1
|
Park EJ, Kim EH, Kim KY, Jeon JH, Song IS, Park SY, Liu KH. Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking. Pharmaceutics 2025; 17:115. [PMID: 39861762 PMCID: PMC11769037 DOI: 10.3390/pharmaceutics17010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. Methods: After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis. Chromatographic and spectrometric data were processed through MN and multivariate data analysis to identify the in vivo metabolites of donepezil. Results: A total of 50 metabolites were characterized, including 23 newly identified metabolites. Donepezil was biotransformed by O-demethylation, N-debenzylation, and hydroxylation, and these metabolites are further conjugated with glucuronic acid and sulfurous acid. N-Desbenzyldonepezil (M4), didesmethyldonepezil (M5), and N-desbenzyldonepezil (M4) were identified as the most abundant metabolites in urine, feces, and liver samples, respectively. Conclusions: The metabolic characteristics of donepezil in rats were comparable to those in humans, indicating that a rat is a reliable model for studying donepezil metabolism. This study indicates that a MN approach combined with a metabolomics approach is a reliable tool to identify unknown metabolites of drugs and drug candidates.
Collapse
Affiliation(s)
- Eun-Ji Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
| | - Eui-Hyeon Kim
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
| | - Ki-Young Kim
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
| | - Ji-Hyeon Jeon
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
| | - Im-Sook Song
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So-Young Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-J.P.); (E.-H.K.); (K.-Y.K.); (J.-H.J.); (I.-S.S.)
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Zheng J, Zhao G, Hu Z, Jia C, Li W, Peng Y, Zheng J. Metabolic Activation and Cytotoxicity of Donepezil Induced by CYP3A4. Chem Res Toxicol 2024; 37:2003-2012. [PMID: 39545607 DOI: 10.1021/acs.chemrestox.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Donepezil (DNP) is a selective cholinesterase inhibitor widely used for the therapy of Alzheimer's disease. Instances of liver injury correlated with DNP treatment have been reported, yet the underlying hepatotoxic mechanism remains to be elucidated. This study aimed to explore the contribution of metabolic activation to the hepatotoxicity of DNP. The structure of 6-O-desmethyl DNP (M1), the oxidative metabolite of DNP, was characterized by chemical synthesis, LC-MS/MS, and nuclear magnetic resonance. A reactive quinone methide resulting from the metabolism of DNP was captured by glutathione (GSH) fortified in liver microsomal incubations after exposure to DNP, and the resulting GSH conjugate (M2) was detected in the bile of rats receiving DNP. Recombinant human P450 enzyme incubation studies demonstrated that CYP3A4 was the principal enzyme responsible for the production of M1 and M2. The generation of M2 declined in rat primary hepatocytes pretreated with ketoconazole, an inhibitor of CYP3A4, which also decreased the vulnerability of rat primary hepatocytes to DNP-caused cytotoxicity. These findings suggest that the quinone methide metabolite may contribute to the cytotoxicity and hepatotoxicity caused by the DNP.
Collapse
Affiliation(s)
- Jiannan Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chenyang Jia
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| |
Collapse
|
3
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
4
|
Yu J, Ryu JH, Chi YH, Paik SH, Kim SK. Cytochrome P450-mediated metabolic interactions between donepezil and tadalafil in human liver microsomes. Toxicol In Vitro 2024; 100:105922. [PMID: 39173683 DOI: 10.1016/j.tiv.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Donepezil and tadalafil, commonly prescribed among older persons to treat dementia and erectile dysfunction, respectively, are primarily metabolized by cytochrome P450 (CYP) 3A4. However, the drug-drug interactions (DDIs) of these drugs are unknown. Therefore, this study evaluated the CYP-mediated metabolic interaction between donepezil and tadalafil using pooled human liver microsomes (HLMs) to predict their DDI potential. Donepezil metabolism was tadalafil-concentration dependently changed in HLMs incubated with 0.1 μM donepezil and showed the maximum 32.3% increase in the donepezil half-life at 1 μM tadalafil. The formation rates of donepezil metabolites, such as N-desbenzyl donepezil and 3-hydroxy donepezil, decreased by 28.3% and 30.3%, respectively, in HLMs incubated with 1 μM tadalafil and 0.1 μM donepezil. In contrast, neither the half-life of tadalafil nor the production rate of its metabolite, desmethylene tadalafil, was changed by >20% in the presence of donepezil (up to 1 μM). CYP3A4 activity was inhibited by tadalafil with an IC50 value of 22.6 μM but not by donepezil. After pre-incubating HLMs with tadalafil and NADPH, the tadalafil IC50 value against CYP3A4 was approximately 7.04-fold lower, suggesting time-dependent tadalafil inhibition. This study shows that the DDI between donepezil and tadalafil is primarily due to time-dependent inhibition against CYP3A4 by tadalafil.
Collapse
Affiliation(s)
- Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hyeon Ryu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Ha Chi
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea
| | - Soo Heui Paik
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Liu D, Zhang J, Gao Y, Hao H, Zhang C, Wang F, Zhang L. Synthesis, acaricidal activity, and structure-activity relationships of novel phenyl trifluoroethyl thioether derivatives containing substituted benzyl groups. PEST MANAGEMENT SCIENCE 2024; 80:544-553. [PMID: 37735842 DOI: 10.1002/ps.7780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND To discover and develop novel acaricidal compounds, a series of 2-fluoro-4-methyl/chlorine-5-((2,2,2-trifluoroethyl)thio)aniline/phenol compounds containing N/O-benzyl moieties were synthesized based on lead compound LZ-1. RESULTS The activity of these compounds against carmine spider mites (Tetranychus cinnabarinus) was determined using the leaf-spray method. Bioassays indicated that most of the designed target compounds possessed moderate to excellent acaricidal activity against adult T. cinnabarinus. The median lethal concentrations of 25b and 26b were 0.683 and 2.448 mg L-1 against adult mites, respectively; exceeding those of bifenazate (7.519 mg L-1 ) and lead compound LZ-1(3.658 mg L-1 ). Compound 25b exhibited 100% mortality in T. cinnabarinus larvae at 10 mg L-1 . CONCLUSION Continuing the study of these compounds in field trials, we compared the efficacy of mite killing by compound 25b with the commercial pesticide spirodiclofen and showed that mite control achieved 95.9% and 83.0% lethality at 10 and 22 days post-treatment. In comparison, spirodiclofen showed 92.7% lethality at 10 days and 77.2% lethality at 22 days post-treatment at a concentration of 100 mg L-1 . Results showed that 25b produced more facile and long-lasting control against T. cinnabarinus than the commercial acaricide spirodiclofen. Density functional theory analysis and electrostatic potential calculations of various molecular substitutions suggested some useful models to achieve other highly active miticidal compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
| | - Jing Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
- Metisa Biotechnology Co., Ltd., Nanning, China
| | - Yixing Gao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
| | - Haijing Hao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
| | - Chenyang Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
| | - Feng Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
| | - Lixin Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang Key Laboratory of Targeted Pesticides, Shenyang, China
- Metisa Biotechnology Co., Ltd., Nanning, China
| |
Collapse
|
6
|
Kim KY, Jeong YJ, Park SY, Park EJ, Jeon JH, Song IS, Liu KH. Evaluation of the Drug-Induced Liver Injury Potential of Saxagliptin through Reactive Metabolite Identification in Rats. Pharmaceutics 2024; 16:106. [PMID: 38258116 PMCID: PMC10819019 DOI: 10.3390/pharmaceutics16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
A liver injury was recently reported for saxagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor. However, the underlying mechanisms of saxagliptin-induced liver injury remain unknown. This study aimed to evaluate whether saxagliptin, a potent and selective DPP-4 inhibitor that is globally used for treating type 2 diabetes mellitus, binds to the nucleophiles in vitro. Four DPP-4 inhibitors, including vildagliptin, were evaluated for comparison. Only saxagliptin and vildagliptin, which both contain a cyanopyrrolidine group, quickly reacted with L-cysteine to enzyme-independently produce thiazolinic acid metabolites. This saxagliptin-cysteine adduct was also found in saxagliptin-administered male Sprague-Dawley rats. In addition, this study newly identified cysteinyl glycine conjugates of saxagliptin and 5-hydroxysaxagliptin. The observed metabolic pathways were hydroxylation and conjugation with cysteine, glutathione, sulfate, and glucuronide. In summary, we determined four new thiazoline-containing thiol metabolites (cysteine and cysteinylglycine conjugates of saxagliptin and 5-hydroxysaxagliptin) in saxagliptin-administered male rats. Our results reveal that saxagliptin can covalently bind to the thiol groups of cysteine residues of endogenous proteins in vivo, indicating the potential for saxagliptin to cause drug-induced liver injury.
Collapse
Affiliation(s)
- Ki-Young Kim
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
| | - Yeo-Jin Jeong
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
| | - So-Young Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Ji Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
| | - Im-Sook Song
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
| | - Kwang-Hyeon Liu
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (K.-Y.K.); (Y.-J.J.); (S.-Y.P.); (E.-J.P.); (J.-H.J.)
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Quintás G, Castell JV, Moreno-Torres M. The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Front Pharmacol 2023; 14:1155271. [PMID: 37214440 PMCID: PMC10196061 DOI: 10.3389/fphar.2023.1155271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research.
Collapse
Affiliation(s)
- Guillermo Quintás
- Metabolomics and Bioanalysis, Health and Biomedicine, Leitat Technological Center, Barcelona, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - José V. Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Moreno-Torres
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Kiriyama A, Kimura S, Yamashita S. Pharmacokinetic/Pharmacodynamic Models of an Alzheimer's Drug, Donepezil, in Rats. Drug Metab Dispos 2023; 51:329-337. [PMID: 36810198 DOI: 10.1124/dmd.122.001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate the relationship between the pharmacokinetics (PK) and pharmacodynamics (PD) of donepezil (Don), simultaneous examination of the PK of Don and the change in acetylcholine (ACh) in the cerebral hippocampus was analyzed using microdialysis in rats. Don plasma concentrations reached their maximum at the end of a 30-minute infusion. The maximum plasma concentrations (Cmaxs) of the major active metabolite, 6-O-desmethyl donepezil, were 9.38 and 13.3 ng/ml at 60 minutes after starting infusions at 1.25 and 2.5 mg/kg doses, respectively. The amount of ACh in the brain increased shortly after the start of the infusion and reached the maximum value at about 30 to 45 minutes, then decreased to the baseline with a slight delay from the transition of the Don concentration in plasma at a 2.5 mg/kg dose. However, the 1.25 mg/kg group showed little increase in ACh in the brain. The PK/PD models of Don, which were constructed using a general 2-compartment PK model with/without Michaelis-Menten metabolism and the suppressive effect of conversion of ACh to choline using an ordinary indirect response model, were able to effectively simulate Don's plasma and ACh profiles. The ACh profile in the cerebral hippocampus at a 1.25 mg/kg dose was effectively simulated using both constructed PK/PD models and parameters obtained at a 2.5 mg/kg dose by the PK/PD models and indicated that Don largely had no effect on ACh. When these models were used to simulate at 5 mg/kg, the Don PK were nearly linear, whereas the ACh transition had a different profile to lower doses. SIGNIFICANCE STATEMENT: Efficacy/safety of a drug and its pharmacokinetics (PK) are closely correlated. Therefore, it is important to understand the relationship between the drug's PK and its pharmacodynamics (PD). A quantitative procedure of achieving these goals is the PK/PD analysis. We constructed the PK/PD models of donepezil in rats. These models can predict the acetylcholine-time profiles from the PK. The modeling technique is a potential therapeutic application to predict the effect when changes in the PK are caused by pathological condition and co-administered drugs.
Collapse
Affiliation(s)
- Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Shunsuke Kimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Shugo Yamashita
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| |
Collapse
|
9
|
Boyce M, Favela KA, Bonzo JA, Chao A, Lizarraga LE, Moody LR, Owens EO, Patlewicz G, Shah I, Sobus JR, Thomas RS, Williams AJ, Yau A, Wambaugh JF. Identifying xenobiotic metabolites with in silico prediction tools and LCMS suspect screening analysis. FRONTIERS IN TOXICOLOGY 2023; 5:1051483. [PMID: 36742129 PMCID: PMC9889941 DOI: 10.3389/ftox.2023.1051483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Understanding the metabolic fate of a xenobiotic substance can help inform its potential health risks and allow for the identification of signature metabolites associated with exposure. The need to characterize metabolites of poorly studied or novel substances has shifted exposure studies towards non-targeted analysis (NTA), which often aims to profile many compounds within a sample using high-resolution liquid-chromatography mass-spectrometry (LCMS). Here we evaluate the suitability of suspect screening analysis (SSA) liquid-chromatography mass-spectrometry to inform xenobiotic chemical metabolism. Given a lack of knowledge of true metabolites for most chemicals, predictive tools were used to generate potential metabolites as suspect screening lists to guide the identification of selected xenobiotic substances and their associated metabolites. Thirty-three substances were selected to represent a diverse array of pharmaceutical, agrochemical, and industrial chemicals from Environmental Protection Agency's ToxCast chemical library. The compounds were incubated in a metabolically-active in vitro assay using primary hepatocytes and the resulting supernatant and lysate fractions were analyzed with high-resolution LCMS. Metabolites were simulated for each compound structure using software and then combined to serve as the suspect screening list. The exact masses of the predicted metabolites were then used to select LCMS features for fragmentation via tandem mass spectrometry (MS/MS). Of the starting chemicals, 12 were measured in at least one sample in either positive or negative ion mode and a subset of these were used to develop the analysis workflow. We implemented a screening level workflow for background subtraction and the incorporation of time-varying kinetics into the identification of likely metabolites. We used haloperidol as a case study to perform an in-depth analysis, which resulted in identifying five known metabolites and five molecular features that represent potential novel metabolites, two of which were assigned discrete structures based on in silico predictions. This workflow was applied to five additional test chemicals, and 15 molecular features were selected as either reported metabolites, predicted metabolites, or potential metabolites without a structural assignment. This study demonstrates that in some-but not all-cases, suspect screening analysis methods provide a means to rapidly identify and characterize metabolites of xenobiotic chemicals.
Collapse
Affiliation(s)
- Matthew Boyce
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | | | - Jessica A. Bonzo
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Alex Chao
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Lucina E. Lizarraga
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Laura R. Moody
- Thermo Fisher Scientific, South San Francisco, CA, United States
| | - Elizabeth O. Owens
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Grace Patlewicz
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Imran Shah
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Jon R. Sobus
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Russell S. Thomas
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Antony J. Williams
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Alice Yau
- Southwest Research Institute, San Antonio, TX, United States
| | - John F. Wambaugh
- Center for Computational Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States,*Correspondence: John F. Wambaugh,
| |
Collapse
|