United Nations Sustainable Development Goal 6, which promotes clean water and sanitation. For instance, cost-effective methods using enzymes or microbes can aid in processing the fibers and their associated dyeing solutions while also addressing textile wastewater, which contains high concentrations of unreacted dyes, salts, and other highly water-soluble pollutants. This paper covers different aspects of fiber chemistry, dyeing, degradation mechanisms, and the chemical waste produced by the textile industry, while highlighting microbial-based strategies for waste mitigation. The integration of microbes not only offers a solution for managing large volumes of textile waste but also paves the way for sustainable technologies.
Collapse
Affiliation(s)
- Arvind Negi
- Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Zhang Y, Qiu Y, Karimi AB, Smith BR. Systematic review: Mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery. Eur J Nucl Med Mol Imaging 2025; 52:1576-1595. [PMID: 39722062 PMCID: PMC11849580 DOI: 10.1007/s00259-024-07014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies. METHOD A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization. RESULTS We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy. CONCLUSION The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ali Bavandpour Karimi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Ahoulou E, Ugboya A, Ogbonna V, Basnet K, Henary M, Grant KB. Single-Photon DNA Photocleavage up to 905 nm by a Benzylated 4-Quinolinium Carbocyanine Dye. ACS OMEGA 2025; 10:6544-6558. [PMID: 40028136 PMCID: PMC11865986 DOI: 10.1021/acsomega.4c07083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
This paper describes the DNA interactions of near-infrared (NIR) benzylated 4-quinolinium dicarbocyanine dyes containing a pentamethine bridge meso-substituted either with a bromine (4) or hydrogen (5) atom. In pH 7.0 buffered aqueous solutions, the 4-quinolinium dyes absorb light that extends into the near-infrared range up to ∼950 nm. The unique direct strand breakage of pUC19 DNA that is sensitized by irradiating either dicarbocyanine with an 850 nm LED laser constitutes the first published example of DNA photocleavage upon single-photon chromophore excitation at a wavelength greater than 830 nm. Brominated dye 4, which is more stable than and achieves DNA strand scission in higher yield than its hydrogen-bearing counterpart 5, cleaves plasmid DNA under 830 and 905 nm laser illumination. The addition of increasing amounts of DNA to aqueous pH 7.0 solutions converted an aggregated form of dye 4 to a monomer with bathochromic absorption that overlaps all three laser emission wavelengths. No induced circular dichroism and fluorescence signals were detected when DNA was present, pointing to possible external binding of the dye to the DNA. Experiments employing radical-specific fluorescent probes and chemical additives showed that brominated dye 4 likely breaks DNA strands by photosensitizing hydroxyl radical production. Micromolar concentrations of the dye were relatively nontoxic to cultured Escherichia coli cells in the dark but dramatically reduced survival of the cells under 830 nm illumination. As NIR light wavelengths deeply penetrate biological tissues, we envisage the future use of carbocyanine dyes as a sensitizing agent in phototherapeutic applications.
Collapse
Affiliation(s)
- Effibe
O. Ahoulou
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Aikohi Ugboya
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Victor Ogbonna
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kanchan Basnet
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Maged Henary
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- Center
for
Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kathryn B. Grant
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
4
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
5
|
Zhao X, Wang T, Shang F, Yan J, Jiang M, Zou X, Li G, Song Z, Huang J. Coumarin-Quinazolinone based photosensitizers: Mitochondria and endoplasmic reticulum targeting for enhanced phototherapy via different cell death pathways. Eur J Med Chem 2024; 280:116990. [PMID: 39442335 DOI: 10.1016/j.ejmech.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Organelle-targeted photosensitizers (PSs) offer valuable tools for improving photodynamic therapy (PDT), yet systematic studies on how different organelles influence phototherapeutic outcomes are limited. In particular, the connection between organelle targeting and various modes of programmed cell death remains unclear. In this study, we developed a series of PSs using the Coumarin-Quinazolinone (CQ) scaffold, each designed to target different organelles, including the mitochondria, endoplasmic reticulum (ER), lysosome, and nucleolus. Our results show that their PDT performance is highly dependent on their localization, with phototoxic index (PI) ranging from 2 to 245. Notably, the mitochondria-targeted CQ-Mito and ER-targeted CQ-ER exhibited profound phototherapeutic performances, with PI of 167 and 245 respectively. Our further study reveals that CQ-Mito causes cell death by both apoptosis and ferroptosis, while CQ-ER primarily triggers ferroptosis. This study not only provides new agents for PDT but also offers insights into how organelle targeting influences cell death mechanisms, which can shed light on the design of PSs for controlled cell death.
Collapse
Affiliation(s)
- Xuzi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Ting Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fucheng Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Jiangyu Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Mingyan Jiang
- Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Xiaoyan Zou
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China
| | - Guorui Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China.
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan, 411100, China.
| |
Collapse
|
6
|
Li B, Ayala‐Orozco C, Si T, Zhou L, Wang Z, Martí AA, Tour JM. Divergent Syntheses of Near-Infrared Light-Activated Molecular Jackhammers for Cancer Cell Eradication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405965. [PMID: 39400530 PMCID: PMC11615805 DOI: 10.1002/advs.202405965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Aminocyanines incorporating Cy7 and Cy7.5 moieties function as molecular jackhammers (MJH) through vibronic-driven action (VDA). This mechanism, which couples molecular vibrational and electronic modes, results in picosecond-scale concerted stretching of the entire molecule. When cell-associated and activated by near-infrared light, MJH mechanically disrupts cell membranes, causing rapid necrotic cell death. Unlike photodynamic and photothermal therapies, the ultrafast vibrational action of MJH is unhindered by high concentrations of reactive oxygen species scavengers and induces only a minimal temperature increase. Here, the efficient synthesis of a library of MJH is described using a practical approach to access a key intermediate and facilitating the preparation of various Cy7 and Cy7.5 MJH with diverse side chains in moderate to high yields. Photophysical characterization reveals that structural modifications significantly affect molar extinction coefficients and quantum yields while maintaining desirable absorption and emission wavelengths. The most promising compounds, featuring dimethylaminoethyl and dimethylcarbamoyl substitutions, demonstrate up to sevenfold improvement in phototherapeutic index compared to Cy7.5 amine across multiple cancer cell lines. This synthetic strategy provides a valuable platform for developing potent, light-activated therapeutic agents for cancer treatment, with potentially broad applicability across various cancer types.
Collapse
Affiliation(s)
- Bowen Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Tengda Si
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Lixin Zhou
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Zicheng Wang
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Angel A. Martí
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of BioengineeringRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoengineeringRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Rice Advanced Materials InstituteRice UniversityHoustonTX77005USA
| |
Collapse
|
7
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
8
|
Tan W, Yu Y, Shi T, Zhang L, Gan H, Wang B, Liu G, Li M, Ying L, Ma Y. Achieving Ultra-Narrow-Band Deep-Red Electroluminescence By a Soliton-type Dye Squaraine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410418. [PMID: 39313994 DOI: 10.1002/adma.202410418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Due to the soliton-like electronic structural characteristics, cyanine dyes typically exhibit spectral behaviors such as large molar extinction coefficients, narrow spectra, and high fluorescence efficiency. However, their extensive applications as emitters in electroluminescence are largely ignored due to their serious emission quenching in the aggregation state. Herein, it is reported a squaraine dye (a type of cyanine) SQPhEt. At different solution concentrations, the unusual decrease in full-width at half-maxima (FWHM) with increasing Stokes shift indicates the fluorescence quenching of SQPhEt in the aggregated state is because of the strong self-absorption effect. A sensitized device structure can help to reduce the doping concentration of dye, which can effectively suppress self-absorption. Benefitting from the large molar extinction coefficient of SQPhEt, even at low doping concentrations of 0.1 wt%, efficient Förster energy transfer can be achieved. The corresponding spin-coating sensitized device based on SQPhEt as the dopant exhibits favorable deep-red emission at 668 nm with a small FWHM of 0.10 eV.
Collapse
Affiliation(s)
- Wenle Tan
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yue Yu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tianyuan Shi
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lveting Zhang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hanlin Gan
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bohan Wang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ganlin Liu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Mingke Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lei Ying
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
9
|
Frey J, Goddard JP, Cormier M. Catalytic Deprotection of Alkyne Dicobalt Hexacarbonyl Complexes using Near-Infrared Photocatalysis. J Org Chem 2024; 89:15217-15224. [PMID: 39370925 DOI: 10.1021/acs.joc.4c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dicobalt hexacarbonyl complexes are well-known for their applications in the Nicholas reaction or simply as a protecting group for alkynes. To recover the alkyne, demetalation is necessary, which usually involves a stoichiometric amount of an oxidizing agent or a strong ligand. This article reports a demetalation methodology based on a photocatalytic process. This approach employs a photocatalyst under aerobic conditions, and the optimal results were achieved using mild near-infrared irradiation. A mechanistic investigation is also presented to elucidate how the photocatalytic system promotes this deprotection. This tool is compatible with the one-pot reaction and orthogonal deprotection of alkynes, offering new perspectives for further applications.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France
| |
Collapse
|
10
|
Kobzev D, Semenova O, Aviel-Ronen S, Kulyk O, Carmieli R, Mirzabekov T, Gellerman G, Patsenker L. Sonodynamic Therapy for HER2+ Breast Cancer with Iodinated Heptamethine Cyanine-Trastuzumab Conjugate. Int J Mol Sci 2024; 25:10137. [PMID: 39337633 PMCID: PMC11431973 DOI: 10.3390/ijms251810137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The first example of sonodynamic therapy (SDT) with a cyanine dye-antibody conjugate is reported. The aim of this study was to evaluate the sonodynamic efficacy of a trastuzumab-guided diiodinated heptamethine cyanine-based sensitizer, 2ICy7-Ab, versus its non-iodinated counterpart, Cy7-Ab, in a human epidermal growth factor receptor 2-positive (HER2+) xenograft model. In addition, the combined sonodynamic and photodynamic (PDT) effects were investigated. A single intravenous injection of 2ICy7-Ab followed by sonication or combined sonication and photoirradiation in mice resulted in complete tumor growth suppression compared with the nontreated control and showed no detectable toxicity to off-target tissues. In contrast, Cy7-Ab provided only a moderate therapeutic effect (~1.4-1.6-fold suppression). SDT with 2ICy7-Ab resulted in a 3.5-fold reduction in tumor volume within 45 days and exhibited 13-fold greater tumor suppression than PDT alone. In addition, 2ICy7-Ab showed more durable sonostability than photostability. The sonotoxicity of the iodinated versus noniodinated counterparts is attributed to the increased generation of hydroxyl radicals, superoxide, and singlet oxygen. We observed no significant contribution of PDT to the efficacy of the combined SDT and PDT, indicating that SDT with 2ICy7-Ab is superior to PDT alone. These new findings set the stage for the application of cyanine-antibody conjugates for fluorescently monitored targeted sonodynamic treatment of cancer.
Collapse
Affiliation(s)
- Dmytro Kobzev
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Olga Semenova
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
| | - Olesia Kulyk
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel;
| | | | - Gary Gellerman
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Leonid Patsenker
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| |
Collapse
|
11
|
Sandhanam K, Tamilanban T, Manasa K, Bhattacharjee B. Unlocking novel therapeutic avenues in glioblastoma: Harnessing 4-amino cyanine and miRNA synergy for next-gen treatment convergence. Neuroscience 2024; 553:1-18. [PMID: 38944146 DOI: 10.1016/j.neuroscience.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy 502294, Telangana, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501 Assam, India
| |
Collapse
|
12
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
13
|
Aebisher D, Serafin I, Batóg-Szczęch K, Dynarowicz K, Chodurek E, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy in the Treatment of Cancer-The Selection of Synthetic Photosensitizers. Pharmaceuticals (Basel) 2024; 17:932. [PMID: 39065781 PMCID: PMC11279632 DOI: 10.3390/ph17070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | | | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8 Str., 41-200 Sosnowiec, Poland;
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
14
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
16
|
Ayala-Orozco C, Galvez-Aranda D, Corona A, Seminario JM, Rangel R, Myers JN, Tour JM. Molecular jackhammers eradicate cancer cells by vibronic-driven action. Nat Chem 2024; 16:456-465. [PMID: 38114816 DOI: 10.1038/s41557-023-01383-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/24/2023] [Indexed: 12/21/2023]
Abstract
Through the actuation of vibronic modes in cell-membrane-associated aminocyanines, using near-infrared light, a distinct type of molecular mechanical action can be exploited to rapidly kill cells by necrosis. Vibronic-driven action (VDA) is distinct from both photodynamic therapy and photothermal therapy as its mechanical effect on the cell membrane is not abrogated by inhibitors of reactive oxygen species and it does not induce thermal killing. Subpicosecond concerted whole-molecule vibrations of VDA-induced mechanical disruption can be achieved using very low concentrations (500 nM) of aminocyanines or low doses of light (12 J cm-2, 80 mW cm-2 for 2.5 min), resulting in complete eradication of human melanoma cells in vitro. Also, 50% tumour-free efficacy in mouse models for melanoma was achieved. The molecules that destroy cell membranes through VDA have been termed molecular jackhammers because they undergo concerted whole-molecule vibrations. Given that a cell is unlikely to develop resistance to such molecular mechanical forces, molecular jackhammers present an alternative modality for inducing cancer cell death.
Collapse
Affiliation(s)
| | - Diego Galvez-Aranda
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Arnoldo Corona
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge M Seminario
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| | - Roberto Rangel
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, NanoCarbon Center, Smalley-Curl Institute and The Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
Kulinich AV, Ishchenko AA. Design and Photonics of Merocyanine Dyes. CHEM REC 2024; 24:e202300262. [PMID: 37850545 DOI: 10.1002/tcr.202300262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Merocyanines, thanks to their easily adjustable electronic structure, appear to be the most versatile and promising functional dyes. Their D-π-A framework offers ample opportunities for custom design through variations in both donor/acceptor end-groups and the π-conjugated polymethine chain, and leads to a broad range of practical properties, including noticeable solvatochromism, high polarizability/hyperpolarizabilities, and the ability to sensitize various physicochemical processes. Accordingly, merocyanines are applied and extensively studied in various fields, such as light-converting materials for optoelectronics, nonlinear optics, optical storage, solar cells, fluorescent probes, and antitumor agents in photodynamic therapy. This review encompasses both classical and novel more important publications on the structure-property relationships in merocyanines, with particular emphasis on the results by A. I. Kiprianov and his followers in Institute of Organic Chemistry in Kyiv, Ukraine.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., 02094, Kyiv, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., 02094, Kyiv, Ukraine
| |
Collapse
|
18
|
Shao J, Hu M, Wang W, Pan Z, Zhao D, Liu J, Lv M, Zhang Y, Li Z. Indocyanine green based photodynamic therapy for keloids: Fundamental investigation and clinical improvement. Photodiagnosis Photodyn Ther 2024; 45:103903. [PMID: 37989473 DOI: 10.1016/j.pdpdt.2023.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Keloid, a prevalent pathological skin lesion, presents significant challenges in terms of treatment efficacy. Photodynamic therapy (PDT), an increasingly popular adjuvant treatment, has shown significant potential in the management of various disorders, including cancer. However, the therapeutic potential of indocyanine green-mediated photodynamic therapy (ICG-PDT) for keloids has not yet been demonstrated. METHODS In this study, we divided the experimental groups into control group, Photothermal Therapy group, Photodynamic Therapy group, and Combined Therapy group. The in vitro investigation aimed to optimize the clinical application of PDT for keloid treatment by elucidating its underlying mechanism. Subsequently, on this basis, we endeavored to manage a clinical case of keloid by employing surgical intervention in conjunction with modified ICG-PDT. RESULTS Our investigation revealed an unexpected outcome that ICG-PDT maximally inhibited the cellular activity and migration of keloid fibroblasts only when photodynamic mechanism took effect. Additionally, the induction of autophagy and apoptosis, as well as the inhibition of collagen synthesis, were particularly evident in this experimental group. Furthermore, the above therapeutic effect could be achieved at remarkably low drug concentrations. Building upon the aforementioned experimental findings, we successfully optimized the treatment modality for the latest case and obtained a more favorable treatment outcome. CONCLUSIONS This study investigated the mechanism of ICG-PDT treatment and optimized the in vivo treatment regimen, demonstrating the significant therapeutic potential of ICG-PDT treatment in clinical keloid treatment.
Collapse
Affiliation(s)
- Junyi Shao
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Murong Hu
- Department of Dermatology and Venereology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, 310000, China
| | - Wenwen Wang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhaoqi Pan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University,Wenzhou, Zhejiang, 325000, China
| | - Dewei Zhao
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China
| | - Jingjing Liu
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mingfen Lv
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhiming Li
- Department of Dermatology and Venereology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
19
|
Bashiru M, Macchi S, Forson M, Khan A, Ishtiaq A, Oyebade A, Jalihal A, Ali N, Griffin RJ, Oyelere AK, Hooshmand N, Siraj N. Doxorubicin-Based Ionic Nanomedicines for Combined Chemo-Phototherapy of Cancer. ACS APPLIED NANO MATERIALS 2024; 7:2176-2189. [PMID: 38410412 PMCID: PMC10896075 DOI: 10.1021/acsanm.3c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Synergistic combination therapy approach offers lots of options for delivery of materials with anticancer properties, which is a very promising strategy to treat a variety of malignant lesions with enhanced therapeutic efficacy. The current study involves a detailed investigation of combination ionic nanomedicines where a chemotherapeutic drug is coupled with a photothermal agent to attain dual mechanisms (chemotherapy (chemo) and photothermal therapy (PTT)) to improve the drug's efficacy. An FDA-approved Doxorubicin hydrochloride (DOX·HCl) is electrostatically attached with a near-infrared cyanine dye (ICG, IR783, and IR820), which serves as a PTT drug using ionic liquid chemistry to develop three ionic material (IM)-based chemo-PTT drugs. Carrier-free ionic nanomedicines (INMs) are derived from ionic materials (IMs). The photophysical properties of the developed combination IMs and their INMs were studied in depth. The phototherapeutic efficiency of the combination drugs was evaluated by measuring the photothermal conversion efficiency and singlet-oxygen quantum yield. The improved photophysical properties of the combination nanomedicines in comparison to their parent compounds significantly enhanced INMs' photothermal efficiency. Cellular uptake, dark and light toxicity studies, and cell death mechanisms of the chemo-PTT nanoparticles were also studied in vitro. The combination INMs exhibited enhanced cytotoxicity compared to their respective parent compounds. Moreover, the apoptosis cell death mechanism was almost doubled for combination nanomedicine than the free DOX, which is attributed to enhanced cellular uptake. Examination of the combination index and improved in vitro cytotoxicity results revealed a great synergy between chemo and PTT drugs in the developed combination nanomedicines.
Collapse
Affiliation(s)
- Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Mavis Forson
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amna Khan
- Department of Chemistry, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Arisha Ishtiaq
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Adeniyi Oyebade
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amanda Jalihal
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Robert J Griffin
- Department of Radiation Oncology, Arkansas Nanomedicine Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
20
|
Sellet N, Clement-Comoy L, Elhabiri M, Cormier M, Goddard JP. Second Generation of Near-Infrared Cyanine-Based Photocatalysts for Faster Organic Transformations. Chemistry 2023; 29:e202302353. [PMID: 37688503 DOI: 10.1002/chem.202302353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
A second generation of cyanine-based near-infrared photocatalysts has been developed to accelerate organic transformations. Cyanines were prepared and fully characterized prior to evaluation of their photocatalytic activities. Catalyst efficiency was determined by using two model oxidation and reduction reactions. For the aza-Henry reaction, cyanines bearing an amino group on the heptamethine chain led to the best results. For trifluoromethylation, the stability of the photocatalyst was found to be the key parameter for efficient and rapid conversion.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Leo Clement-Comoy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bioorganic and MUMR 7042, Université de Strasbourg, Université de Haute-Alsace (UHA), CNRS, Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 67087, Strasbourg, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| |
Collapse
|
21
|
Lu Z, Tan J, Wu Y, You J, Xie X, Zhang Z, Li Z, Chen L. NIR Light-Activated Mitochondrial RNA Cross-Linking Strategy for H 2S Monitoring and Prolonged Colorectal Tumor Imaging. Anal Chem 2023; 95:17089-17098. [PMID: 37940603 DOI: 10.1021/acs.analchem.3c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Molecular diffusion and leakage impede the long-term retention of probes/drugs and may cause potential adverse effects in theranostic fields. Spatiotemporally manipulating the organelle-immobilization behavior of probes/drugs for prolonged tumor retention is indispensable to achieving effective cancer diagnosis and therapy. Herein, we propose a rational strategy that could realize near-infrared light-activated ribonucleic acids (RNAs) cross-linking for prolonged tumor retention and simultaneously endogenous hydrogen sulfide (H2S) monitoring in colorectal tumors. Profiting from efficient singlet oxygen (1O2) generation from Cy796 under 808 nm light irradiation, the 1O2-animated furan moiety in Cy796 could covalently cross-link with cytoplasmic RNAs via a cycloaddition reaction and realize organelle immobilization. Subsequently, specific thiolysis of Cy796 assisted with H2S resulted in homologous product Cy644 with reduced 1O2 generation yields and enhanced absolute fluorescence quantum yields (from 7.42 to 27.70%) with blue-shifted absorption and emission, which avoided the molecular oxidation fluorescence quenching effect mediated by 1O2 and validated fluorescence imaging. Furthermore, studies have demonstrated that our proposed strategy possessed adequate capacity for fluorescence imaging and endogenous H2S detection in HCT116 cells, particularly accumulated at the tumor sites, and retained long-term imaging with excellent biocompatibility. The turn-on fluorescence mode and turn-off 1O2 generation efficiency in our strategy successfully realized a diminished fluorescence cross-talk and oxidation quenching effect. It is adequately envisioned that our proposed strategy for monitoring biomarkers and prolonged tumor retention will contribute tremendous dedication in the clinical, diagnostic, and therapeutic fields.
Collapse
Affiliation(s)
- Zhihao Lu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiangkun Tan
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Science, Yantai 264003, P. R. China
| | - Yuting Wu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, P. R. China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiunan Xie
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhiyong Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Science, Yantai 264003, P. R. China
| |
Collapse
|
22
|
Szepesi Kovács D, Kontra B, Chiovini B, Müller D, Tóth EZ, Ábrányi-Balogh P, Wittner L, Várady G, Turczel G, Farkas Ö, Owen MC, Katona G, Győrffy B, Keserű GM, Mucsi Z, Rózsa BJ, Kovács E. Effective synthesis, development and application of a highly fluorescent cyanine dye for antibody conjugation and microscopy imaging. Org Biomol Chem 2023; 21:8829-8836. [PMID: 37917021 DOI: 10.1039/d3ob01471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
An asymmetric cyanine-type fluorescent dye was designed and synthesized via a versatile, multi-step process, aiming to conjugate with an Her2+ receptor specific antibody by an azide-alkyne click reaction. The aromaticity and the excitation and relaxation energetics of the fluorophore were characterized by computational methods. The synthesized dye exhibited excellent fluorescence properties for confocal microscopy, offering efficient applicability in in vitro imaging due to its merits such as a high molar absorption coefficient (36 816 M-1 cm-1), excellent brightness, optimal wavelength (627 nm), larger Stokes shift (26 nm) and appropriate photostability compared to cyanines. The conjugated cyanine-trastuzumab was constructed via an effective, metal-free, strain-promoted azide-alkyne click reaction leading to a regulated number of dyes being conjugated. This novel cyanine-labelled antibody was successfully applied for in vitro confocal imaging and flow cytometry of Her2+ tumor cells.
Collapse
Affiliation(s)
- Dénes Szepesi Kovács
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Bence Kontra
- Brain Vision Center, H-1094 Budapest, Hungary
- Femtonics Ltd., H-1094 Budapest, Hungary
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
| | - Balázs Chiovini
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
| | - Dalma Müller
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
- Oncology Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
| | - Estilla Zsófia Tóth
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
- Integrative Neuroscience Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Lucia Wittner
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Integrative Neuroscience Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - György Várady
- Molecular Cell Biology Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ödön Farkas
- Department of Organic Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Michael C Owen
- Institute of Chemistry, University of Miskolc, Miskolc H-3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc H-3515, Hungary
| | - Gergely Katona
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
| | - Balázs Győrffy
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Oncology Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- Brain Vision Center, H-1094 Budapest, Hungary
- Femtonics Ltd., H-1094 Budapest, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc H-3515, Hungary
| | - Balázs J Rózsa
- Brain Vision Center, H-1094 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Ervin Kovács
- Femtonics Ltd., H-1094 Budapest, Hungary
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
23
|
Heyder M, Reise M, Burchardt J, Guellmar A, Beck J, Schulze-Späte U, Sigusch B, Kranz S. Photodynamic Suppression of Enterococcus Faecalis in Infected Root Canals with Indocyanine Green, Trolox TM and Near-Infrared Light. Pharmaceutics 2023; 15:2572. [PMID: 38004551 PMCID: PMC10674481 DOI: 10.3390/pharmaceutics15112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Recently, our group showed that additional supplementation of Trolox™ (vitamin E analogue) can significantly enhance the antimicrobial photodynamic effect of the photosensitizer Indocyanine green (ICG). Up to now, the combined effect has not yet been investigated on Enterococcus faecalis in dental root canals. In the present in vitro study, eighty human root canals were inoculated with E. faecalis and subsequently subjected to antimicrobial Photodynamic Therapy (aPDT) using ICG (250, 500, 1000 µg/mL) and near-infrared laser light (NIR, 808 nm, 100 Jcm-2). Trolox™ at concentrations of 6 mM was additionally applied. As a positive control, irrigation with 3% NaOCl was used. After aPDT, root canals were manually enlarged and the collected dentin debris was subjected to microbial culture analysis. Bacterial invasion into the dentinal tubules was verified for a distance of 300 µm. aPDT caused significant suppression of E. faecalis up to a maximum of 2.9 log counts (ICG 250 µg/mL). Additional application of TroloxTM resulted in increased antibacterial activity for aPDT with ICG 500 µg/mL. The efficiency of aPDT was comparable to NaOCl-irrigation inside the dentinal tubules. In conclusion, ICG significantly suppressed E. faecalis. Additional application of TroloxTM showed only minor enhancement. Future studies should also address the effects of TroloxTM on other photodynamic systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefan Kranz
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der Alten Post 4, 07743 Jena, Germany; (M.H.); (M.R.); (J.B.); (A.G.); (J.B.); (U.S.-S.); (B.S.)
| |
Collapse
|
24
|
Wang DP, Zheng J, Jiang FY, Wu LF, Wang MY, Wang YL, Qin CY, Ning JY, Cao JM, Zhou X. Facile and green fabrication of tumor- and mitochondria-targeted AIEgen-protein nanoparticles for imaging-guided photodynamic cancer therapy. Acta Biomater 2023; 168:551-564. [PMID: 37414113 DOI: 10.1016/j.actbio.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In recent years, aggregation-induced emission (AIE)-active materials have been emerging as a promising means for bioimaging and phototherapy. However, the majority of AIE luminogens (AIEgens) need to be encapsulated into versatile nanocomposites to improve their biocompatibility and tumor targeting. Herein, we prepared a tumor- and mitochondria-targeted protein nanocage by the fusion of human H-chain ferritin (HFtn) with a tumor homing and penetrating peptide LinTT1 using genetic engineering technology. The LinTT1-HFtn could serve as a nanocarrier to encapsulate AIEgens via a simple pH-driven disassembly/reassembly process, thereby fabricating the dual-targeting AIEgen-protein nanoparticles (NPs). The as designed NPs exhibited an improved hepatoblastoma-homing property and tumor penetrating ability, which is favorable for tumor-targeted fluorescence imaging. The NPs also presented a mitochondria-targeting ability, and efficiently generated reactive oxygen species (ROS) upon visible light irradiation, making them valuable for inducing efficient mitochondrial dysfunction and intrinsic apoptosis in cancer cells. In vivo experiments demonstrated that the NPs could provide the accurate tumor imaging and dramatic tumor growth inhibition with minimal side effects. Taken together, this study presents a facile and green approach for fabrication of tumor- and mitochondria-targeted AIEgen-protein NPs, which can serve as a promising strategy for imaging-guided photodynamic cancer therapy. STATEMENT OF SIGNIFICANCE: AIE luminogens (AIEgens) show strong fluorescence and enhanced ROS generation in the aggregate state, which would facilitate the image-guided photodynamic therapy [12-14]. However, the major obstacles that hinder biological applications are their lack of hydrophilicity and selective targeting [15]. To address this issue, this study presents a facile and green approach for the fabrication of tumor‑ and mitochondria‑targeted AIEgen-protein nanoparticles via a simple disassembly/reassembly of the LinTT1 peptide-functionalized ferritin nanocage without any harmful chemicals or chemical modification. The targeting peptide-functionalized nanocage not only restricts the intramolecular motion of AIEgens leading to enhanced fluorescence and ROS production, but also confers good targeting to AIEgens.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jian Zheng
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan 030001, China
| | - Fang-Ying Jiang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Lan Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Chuan-Yue Qin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jun-Ya Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
25
|
Zhang R, Gao T, Wang D. Photodynamic therapy (PDT) for oral leukoplakia: a systematic review and meta-analysis of single-arm studies examining efficacy and subgroup analyses. BMC Oral Health 2023; 23:568. [PMID: 37574560 PMCID: PMC10424357 DOI: 10.1186/s12903-023-03294-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE This study aims to evaluate the efficacy of photodynamic therapy (PDT) in the treatment of oral leukoplakia and explore the subgroup factors that may influence its effectiveness. METHODS A systematic search was conducted in PubMed, Embase, the Cochrane Library, and Web of Science databases to identify relevant studies. Meta-analysis was performed using Stata15.0 software. Cochran's Q test and I2 statistics were used to evaluate heterogeneity, egger's test was used to evaluate publication bias. RESULTS The analysis of 17 studies included in this study suggests that PDT may be effective in achieving complete response (CR) [ES = 0.50, 95%CI: (0.33,0.66)], partial response (PR) [ES = 0.42, 95%CI: (0.27,0.56)], no response (NR) [ES = 0.19, 95%CI: (0.11,0.27)]in patients with oral leukoplakia. The recurrence rate was also evaluated [ES = 0.13, 95%CI: (0.08,0.18)]. Subgroup analysis showed that various factors such as light source, wavelength, medium, duration of application, clinical and pathological diagnosis classification influenced efficacy of PDT. The lesion areas of the leukoplakia after treatment were reduced by 1.97cm2 compared with those before treatment. CONCLUSION Our findings show that PDT is a viable treatment for oral leukoplakia. However, the effectiveness of the therapy may depend on several factors, as suggested by our subgroup analyses. (Registration no. CRD42023399848 in Prospero, 26/02/2023).
Collapse
Affiliation(s)
- Rui Zhang
- Department of General Stomatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Tong Gao
- Department of Prosthodontics, Affiliated Hospital of Yanan University, Shaanxi, 716000, China
| | - Dan Wang
- Department of Stomatology, Qingtongxia Hospital of Traditional Chinese Medicine, Ningxia, 751600, China
| |
Collapse
|
26
|
Udrea AM, Smarandache A, Dinache A, Mares C, Nistorescu S, Avram S, Staicu A. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment. Pharmaceutics 2023; 15:2124. [PMID: 37631339 PMCID: PMC10460031 DOI: 10.3390/pharmaceutics15082124] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Adriana Smarandache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Andra Dinache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Simona Nistorescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Angela Staicu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| |
Collapse
|
27
|
Garcés-Garcés J, Sánchez-Martos M, Martinez-Navarrete G, Fernández-Jover E, Encheva M, León M, Ortiz J, Sastre-Santos Á, Fernández-Lázaro F. New Highly Fluorescent Water Soluble Imidazolium-Perylenediimides: Synthesis and Cellular Response. Pharmaceutics 2023; 15:1892. [PMID: 37514077 PMCID: PMC10384807 DOI: 10.3390/pharmaceutics15071892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis and characterization of two new water soluble 2,6-bis(imidazolylmethyl)-4-methylphenoxy-containing perylenediimides, PDI-1 and PDI-2, are described. These compounds demonstrate a high fluorescence quantum yield in water and were investigated as potential photosensitizers for generating reactive oxygen species with applications in anticancer activities. The HeLa cell line (VPH18) was used to evaluate their efficacy. Fluorescence microscopy was employed to confirm the successful internalization of PDI-1 and PDI-2, while confocal microscopy revealed the specific locations of both PDIs within the lysosomes and mitochondria. In vitro studies were conducted to evaluate the anticancer activity of PDI-1 and PDI-2. Remarkably, these photosensitizers demonstrated a significant ability to selectively eliminate cancer cells when exposed to a specific light wavelength. The water solubility, high fluorescence quantum yield, and selective cytotoxicity of these PDIs toward cancer cells highlight their potential as effective agents for targeted photodynamic therapy. In conclusion, the findings presented here provide a strong foundation for the future exploration and optimization of PDI-1 and PDI-2 as effective photosensitizers in photodynamic therapy, potentially leading to improved treatment strategies for cancer patients.
Collapse
Affiliation(s)
- José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Miguel Sánchez-Martos
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Gema Martinez-Navarrete
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Eduardo Fernández-Jover
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Mirela Encheva
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Martín León
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Javier Ortiz
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
28
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
29
|
Rajapaksha IN, Wang J, Leszczynski J, Scott CN. Investigating the Effects of Donors and Alkyne Spacer on the Properties of Donor-Acceptor-Donor Xanthene-Based Dyes. Molecules 2023; 28:4929. [PMID: 37446594 DOI: 10.3390/molecules28134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
NIR dyes have become popular for many applications, including biosensing and imaging. For this reason, the molecular switch mechanism of the xanthene dyes makes them useful for in vivo detection and imaging of bioanalytes. Our group has been designing NIR xanthene-based dyes by the donor-acceptor-donor approach; however, the equilibrium between their opened and closed forms varies depending on the donors and spacer. We synthesized donor-acceptor-donor NIR xanthene-based dyes with an alkyne spacer via the Sonogashira coupling reaction to investigate the effects of the alkyne spacer and the donors on the maximum absorption wavelength and the molecular switching (ring opening) process of the dyes. We evaluated the strength and nature of the donors and the presence and absence of the alkyne spacer on the properties of the dyes. It was shown that the alkyne spacer extended the conjugation of the dyes, leading to absorption wavelengths of longer values compared with the dyes without the alkyne group. In addition, strong charge transfer donors shifted the absorption wavelength towards the NIR region, while donors with strong π-donation resulted in xanthene dyes with a smaller equilibrium constant. DFT/TDDFT calculations corroborated the experimental data in most of the cases. Dye 2 containing the N,N-dimethylaniline group gave contrary results and is being further investigated.
Collapse
Affiliation(s)
- Ishanka N Rajapaksha
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
30
|
Chauhan N, Cabrera M, Chowdhury P, Nagesh PK, Dhasmana A, Pranav, Jaggi M, Chauhan SC, Yallapu MM. Indocyanine Green-based Glow Nanoparticles Probe for Cancer Imaging. Nanotheranostics 2023; 7:353-367. [PMID: 37151801 PMCID: PMC10161388 DOI: 10.7150/ntno.78405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/22/2023] [Indexed: 08/31/2023] Open
Abstract
Indocyanine green (ICG) is one of the FDA-approved near infra-red fluorescent (NIRF) probes for cancer imaging and image-guided surgery in the clinical setting. However, the limitations of ICG include poor photostability, high concentration toxicity, short circulation time, and poor cancer cell specificity. To overcome these hurdles, we engineered a nanoconstruct composed of poly (vinyl pyrrolidone) (PVP)-indocyanine green that is cloaked self-assembled with tannic acid (termed as indocyanine green-based glow nanoparticles probe, ICG-Glow NPs) for the cancer cell/tissue-specific targeting. The self-assembled ICG-Glow NPs were confirmed by spherical nanoparticles formation (DLS and TEM) and spectral analyses. The NIRF imaging characteristic of ICG-Glow NPs was established by superior fluorescence counts on filter paper and chicken tissue. The ICG-Glow NPs exhibited excellent hemo and cellular compatibility with human red blood cells, kidney normal, pancreatic normal, and other cancer cell lines. An enhanced cancer-specific NIRF binding and imaging capability of ICG-Glow NPs was confirmed using different human cancer cell lines and human tumor tissues. Additionally, tumor-specific binding/accumulation of ICG-Glow NPs was confirmed in MDA-MB-231 xenograft mouse model. Collectively, these findings suggest that ICG-Glow NPs have great potential as a novel and safe NIRF imaging probe for cancer cell/tumor imaging. This can lead to a quicker cancer diagnosis facilitating precise disease detection and management.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Prashanth K.B. Nagesh
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| |
Collapse
|
31
|
Ishchenko AA, Syniugina AT. Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
32
|
Bordignon N, Köber M, Chinigò G, Pontremoli C, Sansone E, Vargas-Nadal G, Moran Plata MJ, Fiorio Pla A, Barbero N, Morla-Folch J, Ventosa N. Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy. Pharmaceutics 2023; 15:902. [PMID: 36986763 PMCID: PMC10057727 DOI: 10.3390/pharmaceutics15030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Photodynamic therapy is a non-invasive therapeutic strategy that combines external light with a photosensitizer (PS) to destroy abnormal cells. Despite the great progress in the development of new photosensitizers with improved efficacy, the PS's photosensitivity, high hydrophobicity, and tumor target avidity still represent the main challenges. Herein, newly synthesized brominated squaraine, exhibiting intense absorption in the red/near-infrared region, has been successfully incorporated into Quatsome (QS) nanovesicles at different loadings. The formulations under study have been characterized and interrogated in vitro for cytotoxicity, cellular uptake, and PDT efficiency in a breast cancer cell line. The nanoencapsulation of brominated squaraine into QS overcomes the non-water solubility limitation of the brominated squaraine without compromising its ability to generate ROS rapidly. In addition, PDT effectiveness is maximized due to the highly localized PS loadings in the QS. This strategy allows using a therapeutic squaraine concentration that is 100 times lower than the concentration of free squaraine usually employed in PDT. Taken together, our results reveal the benefits of the incorporation of brominated squaraine into QS to optimize their photoactive properties and support their applicability as photosensitizer agents for PDT.
Collapse
Affiliation(s)
- Nicolò Bordignon
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Mariana Köber
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Carlotta Pontremoli
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Ettore Sansone
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Guillem Vargas-Nadal
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| | - Maria Jesus Moran Plata
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Judit Morla-Folch
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| |
Collapse
|
33
|
Veryutin DA, Doroshenko IA, Martynova EA, Sapozhnikova KA, Svirshchevskaya EV, Shibaeva AV, Markova AA, Chistov AA, Borisova NE, Shuvalov MV, Korshun VA, Alferova VA, Podrugina TA. Probing tricarbocyanine dyes for targeted delivery of anthracyclines. Biochimie 2023; 206:12-23. [PMID: 36179940 DOI: 10.1016/j.biochi.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Along with bright fluorescence in the near-IR range, heptamethine carbocyanine dyes possess affinity to cancer cells. Thus, these dyes could be utilized as fluorescent labels and vectors for drug delivery as covalent conjugates with cytotoxic compounds. To test the properties, structure-activity relationship, and scope of such conjugates, we synthesized drug-dye dyads of tricarbocyanine dyes with anthracycline drug daunorubicin. We used hydrophilic zwitterionic and hydrophobic positively charged benzoindoline-benzothiazole-based heptamethine dyes as terminal alkyne derivatives and N-acylated or oxime-linked daunorubicin as azido-derivatives. These two alkynes and two azides were coupled to each other by Cu-catalyzed Huisgen-Meldal-Sharpless cycloaddition (click reaction) to afford four conjugates. Molecules based on hydrophobic dyes possess submicromolar cytotoxicity to HCT116 cells. Cytotoxicity, cell penetration, intracellular distribution, apoptosis induction and the effect of antioxidants on toxicity were evaluated. The results show that the structure of the cyanine-anthracycline conjugate (hydrophilicity/hydrophobicity, charge, linker, attachment site) is important for its biological activity, thus, expansion of the chemical space of such conjugates could provide new molecular research tools for diagnostics and therapy.
Collapse
Affiliation(s)
- Dmitry A Veryutin
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Irina A Doroshenko
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | | | | | | | | | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalya E Borisova
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia
| | - Maxim V Shuvalov
- Lomonosov Moscow State University, Department of Chemistry, Moscow, Russia; Gause Institute of New Antibiotics, Moscow, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | | |
Collapse
|
34
|
Helal W. Double Hybrid Density Functionals for the Electronic Excitation Energies of Linear Cyanines. J Phys Chem A 2023; 127:131-141. [PMID: 36537875 DOI: 10.1021/acs.jpca.2c07192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lowest bright electronic excitations of seven model linear cyanines (CN3-CN15) using 28 double-hybrid (DH) density functionals are benchmarked against accurate and recent CC3 results. Some of these DH functionals are recently designed specifically for excited electronic state calculations. In addition, CIS, CIS(D), SCS-CIS(D), and SOS-CIS(D) were also tested. Four different basis sets were used for the vertical electronic excitation calculations: cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis. Augmented basis sets (e.g. aug-cc-pVDZ and aug-cc-pVTZ) are found to be required for accurate and consistent results using DH functionals. The DH functionals tested in this work are classified into four main groups: global double-hybrids (GDH), range-separated double-hybrids (RSDH), spin-component and spin-opposite scaling global double-hybrids (SCS/SOS-GDH), and spin-component and spin-opposite scaling range-separated double-hybrids (SCS/SOS-RSDH). Within these groups, the SCS/SOS-RSDH group of functionals is found to provide the lowest mean absolute error (MAE) values (in the range 0.020-0.148 eV) in comparison with the GDH group (0.195-0.441 eV), the RSDH group (0.186-0.511 eV), and the SCS/SOS-GDH group (0.079-0.461 eV). Of all the DH functionals and ab initio methods investigated in the present contribution, the following functionals are found to be the most accurate and consistent: SCS-ωB2GPPLYP (MAE = 0.036 eV), SOS-ωB2GPPLYP (MAE = 0.020 eV), SOS-ωB88PP86 (MAE = 0.035 eV), and SOS-ωPBEPP86 (MAE = 0.037 eV). In general, the ab initio methods tested here show mediocre performance as compared to many DH functionals.
Collapse
Affiliation(s)
- Wissam Helal
- Department of Chemistry, The University of Jordan, Amman11942, Jordan
| |
Collapse
|
35
|
Li M, Zhang Y, Ma J, Du J. Albumin-based nanoparticle for dual-modality imaging of the lymphatic system. RSC Adv 2023; 13:2248-2255. [PMID: 36741156 PMCID: PMC9838117 DOI: 10.1039/d2ra07414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels, lymph nodes, and lymphoid organs. The current understanding of the basic mechanism and framework of the lymphatic system is relatively limited and not ideal for exploring the function of the lymphatic system, diagnosing lymphatic system diseases, and controlling tumor metastasis. Imaging modalities for evaluating lymphatic system diseases mainly include lymphatic angiography, reactive dye lymphatic angiography, radionuclide lymphatic angiography, computed tomography, and ultrasonography. However, these are insufficient for clinical diagnosis. Some novel imaging methods, such as magnetic resonance imaging, positron emission computed tomography, single-photon emission computed tomography, contrast-enhanced ultrasonography, and near-infrared imaging with agents such as cyanine dyes, can reveal lymphatic system information more accurately and in detail. We fabricated an albumin-based fluorescent probe for dual-modality imaging of the lymphatic system. A near-infrared cyanine dye, IR-780, was absorbed into bovine serum albumin (BSA), which was covalently linked to a molecule of diethylenetriaminepentaacetic acid to chelate gadolinium Gd3+. The fabricated IR-780@BSA@Gd3+ nanocomposite demonstrates strong fluorescence and high near-infrared absorption and can be used as a T1 contrast agent for magnetic resonance imaging. In vivo dual-modality fluorescence and magnetic resonance imaging showed that IR-780@BSA@Gd3+ rapidly returned to the heart through the lymphatic circulation after it was injected into the toe webs of mice, facilitating good lymphatic imaging. The successful fabrication of the new IR-780@BSA@Gd3+ nanocomposite will facilitate the study of the mechanism and morphological structure of the lymphatic system.
Collapse
Affiliation(s)
- Mingze Li
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Yundong Zhang
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jinli Ma
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| | - Jianshi Du
- Jilin Provincial Key Laboratory of Lymphatic Surgical Disease, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchunJilin130031P. R. China
| |
Collapse
|
36
|
Effect of Solubilizing Group on the Antibacterial Activity of Heptamethine Cyanine Photosensitizers. Pharmaceutics 2023; 15:pharmaceutics15010247. [PMID: 36678875 PMCID: PMC9864305 DOI: 10.3390/pharmaceutics15010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group's effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use.
Collapse
|
37
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
38
|
Marcelo GA, Galhano J, Duarte MP, Kurutos A, Capelo-Martínez JL, Lodeiro C, Oliveira E. Functional Cyanine-Based PVA:PVP Polymers as Antimicrobial Tools toward Food and Health-Care Bacterial Infections. Macromol Biosci 2022; 22:e2200244. [PMID: 36004698 DOI: 10.1002/mabi.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Indexed: 01/15/2023]
Abstract
The rising of multidrug-resistant bacteria and their associated proliferation as harmful microorganisms boosts the creation of new antibacterial surfaces and biomaterials with applications ranging from health to food packing. Herein, low-cost antibacterial PVA:PVP copolymers containing cyanine derivatives (1, 2, and 3) and their respective Cu2+ complexes are successfully obtained and tested against Gram-negative and Gram-positive bacteria. The possible application in food packing is addressed by covering the surface of typical paper mockups with the doped polymers. All dye-doped polymers present a broad-spectrum antibacterial effect against Gram-positive bacteria, especially for Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), and methicillin-resistant S. aureus (MRSA) strains, with PVA:PVP@3 and PVA:PVP@3-Cu being the most effective. Moreover, polymers containing cyanine derivatives present interesting inhibition effects against Pseudomonas aeruginosa (P. aeruginosa), where the production of its characteristic blue/green virulent pigment is not observed. Of the coated paper mockups, PVA:PVP:paper@2 and PVA:PVP:paper@2-Cu are most effective against B. cereus and S. aureus, while PVA:PVP:paper@3 and PVA:PVP:paper@3-Cu are most effective against the MRSA strain. In these formulations, direct contact inhibition mechanisms appear to be more significant than diffusional mechanisms, due to cyanine release hindrance, making them very interesting and versatile platforms for medical and food applications.
Collapse
Affiliation(s)
- Gonçalo A Marcelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Paula Duarte
- Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia, 1113, Bulgaria
| | - Jose Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal.,PROTEOMASS Scientific Society. Rua dos Inventores. Madam Parque, Caparica Campus, Caparica, 2829-516, Portugal
| |
Collapse
|
39
|
Spector D, Pavlov K, Beloglazkina E, Krasnovskaya O. Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs. Int J Mol Sci 2022; 23:14511. [PMID: 36498837 PMCID: PMC9739791 DOI: 10.3390/ijms232314511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Pt(IV) prodrugs remain one of the most promising alternatives to conventional Pt(II) therapy due to their versatility in axial ligand choice and delayed mode of action. Selective activation from an external source is especially attractive due to the opportunity to control the activity of an antitumor drug in space and time and avoid damage to normal tissues. In this review, we discuss recent advances in photoabsorber-mediated photocontrollable activation of Pt(IV) prodrugs. Two main approaches developed are the focus of the review. The first one is the photocatalytic strategy based on the flavin derivatives that are not covalently bound to the Pt(IV) substrate. The second one is the conjugation of photoactive molecules with the Pt(II) drug via axial position, yielding dual-action Pt(IV) molecules capable of the controllable release of Pt(II) cytotoxic agents. Thus, Pt(IV) prodrugs with a light-controlled mode of activation are non-toxic in the absence of light, but show high antiproliferative activity when irradiated. The susceptibility of Pt(IV) prodrugs to photoreduction, photoactivation mechanisms, and biological activity is considered in this review.
Collapse
Affiliation(s)
- Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Kirill Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| |
Collapse
|
40
|
Self-Assembled BODIPY Derivative with A-D-A Structure as Organic Nanoparticles for Photodynamic/Photothermal Cancer Therapy. Int J Mol Sci 2022; 23:ijms232214473. [PMID: 36430949 PMCID: PMC9698044 DOI: 10.3390/ijms232214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Organic nanomaterials have attracted considerable attention in the area of photodynamic and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability, well-defined chemical structure, and easy functionalization. However, it is still a challenge to develop a single organic molecule that obtains both photothermal and photodynamic effects. In this contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP) with an acceptor-donor-acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative, the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The 1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser (1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for synergistic photodynamic/photothermal therapy.
Collapse
|
41
|
Li Y, Chen G. Upconversion Nanoparticles for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
42
|
Nirmal GR, Lin ZC, Lin CH, Sung CT, Liao CC, Fang JY. Polydopamine/IR820 nanoparticles as topical phototheranostics for inhibiting psoriasiform lesions through dual photothermal and photodynamic treatments. Biomater Sci 2022; 10:6172-6189. [PMID: 36073349 DOI: 10.1039/d2bm00835a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual photothermal and photodynamic therapy (PTT and PDT) is an attractive approach that generates a synergistic effect for inhibiting keratinocyte hyperproliferation in the treatment of psoriasis. Here, we developed phototheranostic nanocarriers capable of producing hyperthermia and reactive oxygen species (ROS) in response to near-infrared (NIR) illumination. To this end, IR820 with photothermal and photodynamic features was embedded in nano-sized polydopamine (PDA) acting as a PTT agent. A comprehensive characterization of the PDA/IR820 nanosystem was performed according to its morphology, size, zeta potential, UV absorbance, and heat generation. Its therapeutic efficacy was assessed by a keratinocyte-based study and using an imiquimod (IMQ)-stimulated psoriasiform murine model. PDA/IR820 nanoparticles were facilely internalized into keratinocytes and mainly resided in lysosomes. Upon irradiation with NIR light, ROS were generated inside the keratinocytes to cause a photodynamic effect. The live/dead cell assay and cytotoxicity assay demonstrated that PDA and IR820 acted as effective photoabsorbers to induce keratinocyte death. The highest cytotoxic effect was detected in the group of NIR-irradiated PDA/IR820 nanoparticles, which killed 52% of keratinocytes. The nanosystem acted through the caspase and poly ADP-ribose polymerase (PARP) pathways to induce keratinocyte apoptosis. In vitro and in vivo skin permeation indicated the selective accumulation of the topically applied PDA/IR820 nanoparticles within psoriasiform skin, suggesting their skin-targeting capability. The combination of PDA/IR820 nanoparticles and NIR irradiation increased the skin temperature by 11.7 °C. PTT/PDT eliminated psoriasiform plaques in mice by decreasing hyperplasia, inhibiting cytokine overexpression, and recovering the barrier function. The epidermal thickness of the IMQ-treated skin was reduced from 134 to 34 μm by the nanocarriers plus NIR. The IR820 nanoparticles were largely deposited on the inflamed areas of psoriasiform lesions for monitoring the severity of inflammation. The image-guided phototheranostic nanoparticles showed their potential for applications in psoriasis management via noninvasive topical administration.
Collapse
Affiliation(s)
- G R Nirmal
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Calvin T Sung
- Department of Dermatology, University of California, Irvine, USA
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
43
|
Photonics of Trimethine Cyanine Dyes as Probes for Biomolecules. Molecules 2022; 27:molecules27196367. [PMID: 36234904 PMCID: PMC9573451 DOI: 10.3390/molecules27196367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanine dyes are widely used as fluorescent probes in biophysics and medical biochemistry due to their unique photophysical and photochemical properties (their photonics). This review is focused on a subclass of the most widespread and studied cyanine dyes—trimethine cyanines, which can serve as potential probes for biomolecules. The works devoted to the study of the noncovalent interaction of trimethine cyanine dyes with biomolecules and changing the properties of these dyes upon the interaction are reviewed. In addition to the spectral-fluorescent properties, elementary photochemical properties of trimethine cyanines are considered, including: photoisomerization and back isomerization of the photoisomer, generation and decay of the triplet state, and its quenching by oxygen and other quenchers. The influence of DNA and other nucleic acids, proteins, and other biomolecules on these properties is covered. The interaction of a monomer dye molecule with a biomolecule usually leads to a fluorescence growth, damping of photoisomerization (if any), and an increase in intersystem crossing to the triplet state. Sometimes aggregation of dye molecules on biomolecules is observed. Quenching of the dye triplet state in a complex with biomolecules by molecular oxygen usually occurs with a rate constant much lower than the diffusion limit with allowance for the spin-statistical factor 1/9. The practical application of trimethine cyanines in biophysics and (medical) biochemistry is also considered. In conclusion, the prospects for further studies on the cyanine dye–biomolecule system and the development of new effective dye probes (including probes of a new type) for biomolecules are discussed.
Collapse
|
44
|
'Lights, squaraines, action!' - the role of squaraine dyes in photodynamic therapy. Future Med Chem 2022; 14:1375-1402. [PMID: 36069190 DOI: 10.4155/fmc-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since they were first synthesized in 1965 by Treibs and Jacob, squaraine dyes have revolutionized the polymethine dyes' 'universe' and their potential applications due to their indisputable physical, chemical and biological properties. After 30 years and up to the present, various research teams have dedicated themselves to studying the squaraines' photodynamic therapy application using in vitro and in vivo models. The various structural modifications made to these compounds, as well as the influence they have shown to have in their phototherapeutic activity, are the main focus of the present review. Finally, the most evident limitations of this class of dyes, as well as future perspectives in the sense of hypothetically successfully overcoming them, are suggested by the authors.
Collapse
|
45
|
Preis E, Wojcik M, Litscher G, Bakowsky U. Editorial on the "Special Issue in Honor of Dr. Michael Weber's 70th Birthday: Photodynamic Therapy: Rising Star in Pharmaceutical Applications". Pharmaceutics 2022; 14:1786. [PMID: 36145534 PMCID: PMC9500869 DOI: 10.3390/pharmaceutics14091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thousands of years ago, phototherapy or heliotherapy was performed by ancient Egyptians, Greeks, and Romans [...].
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
46
|
Bloyet C, Sciortino F, Matsushita Y, Karr PA, Liyanage A, Jevasuwan W, Fukata N, Maji S, Hynek J, D'Souza F, Shrestha LK, Ariga K, Yamazaki T, Shirahata N, Hill JP, Payne DT. Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. J Am Chem Soc 2022; 144:10830-10843. [PMID: 35587544 DOI: 10.1021/jacs.2c02596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.
Collapse
Affiliation(s)
- Clarisse Bloyet
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Flavien Sciortino
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Hynek
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Daniel T Payne
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
47
|
Chinigò G, Gonzalez-Paredes A, Gilardino A, Barbero N, Barolo C, Gasco P, Fiorio Pla A, Visentin S. Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120909. [PMID: 35093822 DOI: 10.1016/j.saa.2022.120909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Polymethine dyes (PMD) have proved to be excellent candidates in the biomedical field for potential applications in both diagnostic and therapeutic. However, PMD application in biomedicine is hindered by their poor solubility and stability in physiological conditions. Therefore, the incorporation of these dyes in nanosystems could be important to prevent the formation of dye aggregates in aqueous environment and to protect their photophysical characteristics. In the present work, two PMD based on the benzoindolenine ring (bromine benzo-cyanine-C4 and bromine benzo-squaraine-C4) were incorporated into Solid Lipid Nanoparticles (SLN) to solubilize and stabilize them in aqueous solutions. Obtained SLN showed a high incorporation efficiency for both PMD (≈90%) and not only preserved their spectroscopic properties in the NIR region even under physiological conditions but also improved them. Viability assays showed good biocompatibility of both empty and loaded nanocarriers while the cellular uptake and intracellular localization showed the effective internalization in MCF-7 cells, with a partial mitochondrial localization for CY-SLN. Moreover, in vitro phototoxicity assay showed that cyanine loaded-SLN (CY-SLN) is more photoactive than the free dye.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Alessandra Gilardino
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Nadia Barbero
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy
| | - Claudia Barolo
- University of Torino, Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, Via Quarello 15a, 10135 Turin, Italy; ICxT Interdepartmental Centre, Lungo Dora Siena 100, 10153 Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Via Livorno 60, 10144 Turin, Italy
| | - Alessandra Fiorio Pla
- University of Torino, Department of Life Sciences and Systems Biology, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Sonja Visentin
- University of Torino, Department of Molecular Biotechnology and Health Science, via Quarello 15a, 10135 Turin, Italy
| |
Collapse
|
48
|
Dereje DM, Pontremoli C, Moran Plata MJ, Visentin S, Barbero N. Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochem Photobiol Sci 2022; 21:397-419. [PMID: 35103979 DOI: 10.1007/s43630-022-00175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
It has been proved that the effectiveness of photodynamic therapy (PDT) is closely related to the intrinsic features of the photosensitizer (PS). Over the recent years, several efforts have been devoted to the discovery of novel and more efficient photosensitizers showing higher efficacy and lower side effects. In this context, squaraine and cyanine dyes have been reported to potentially overcome the drawbacks related to the traditional PSs. In fact, squaraines and cyanines are characterized by sharp and intense absorption bands and narrow emission bands with high extinction coefficients typically in the red and near-infrared region, good photo and thermal stability and a strong fluorescent emission in organic solvents. In addition, biocompatibility and low toxicity make them suitable for biological applications. Despite these interesting intrinsic features, their chemical instability and self-aggregation properties in biological media still limit their use in PDT. To overcome these drawbacks, the self-assembly and incorporation into smart nanoparticle systems are forwarded promising approaches that can control their physicochemical properties, providing rational solutions for the limitation of free dye administration in the PDT application. The present review summarizes the latest advances in squaraine and cyanine dyes for PDT application, analyzing the different strategies, i.e.the self-assembly and the incorporation into nanoparticles, to further enhance their photochemical properties and therapeutic potential. The in vivo assessments are still limited, thus further delaying their effective application in PDT.
Collapse
Affiliation(s)
- Degnet Melese Dereje
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.,Department of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Polypeda 01, 0026, Bahir Dar, Ethiopia
| | - Carlotta Pontremoli
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Maria Jesus Moran Plata
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Quarello 15/A, 10135, Turin, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
49
|
Zhang L, Jiang FL, Guo QL, Liu Y, Jiang P. pH-Sensitive Bioprobe for Multichannel Mitochondrial Imaging and Photodynamic Therapy. Anal Chem 2022; 94:4126-4133. [PMID: 35220719 DOI: 10.1021/acs.analchem.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor targeting therapy and photodynamic therapy are effective anti-cancer therapies. Their research progress has attracted wide attention and is one of the focuses of anti-cancer drug research and development. The design and synthesis of multifunctional organic phototheranostic agents for superior image-guided diagnosis and phototherapy play an increasingly positive role in cancer diagnosis and treatment. Herein, F16M and CyM were obtained through functional design from cyanine and F16. Physicochemical characterization and biological application results showed that CyM is a multifunctional organic biological probe, which can realize intracellular multichannel (green, yellow, red, and NIR) imaging, pH detection, and mitochondrial-targeted photodynamic therapy. As an organic phototheranostic agent, it could not only realize near-infrared imaging and photodynamic therapy in vivo and in vitro but also has excellent biocompatibility and good guiding significance for the development of multichannel imaging and mitochondrial-targeting photodynamic therapy.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing-Lian Guo
- Zhongnan Hospital, Wuhan University, Wuhan 430071, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
50
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|