1
|
Chattopadhyay S, Goswami A, Sil M. Nanobiotechnology: traditional re-interpreting personalized medicine through targeted therapies and regenerative solutions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04038-6. [PMID: 40100374 DOI: 10.1007/s00210-025-04038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Nanobiotechnology is transforming personalized medicine by leveraging the unique properties of nanomaterials to address key challenges in targeted drug delivery, regenerative medicine, and diagnostics. The development of nanocarriers, such as liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles, has enabled precise drug delivery with enhanced bioavailability and reduced systemic toxicity. Concurrently, nanostructured scaffolds have advanced regenerative medicine by supporting stem cell differentiation, modulating cellular microenvironments, and enhancing tissue repair. These nanoscale innovations have also led to highly sensitive biosensors and imaging agents, significantly improving early disease detection and biomarker monitoring. Despite these advancements, challenges persist, including nanoparticle-induced cytotoxicity, immunogenicity, scalability issues, and regulatory hurdles requiring extensive evaluation of long-term biocompatibility and pharmacokinetics. Addressing these limitations, recent breakthroughs in AI-assisted nanotechnology and CRISPR-Cas9-mediated gene editing are driving next-generation precision medicine, integrating nanoscale therapeutics with computational approaches to enhance efficacy. Future directions focus on nanorobotics, bioengineered nanovaccines, and theranostic platforms capable of simultaneous diagnosis and treatment, paving the way for real-time, patient-specific interventions. The successful translation of nanomedicine into clinical practice will require interdisciplinary collaboration across nanoscience, bioengineering, and translational medicine to refine nanoparticle functionalization, optimize safety profiles, and ensure equitable access to nanotherapeutics. This review provides a comprehensive overview of these advancements, challenges, and emerging opportunities in nanobiotechnology-driven precision medicine.
Collapse
Affiliation(s)
- Sayantani Chattopadhyay
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Arunava Goswami
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, West Bengal, India.
| | - Moumita Sil
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, West Bengal, India.
| |
Collapse
|
2
|
Deng Q, Du F, Pan S, Xia Y, Zhu Y, Zhang J, Li C, Yu S. Activation of angiopoietin-1 signaling with engineering mesenchymal stem cells promoted efficient angiogenesis in diabetic wound healing. Stem Cell Res Ther 2025; 16:75. [PMID: 39985096 PMCID: PMC11846275 DOI: 10.1186/s13287-025-04207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Vascular insufficiency is associated with the pathogenesis and therapeutic outcomes of diabetic foot ulcers (DFU). While mesenchymal stem cells (MSCs) hold potential for DFU treatment, further enhancement in promoting angiogenesis in the challenging DFU wounds is imperative. METHODS The differential expression of pro- and anti-angiogenic factors during both normal and diabetic wound healing was compared using quantitative PCR. MSCs derived from the umbilical cord was prepared, and the engineered MSC (MSCANG1) overexpressing both the candidate pro-angiogenic gene, angiopoietin-1 (ANG1), and green fluorescent protein (GFP) was constructed using a lentiviral system. The pro-vascular stabilizing effects of MSCANG1 were assessed in primary endothelial cell cultures. Subsequently, MSCANG1 was transplanted into streptozotocin (STZ)-induced diabetic wound models to evaluate therapeutic effects on angiogenesis and wound healing. The underlying mechanisms were further examined both in vitro and in vivo. RESULTS The comprehensive analysis of the temporal expression of pro- and anti-angiogenic factors revealed a consistent impairment in ANG1 expression throughout diabetic wound healing. MSCANG1 exhibited robust EGFP expression in 80% of cells, with overexpression and secretion of the ANG1 protein. MSCANG1 notably enhanced the survival and tubulogenesis of endothelial cells and promoted the expression of junction proteins, facilitating the establishment of functional vasculature with improved vascular leakage. Although MSCANG1 did not enhance the survival of engrafted MSCs in diabetic wounds, it significantly promoted angiogenesis in diabetic wound healing, fostering the establishment of stable vasculature during the healing process. Activation of the protein kinase B (Akt) pathway and suppression of proto-oncogene tyrosine kinase Src (Src) activity in MSCANG1-treated diabetic wounds confirmed efficient angiogenesis process. Consequently, epidermal and dermal reconstruction, as well as skin appendage regeneration were markedly accelerated in MSCANG1-treated diabetic wounds compared to MSC-treated wounds. CONCLUSION Treatment with MSCs alone promotes angiogenesis and DFU healing, while the engineering of MSCs with ANG1 provides substantial additional benefits to this therapeutic process. The engineering of MSCs with ANG1 presents a promising avenue for developing innovative strategies in managing DFU.
Collapse
Affiliation(s)
- Qiong Deng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shenzhen Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxin Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Ubhe A. IL-1 receptor antagonist: etiological and drug delivery systems overview. Inflamm Res 2024; 73:2231-2247. [PMID: 39455436 DOI: 10.1007/s00011-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE This article is aims to provide an overview of studies reported in the literature to investigate the etiological role of IL-1/IL-1ra in various disease conditions and the different drug delivery systems developed to achieve IL-1ra as a possible therapeutic option. METHODS Studies reported in PubMed, Google scholar, and other open-source literature related to etiological involvement of IL-1ra in pathophysiological conditions and various drug delivery schemes developed for IL-1ra for its efficacy evaluation as a possible treatment for different disease conditions were surveyed. RESULTS AND CONCLUSIONS The pathophysiological conditions involving IL-1/IL-1 ra spanned CNS-related disorders, Diabetes, Cardiac disorders, Ocular disease conditions, Gastrointestinal conditions, Tumor growth & metastasis, and miscellaneous conditions. The drug delivery systems developed for IL-1ra included a commercial drug product, Gene therapy, Antibody fusions, Extended-release delivery systems, and Pegylated-IL-1ra systems.
Collapse
|
4
|
Boysen AT, Whitehead B, Revenfeld ALS, Gupta D, Petersen T, Nejsum P. Urine-derived stem cells serve as a robust platform for generating native or engineered extracellular vesicles. Stem Cell Res Ther 2024; 15:288. [PMID: 39256816 PMCID: PMC11389316 DOI: 10.1186/s13287-024-03903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.
Collapse
Affiliation(s)
- Anders Toftegaard Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| | - Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Louise S Revenfeld
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
| | - Thor Petersen
- Department of Regional Health Research, Southern Danish University, Sønderborg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
5
|
Shah S, Lucke-Wold B. Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma. Cancers (Basel) 2024; 16:2892. [PMID: 39199662 PMCID: PMC11352884 DOI: 10.3390/cancers16162892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. METHODS This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words 'radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma' were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. RESULTS As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. CONCLUSION The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | | |
Collapse
|
6
|
Xu L, Shi J, Wu S. Positron emission tomography probes for stem cell monitoring: a review. Am J Transl Res 2024; 16:3534-3544. [PMID: 39262689 PMCID: PMC11384350 DOI: 10.62347/ciut6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Stem cells possess unique self-renewal and differentiation capacities, that are central to cell replacement and tissue regeneration. The therapeutic potential of stem cell applications has garnered increasing attention in recent years for a spectrum of human diseases, from ischemic disorders to oncological challenges. Despite their potential, a comprehensive understanding of the biological behavior, efficacy, and safety of these cells remains elusive, hindering their clinical adoption. This review focuses on the use of positron emission tomography (PET) imaging as a cutting-edge tool for bridging this knowledge gap. PET imaging, a noninvasive diagnostic method, has been highlighted for its ability to monitor cellular dynamics after stem cell transplantation. A variety of molecular probes within the PET framework enable the longitudinal and quantitative evaluation of post-transplant cellular behavior. This discourse systematically delineates various PET probes specifically designed for the in vivo tracking of the stem cell life cycle. These probes offer a pathway to a deeper understanding and more precise evaluation of stem cell behavior post-transplantation. Implementing PET imaging probes can revolutionize the clinical understanding of stem cell behavior, advancing and widening clinical therapeutic applications.
Collapse
Affiliation(s)
- Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Mashal M, Attia N, Maldonado I, Enríquez Rodríguez L, Gallego I, Puras G, Pedraz JL. Comparative analysis of lipid-peptide nanoparticles prepared via microfluidics, reverse phase evaporation, and ouzo techniques for efficient plasmid DNA delivery. Eur J Pharm Biopharm 2024; 201:114385. [PMID: 38945408 DOI: 10.1016/j.ejpb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In the current "era of lipid carriers," numerous strategies have been developed to manufacture lipid nanoparticles (LNPs). Nevertheless, the potential impact of various preparation methods on the characteristics, use, and/or stability of these LNPs remains unclear. In this work, we attempted to compare the effects of three different preparation methods: microfluidics (MF), reverse phase evaporation (RV), and ouzo (OZ) on lipid-peptide NPs (LPNPs) as plasmid DNA delivery carriers. These LPNPs had the same components, namely DOTMA cationic lipid, DSPC, cholesterol, and protamine. Subsequently, we compared the LPNPs in terms of their physicochemical features, functionality as gene delivery vehicles in two distinct cell lines (NT2 and D1-MSCs), and finally, their storage stability over a six-month period. It was clear that all three LPNP formulations worked to deliver EGFP-pDNA while keeping cells alive, and their physicochemical stability was high for 6 months. However, the preparation technique had a significant impact on their physicochemical characteristics. The MF produced LPNPs with a lesser size, polydispersity index, and zeta potential than the other synthesis methods. Additionally, their DNA entrapment efficiency, cell viability, and functional stability profiles were generally superior. These findings provide new insights for comparing different manufacturing methods to create LPNPs with the desired characteristics for effective and safe gene delivery.
Collapse
Affiliation(s)
- Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Histology and Cell Biology Department. Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Iván Maldonado
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Lucía Enríquez Rodríguez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Mohamed AH, Shafie A, Abdulmonem WA, Alzahrani HS, Ashour AA, Hjazi A, Jamal A, Aldreiwish AD, Kamal MA, Ahmad F, Khan N. Mesenchymal stem cells and their potential therapeutic benefits and challenges in the treatment and pathogenesis of gastric cancer. Pathol Res Pract 2024; 260:155422. [PMID: 38981347 DOI: 10.1016/j.prp.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counselling healthy marriage, maternity and children hospital, Jeddah second cluster, Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry. Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
9
|
Garza Treviño EN, Quiroz Reyes AG, Delgado Gonzalez P, Rojas Murillo JA, Islas JF, Alonso SS, Gonzalez Villarreal CA. Applications of Modified Mesenchymal Stem Cells as Targeted Systems against Tumor Cells. Int J Mol Sci 2024; 25:7791. [PMID: 39063032 PMCID: PMC11276748 DOI: 10.3390/ijms25147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Combined gene and cell therapy are promising strategies for cancer treatment. Given the complexity of cancer, several approaches are actively studied to fight this disease. Using mesenchymal stem cells (MSCs) has demonstrated dual antitumor and protumor effects as they exert massive immune/regulatory effects on the tissue microenvironment. MSCs have been widely investigated to exploit their antitumor target delivery system. They can be genetically modified to overexpress genes and selectively or more efficiently eliminate tumor cells. Current approaches tend to produce more effective and safer therapies using MSCs or derivatives; however, the effect achieved by engineered MSCs in solid tumors is still limited and depends on several factors such as the cell source, transgene, and tumor target. This review describes the progress of gene and cell therapy focused on MSCs as a cornerstone against solid tumors, addressing the different MSC-engineering methods that have been approached over decades of research. Furthermore, we summarize the main objectives of engineered MSCs against the most common cancers and discuss the challenges, limitations, risks, and advantages of targeted treatments combined with conventional ones.
Collapse
Affiliation(s)
- Elsa N. Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Adriana G. Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Jose Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Santiago Saavedra Alonso
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A. Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
10
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Tao Z, Zhang H, Wu S, Zhang J, Cheng Y, Lei L, Qin Y, Wei H, Yu CY. Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms. NANOSCALE 2024; 16:4392-4406. [PMID: 38289178 DOI: 10.1039/d3nr05971e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.
Collapse
Affiliation(s)
- Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Shang Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| |
Collapse
|
12
|
Abbasi Dezfouli S, Rajendran AP, Claerhout J, Uludag H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023; 13:1559. [PMID: 37892241 PMCID: PMC10605068 DOI: 10.3390/biom13101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In 2020, breast cancer became the most diagnosed cancer worldwide. Conventional chemotherapies have major side effects due to their non-specific activities. Alternatively, short interfering RNA(siRNA)-carrying nanoparticles (NPs) have a high potential to overcome this non-specificity. Lipid-substituted polyethyleneimine (PEI) polymers (lipopolymers) have been reported as efficient non-viral carriers of siRNA. This study aims to engineer novel siRNA/lipopolymer nanocomplexes by incorporating anionic additives to obtain gene silencing through siRNA activity with minimal nonspecific toxicity. We first optimized our polyplexes in GFP+ MDA-MB-231 cells to effectively silence the GFP gene. Inclusion of phosphate buffer with pH 8.0 as complex preparation media and N-Lauroylsarcosine Sodium Salt as additive, achieved ~80% silencing with the least amount of undesired cytotoxicity, which was persistent for at least 6 days. The survivin gene was then selected as a target in MDA-MB-231 cells since there is no strong drug (i.e., small organic molecule) for inhibition of its oncogenic activity. The qRT-PCR, flow cytometry analysis and MTT assay revealed >80% silencing, ~95% cell uptake and >70% cell killing by the same formulation. We conclude that our lipopolymer can be further investigated as a lead non-viral carrier for breast cancer gene therapy.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Amarnath P. Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Jillian Claerhout
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2V2, Canada
| |
Collapse
|
13
|
Zeng CW. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. Int J Mol Sci 2023; 24:14349. [PMID: 37762654 PMCID: PMC10532158 DOI: 10.3390/ijms241814349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injuries (SCIs) can lead to significant neurological deficits and lifelong disability, with far-reaching physical, psychological, and economic consequences for affected individuals and their families. Current treatments for SCIs are limited in their ability to restore function, and there is a pressing need for innovative therapeutic approaches. Stem cell therapy has emerged as a promising strategy to promote the regeneration and repair of damaged neural tissue following SCIs. This review article comprehensively discusses the potential of different stem cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and neural stem/progenitor cells (NSPCs), in SCI treatment. We provide an in-depth analysis of the unique advantages and challenges associated with each stem cell type, as well as the latest advancements in the field. Furthermore, we address the critical challenges faced in stem cell therapy for SCIs, including safety concerns, ethical considerations, standardization of protocols, optimization of transplantation parameters, and the development of effective outcome measures. We also discuss the integration of novel technologies such as gene editing, biomaterials, and tissue engineering to enhance the therapeutic potential of stem cells. The article concludes by emphasizing the importance of collaborative efforts among various stakeholders in the scientific community, including researchers, clinicians, bioengineers, industry partners, and patients, to overcome these challenges and realize the full potential of stem cell therapy for SCI patients. By fostering such collaborations and advancing our understanding of stem cell biology and regenerative medicine, we can pave the way for the development of groundbreaking therapies that improve the lives of those affected by SCIs.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
15
|
López-Seijas J, Miranda-Balbuena D, Iglesias-Fente A, Sacristán-Santos M, Carballo-Pedrares N, Arufe MC, Rey-Rico A, Fafián-Labora J. Development of new non-viral systems for genetic modification of senescent cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:302-317. [PMID: 37096164 PMCID: PMC10122050 DOI: 10.1016/j.omtn.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Senescence is a process characterized by a prolonged irreversible cell-cycle arrest. The accumulation of senescent cells in tissues is related to aging and to the development of age-related diseases. Recently, gene therapy has emerged as a powerful tool for treating age-associated diseases by the transference of specific genes into the target cell population. However, the high sensitivity of senescent cells significantly precludes their genetic modification via classical viral and non-viral systems. Niosomes are self-assembled non-viral nanocarriers that exhibit important advantages due to their elevated cytocompatibility, versatility, and cost-efficiency, arising as a new alternative for genetic modification of senescent cells. In this work, we explore for the first time the use of niosomes for genetic modification of senescent umbilical cord-derived mesenchymal stem cells. We report that niosome composition greatly affected transfection efficiency; those formulations prepared in medium with sucrose and containing cholesterol as helper lipid being the most suitable to transfect senescent cells. Moreover, resulting niosome formulations exhibited a superior transfection efficiency with a markedly less cytotoxicity than the commercial reagent Lipofectamine. These findings highlight the potentiality of niosomes as effective vectors for genetic modification of senescent cells, providing new tools for the prevention and/or treatment of age-related diseases.
Collapse
Affiliation(s)
- Junquera López-Seijas
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Alba Iglesias-Fente
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marta Sacristán-Santos
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Natalia Carballo-Pedrares
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - María C. Arufe
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain. Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ana Rey-Rico
- Gene and Cell Therapy Research Group (G-CEL), Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Juan Fafián-Labora
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain. Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
16
|
Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthr: pbad014itis: Gene therapy. PRECISION CLINICAL MEDICINE 2023; 6:pbad014. [PMID: 37333626 PMCID: PMC10273835 DOI: 10.1093/pcmedi/pbad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Leyao Shen
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
17
|
Azimifar MA, Hashemi M, Babaei N, Salmasi Z, Doosti A. Interleukin gene delivery for cancer gene therapy: In vitro and in vivo studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:128-136. [PMID: 36742134 PMCID: PMC9869882 DOI: 10.22038/ijbms.2022.66890.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.
Collapse
Affiliation(s)
- Mohammad Amin Azimifar
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Babaei
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
18
|
Attia N, Khalifa YH, Mashal M, Puras G, Pedraz JL. Stem Cell-Derived Extracellular Vesicles as a Potential Therapeutic Tool for Eye Diseases: From Benchtop to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:127-143. [PMID: 36525172 DOI: 10.1007/5584_2022_754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cell-derived extracellular vesicles (SC-EVs) have remarkably drawn clinicians' attention in treating ocular diseases. As a paracrine factor of stem cells and an appealing alternative for off-the-shelf cell-free therapeutics, SC-EVs can be conveniently applied topically on the ocular surface or introduced to the retina via intravitreal injection, without increasing the risks of immunogenesis or oncogenesis. This chapter aims to assess the potential applications for EV, obtained from various types of stem cells, in myriad eye diseases (traumatic, inflammatory, degenerative, immunological, etc.). To the best of our knowledge, all relevant pre-clinical studies are summarized here. Furthermore, we highlight the up-to-date status of clinical trials in the same realm and emphasize where future research efforts should be directed. For a successful clinical translation, various drawbacks of EVs therapy should be overcome (e.g., contamination, infection, insufficient yield, etc.). Moreover, standardized, and scalable extraction, purification, and characterization protocols are highly suggested to determine the exosome quality before they are offered to patients with ocular disorders.
Collapse
Affiliation(s)
- Noha Attia
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Yasmine H Khalifa
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Mashal
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| |
Collapse
|
19
|
Carballo-Pedrares N, Sanjurjo-Rodriguez C, Señarís J, Díaz-Prado S, Rey-Rico A. Chondrogenic Differentiation of Human Mesenchymal Stem Cells via SOX9 Delivery in Cationic Niosomes. Pharmaceutics 2022; 14:2327. [PMID: 36365145 PMCID: PMC9693355 DOI: 10.3390/pharmaceutics14112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Gene transfer to mesenchymal stem cells constitutes a powerful approach to promote their differentiation into the appropriate cartilage phenotype. Although viral vectors represent gold standard vehicles, because of their high efficiency, their use is precluded by important concerns including an elevated immunogenicity and the possibility of insertional mutagenesis. Therefore, the development of new and efficient non-viral vectors is under active investigation. In the present study, we developed new non-viral carriers based on niosomes to promote the effective chondrogenesis of human MSCs. Two different niosome formulations were prepared by varying their composition on non-ionic surfactant, polysorbate 80 solely (P80), or combined with poloxamer 407 (P80PX). The best niosome formulation was proven to transfer a plasmid, encoding for the potent chondrogenic transcription factor SOX9 in hMSC aggregate cultures. Transfection of hMSC aggregates via nioplexes resulted in an increased chondrogenic differentiation with reduced hypertrophy. These results highlight the potential of niosome formulations for gene therapy approaches focused on cartilage repair.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| | - Clara Sanjurjo-Rodriguez
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Jose Señarís
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Silvia Díaz-Prado
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Spain
| | - Ana Rey-Rico
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, As Carballeiras, s/n. Campus de Elviña, 15071 A Coruña, Spain
| |
Collapse
|
20
|
Masoudi MR, Rafati A. Immunogenicity against hepatitis C virus with mesenchymal stem cells of inbreed BALB/c mice sub cloned with HCVcp protein gene. Transpl Immunol 2022; 74:101651. [PMID: 35764239 DOI: 10.1016/j.trim.2022.101651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIM Hepatitis C is one of the leading causes of liver disease in the world and despite extensive research, there is still no vaccine against it. Researchers have identified cell-based therapies as an alternative strategy in advanced liver disorders. The aim of this study was to transfer the hepatitis C virus core protein (HCVcp) gene into mesenchymal stem cells and to evaluate its immunogenicity after injection into mice. MATERIALS AND METHODS The present study had two experimental and animal stages. In the first step, by designing a vector containing the HCVcp gene and transferring it into the mesenchymal stem cell, gene expression and protein production by the mesenchymal stem cell manipulated by PCR and SDS-PAGE were confirmed. In the second stage, by injecting manipulated mesenchymal stem cells into mice, the level of humoral immune stimulation and splenocytes proliferation was assessed by the ELISA commercial kit. RESULTS According to molecular studies, the expression of HCVcp was confirmed by mesenchymal stem cells. Also, splenocytes proliferation rate (0.316 ± 0.029) and antibody titer (284 ± 47) in mice treated with manipulated mesenchymal stem cells were significantly increased compared to the control group. CONCLUSION The results of the present study showed that the use of genetically engineered mesenchymal stem cells while maintaining the immunomodulatory properties of these cells can stimulate specific immune system responses against hepatitis C central protein.
Collapse
Affiliation(s)
- Mahmood Reza Masoudi
- Department of Internal Medicine, Sirjan School of Medical Sciences, Sirjan, Iran
| | | |
Collapse
|
21
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
22
|
Attia N, Mashal M, Pemminati S, Omole A, Edmondson C, Jones W, Priyadarshini P, Mughal T, Aziz P, Zenick B, Perez A, Lacken M. Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells 2021; 11:116. [PMID: 35011678 PMCID: PMC8750228 DOI: 10.3390/cells11010116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.
Collapse
Affiliation(s)
- Noha Attia
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Sudhakar Pemminati
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Adekunle Omole
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Carolyn Edmondson
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Will Jones
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Priyanka Priyadarshini
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Temoria Mughal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Pauline Aziz
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Blesing Zenick
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Ambar Perez
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Morgan Lacken
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| |
Collapse
|
23
|
Zhao J, Wang X, Han J, Yu Y, Chen F, Yao J. Boost Tendon/Ligament Repair With Biomimetic and Smart Cellular Constructs. Front Bioeng Biotechnol 2021; 9:726041. [PMID: 34532315 PMCID: PMC8438196 DOI: 10.3389/fbioe.2021.726041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Tendon and ligament are soft connective tissues that play essential roles in transmitting forces from muscle to bone or bone to bone. Despite significant progress made in the field of ligament and tendon regeneration over the past decades, many strategies struggle to recapitulate basic structure-function criteria of native ligament/tendon. The goal here is to provide a fundamental understanding of the structure and composition of ligament/tendon and highlight few key challenges in functional regeneration of these connective tissues. The remainder of the review will examine several biomaterials strategies including biomimetic scaffold with non-linear mechanical behavior, hydrogel patch with anisotropic adhesion and gene-activated scaffold for interactive healing of tendon/ligament. Finally, emerging technologies and research avenues are suggested that have the potential to enhance treatment outcomes of tendon/ligament injuries.
Collapse
Affiliation(s)
- Jianping Zhao
- Department of Orthopedics Trauma and Hand Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiang Wang
- Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinyu Han
- Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yin Yu
- Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Chen
- Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Yao
- Department of Orthopedics Trauma and Hand Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|