1
|
He X, Hu Y, Wu Y, Luo Y, Feng H, Wu Q, Liu H, Gao L, Yang H, Long Y, Ma Y, Li X, Deng J, Ma Y, Li N. Hyaluronic acid modified chuanxiong oil liposomes as a novel therapeutic agent for photoaging prevention. Sci Rep 2025; 15:12237. [PMID: 40210731 PMCID: PMC11985960 DOI: 10.1038/s41598-025-97450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
The gradual increase in ultraviolet B (UVB) health hazards to human skin, coupled with the irritation associated with existing sunscreen products, underscores the critical need for the development of natural sunscreens to combat UVB-induced photoaging. Chuanxiong oil (CXO) and hyaluronic acid (HA) possess excellent antioxidant and anti-apoptotic properties, which are closely linked to the mechanisms of photoaging. In this study, a composite nano-system (HA-CXO-Lip) comprising chuanxiong oil (CXO) and hyaluronic acid (HA) was initially fabricated. Subsequently, both in vitro HaCaT cell models and in vivo murine photoaging models were established to systematically evaluate the therapeutic efficacy and mechanistic actions of HA-CXO-Lip against photoaging under controlled experimental conditions. The investigation encompassed comprehensive assessments of its pharmacological effects and underlying molecular mechanisms through multimodal experimental approaches. Vitro experiments showed HA-CXO-Lip significantly reduced intracellular reactive oxygen species (ROS) levels and senescence-associated β-galactosidase (SA-β-Gal) activity. Furthermore, HA-CXO-Lip restored the levels of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and hydroxyproline (HYP), while also decreasing the levels of lipid metabolites such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). These findings indicate that HA-CXO-Lip effectively inhibits excessive oxidative stress. Additionally, HA-CXO-Lip inhibited apoptosis by reducing Bax levels and enhancing Bcl-2 expression in HaCaT cells. In vivo studies demonstrated that HA-CXO-Lip significantly reduced UVB irradiation-induced erythema and epidermal thickening in the backs of mice. It restored the orderly arrangement of collagen fibers and inhibited the activation of the core senescence pathway, AKT/mTOR, along with the downstream expression of matrix metalloproteinase 9 (MMP9), resulting in a decrease in collagen I disassembly. Additionally, HA-CXO-Lip was shown to significantly decrease the number of apoptotic cells, as indicated by the expression of the apoptosis marker cleaved cysteine aspartic protease-3 (C-Caspase-3) and the surface type I transmembrane glycoprotein (CD44), thereby further inhibiting apoptosis. The findings of this study suggest that HA-CXO-Lip can exert anti-photoaging effects through its antioxidant and anti-apoptotic properties, highlighting the synergistic efficacy of CXO and HA, which holds promise for the prevention and treatment of photoaging.
Collapse
Affiliation(s)
- Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huiyi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qianqian Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Haolin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Leying Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Haofeng Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuntong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Li W, Antoniadi L, Zhou H, Chen H, Angelis A, Halabalaki M, Skaltsounis LA, Qi Z, Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem 2025; 469:142580. [PMID: 39721438 DOI: 10.1016/j.foodchem.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside. Additionally, their transdermal studies in vitro demonstrated that UNL enhanced the cumulative release of OLEO, OLEA, OLEU, and HT by 3.13, 2.76, 2.59, and 2.83 times, respectively. Furthermore, their release mechanisms were better approximated the Peppas-Sahlin model rather than the Korsmeyer-Peppas and Higuchi models, which governed by Fickian diffusion. Moreover, comparing to their compounds, UNL structure exhibited improved their antioxidant and cytotoxicity properties, highlighting their potential as effective delivery agents in humans. These results offer a novel approach for stabilizing biologically active polyphenols from Olea europaea, paving the way for enhanced human health applications.
Collapse
Affiliation(s)
- Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece; Pharmagnose S.A., 57th km Athens-lamia National Road, Oinofyta 32011, Greece
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
3
|
Panthi VK, Fairfull-Smith KE, Wells TJ, Wang T, Islam N. Ceftriaxone-Loaded Liposomal Nanoparticles for Pulmonary Delivery Against Lower Respiratory Tract Infections: Development and Characterization. Pharmaceuticals (Basel) 2025; 18:414. [PMID: 40143190 PMCID: PMC11945751 DOI: 10.3390/ph18030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Herein, we demonstrate the development and characterization of ceftriaxone (CTX)-loaded liposomal nanoparticles (NPs) intended to be applicable to the management of lower respiratory tract infections (LRTIs) associated with resistant bacteria. Methods: The CTX-loaded liposomal NPs were fabricated by a thin film hydration approach. Results: The particle size of the NPs, determined by a Zetasizer, was within the range of 90-536 nm. Microscopic examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that particles are spherical in shape and have retained their original morphology even after freeze-drying. Attenuated total reflection-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric (TG), and powder X-ray diffraction (PXRD) spectra exhibited that CTX is incorporated into the liposomes with no possible interaction between drug and excipients. The formation of the CTX-loaded liposomal NPs was dependent on the concentrations of phospholipids, cholesterol and mannitol; however, no considerable differences were observed in entrapment efficiency and loading capacity of CTX formulations (F6-F10). Using a twin-stage impinger (TSI), the in vitro aerosolization of the formulations were carried out at a flow rate of 60 ± 5 L/min and CTX was determined by a validated HPLC method and the prepared liposomal formulations produced promising fine particle fraction (FPF) between 47 and 62%. The prepared formulation (F6) showed prolonged CTX release of 94.0% ± 5.7 and 95.9% ± 3.9 at 24 h and 48 h, respectively. The drug release followed the Hixon-Crowell model, with CTX being transported through Fickian diffusion. Conclusions: These results highlight the prepared CTX-loaded inhaled liposomal formulation would be suitable for pulmonary delivery and extend the successful antibiotic delivery strategies for the effective management of LRTIs.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Timothy J. Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Tony Wang
- Central Analytical Research Facility, Research Portfolio, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Mirkani A, Nabid MR, Pakian S. Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3503-3515. [PMID: 39873290 DOI: 10.1021/acs.langmuir.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility. In this research, the performance of a stainless steel 316L micromixer was evaluated by using COMSOL Multiphysics simulations. The liposomes were precisely optimized using design of experiments techniques in a microfluidic setup, and then dexamethasone sodium phosphate (DSP) was successfully encapsulated in liposome nanoparticles. The physicochemical characteristics of liposomes, such as their ζ-potential, size, DSP loading capacity, encapsulation efficiency, and drug release, were assessed. Transmission electron microscopy and dynamic light scattering analysis were used to examine the structures of the liposomes. The drug release kinetics study was conducted to analyze the drug delivery system, and the Higuchi equation was determined to be the most suitable equation. The microfluidic chip was shown to be capable of creating small-sized liposomes with a size as small as 130 nm, exhibiting monodispersed characteristics and low polydispersity liposome populations.
Collapse
Affiliation(s)
- Ahmad Mirkani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| | - Mohammad Reza Nabid
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| | - Sarvenaz Pakian
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| |
Collapse
|
5
|
Meng T, Gao T, Qiao F, Xu H, Yu N, Zuo W, Yang J. A VZV-gE subunit vaccine decorated with mPLA elicits protective cellular immmune responses against varicella-zoster virus. Int Immunopharmacol 2025; 147:114033. [PMID: 39799738 DOI: 10.1016/j.intimp.2025.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus. The thin-film dispersion and freeze-drying methods were employed to encapsulate VZV-gE against degradation, enhance liposomal stability, and achieve better redissolution effects with an optimized cryoprotectant. The in vitro results presented that mPLA could effectively enhance the uptake of VZV-gE with DC2.4. In vivo immune effect evaluation showed that the prepared subunit vaccines could induce stronger IgG, IgG1, and IgG2a antibody levels in the mouse serum, improving humoral immune effects. And the secretion levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) in the splenocytes were significantly increased, inducing protective cellular immune responses. Overall, this work presented that combining immunomodulatory adjuvants decorated nanocarriers to develop subunit vaccine platforms was a promising strategy to prevent the occurrence of herpes zoster effectively.
Collapse
Affiliation(s)
- Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China; Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongxia Xu
- Science and Technology Centers, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Arte KS, Chen M, Patil CD, Huang Y, Qu L, Zhou Q. Recent advances in drying and development of solid formulations for stable mRNA and siRNA lipid nanoparticles. J Pharm Sci 2025; 114:805-815. [PMID: 39694272 DOI: 10.1016/j.xphs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Current RNA lipid nanoparticle (LNP) based products are typically liquid formulations that require ultra-cold storage temperatures for stability. To address this limitation, recent efforts have focused on enhancing stability and enabling room temperature storage by converting these formulations into solid forms through drying processes such as lyophilization, spray drying, and spray-freeze drying. Nevertheless, the drying process itself can influence the stability of RNA/LNP formulations. Therefore, understanding the factors that contribute to instability during drying is essential. The choice of drying technique for LNPs depends on factors such as the mode of delivery, lipid components, and desired final product characteristics. Additionally, the drying mechanism and associated stresses must also be carefully considered. Drying methods involve a range of process parameters related to formulation, process settings, and the manufacturing environment. It is essential to understand how these parameters influence the final solid-state products' attributes, including appearance, moisture content, flow properties, and reconstitution time, as these can significantly affect the physical and chemical stability of the formulation. This review focuses on various drying techniques and their impact on the stability of RNA/LNP-based systems.
Collapse
Affiliation(s)
- Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Manlin Chen
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Chanakya D Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Dattani S, Li X, Lampa C, Barriscale A, Damadzadeh B, Lechuga-Ballesteros D, Jasti BR. Development of Spray-Dried Micelles, Liposomes, and Solid Lipid Nanoparticles for Enhanced Stability. Pharmaceutics 2025; 17:122. [PMID: 39861769 PMCID: PMC11768165 DOI: 10.3390/pharmaceutics17010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers. Methods: Aqueous dispersions of LDV-targeted micelles, liposomes, and SLNs loaded with paclitaxel (PTX) were converted into re-dispersible powders using spray drying. The physicochemical properties of the nanocarriers were determined via scanning electron microscopy (SEM), Karl Fischer titration, differential scanning calorimetry (DSC), and dynamic light scattering (DLS). Short-term stability of all nanocarrier formulations was compared by measuring particle size, polydispersity index (PDI), and paclitaxel retention over 7 days at room temperature and at 4 °C. Results: Paclitaxel-loaded micelles, liposomes, and SLN formulations were successfully converted into well-dispersed spray-dried powders with acceptable yields (71.5 to 83.5%), low moisture content (<2%), and high transition temperatures (95.1 to 100.8 °C). SEM images revealed differences in morphology, where nanocarriers spray-dried with trehalose or a combination of trehalose and L-leucine produced smooth or corrugated particle surfaces, respectively. Reconstituted spray-dried nanocarriers maintained their nanosize and paclitaxel content over 7 days at 4 °C. Conclusions: The results of this study demonstrate the potential for the development of spray-dried lipid-based nanocarriers for long-term stability.
Collapse
Affiliation(s)
- Shradha Dattani
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Xiaoling Li
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | | | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
8
|
YALÇIN TE, YETGİN C. Influence of Formulation Composition on the Characteristic Properties of 5-fluorouracil-loaded Liposomes. Turk J Pharm Sci 2025; 21:551-556. [PMID: 39801089 PMCID: PMC11730006 DOI: 10.4274/tjps.galenos.2024.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 01/16/2025]
Abstract
Objectives Variations in the types and quantities of excipients used to prepare liposomes can affect the physicochemical properties of liposome formulations. This study aimed to provide information about the design and fabrication of 5-fluorouracil (5-FU)-loaded liposome formulations using different lipid and cholesterol (CHOL) derivatives. Materials and Methods Passive loading via a small-volume incubation method was used to prepare liposomes. The particle size, polydispersity index, zeta potential, and encapsulation efficiency (EE%) of the formulations were determined. The release studies of the formulations were conducted using a Franz diffusion cell at 37 °C. In this study, a high-pressure liquid chromatography device was used to measure the amount of 5-FU. Results The mean particle sizes of all formulations were between 134 and 166 nm, and they had a negative charge on their surface. Increasing the cholesteryl hemisuccinate content reduced the size of the liposomes. Additionally, all formulations exhibited a low polydispersity index (0.3). The EE% of all formulations exceeded 30%. The in vitro release of 5-FU from liposome formulations followed the Korsemeyer-Peppas model. Conclusion Modifying the lipid and CHOL content in the formulations, as indicated by the experimental results, can change the characteristic properties of liposomes. The use of soybean phosphatidylcholine and cholesteryl hemisuccinate appears to be a promising combination for the preparation of hydrophilic drug-loaded liposome formulations.
Collapse
Affiliation(s)
- Tahir Emre YALÇIN
- Gazi University Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara, Türkiye
| | - Ceren YETGİN
- Gazi University Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara, Türkiye
| |
Collapse
|
9
|
Zhou P, Cao Y, Liu H, Wang L, Yu S, Hegazy M, Wu S. Advances and challenges of artificial cells in life: A review. POLYMER 2025; 317:127940. [DOI: 10.1016/j.polymer.2024.127940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Gugu TH, Uronnachi EM, Thawithong E, Srichana T. Spray dried polymyxin B liposome for inhalation against gram-negative bacteria. Pharm Dev Technol 2024; 29:1133-1147. [PMID: 39513323 DOI: 10.1080/10837450.2024.2427186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to provide an alternative and effective delivery system to combat polymyxin B (PMB) toxicity and bacterial resistance through inhalation therapy. PMB was formulated as liposomal dry powder for inhalation using thin-film hydration and spray-dried methods. PMB formulations were characterized physically. The aerodynamic properties were determined using next-generation impactor (NGI). In vitro drug release was done in a phosphate buffer pH 7.4 for 2 h. Cytotoxicity was evaluated by the MTT cell viability assay. Antimicrobiological activities were done using bioassay and flow cytometry. Particle sizes of the spay-dried formulations were between 259.83 ± 9.91 and 518.73 ± 27.08 nm while the zeta potentials ranged between 3.07 ± 0.27 and 4.323 ± 0.36 mV. The Fourier-transform infrared spectroscopy shows no interaction between PMB and other excipients. Differential scanning calorimetry thermograms revealed amorphousness of the formulated powders and SEM revealed spherical PMB formulations. Similarly, mass media aerodynamic diameter results were 1.72-2.75 nm, and FPF was 25%-26%. The cumulative release of the PMB formulations was 90.3 ± 0.6% within 2 h. The killing kinetics revealed total cell death at 12 and 24 h for Pseudomonas aeruginosa and Escherichia coli, respectively. The PMB inhalation liposome showed better activity and was safe for lung-associated cell lines.
Collapse
Affiliation(s)
- Thaddeus Harrison Gugu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Nigeria
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Emmanuel Maduabuchi Uronnachi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ekawat Thawithong
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Karkad AA, Pirković A, Milošević M, Stojadinović B, Šavikin K, Marinković A, Jovanović AA. Silibinin-Loaded Liposomes: The Influence of Modifications on Physicochemical Characteristics, Stability, and Bioactivity Associated with Dermal Application. Pharmaceutics 2024; 16:1476. [PMID: 39598599 PMCID: PMC11597119 DOI: 10.3390/pharmaceutics16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aims of the presented study were the development of four types of silibinin-loaded liposomes (multilamellar liposomes-MLVs, sonicated small unilamellar liposomes-SUVs, UV-irradiated liposomes, and lyophilized liposomes) and their physicochemical characterization and biological potential related to skin health benefits. METHODS The characterization was performed via the determination of the encapsulation efficiency (EE), particle size, polydispersity index, zeta potential, conductivity, mobility, storage stability, density, surface tension, viscosity, FT-IR, and Raman spectra. In addition, cytotoxicity on the keratinocytes and antioxidant and anti-inflammatory potential were also determined. RESULTS UV irradiation significantly changed the rheological and chemical properties of the liposomes and increased their cytotoxic effect. The lyophilization of the liposomes caused significant changes in their EE and physical characteristics, decreased their ABTS and DPPH radical scavenging potential, and increased their potential to reduce the expression of interleukin 1 beta (IL-1β) in cells treated with bacterial lipopolysaccharide. Sonication significantly changed the EE and physical and rheological properties of the liposomes, and slightly increased their cytotoxicity and reduction effect on IL-1β, while the anti-ABTS and anti-DPPH capacity of the liposomes significantly increased. All developed liposomes showed an increasing trend in particle size and a decreasing trend in zeta potential (absolute values) during storage. CONCLUSIONS Silibinin-loaded liposomes (MLVs and lyophilized) showed promising antioxidant activity (toward reactive oxygen species generated in cells) and anti-inflammatory effects (reducing macrophage inhibitory factor expression) on keratinocytes and did not lead to a change in their viability. Future perspectives will focus on wound healing, anti-aging, and other potential of developed liposomes with silibinin in sophisticated cell-based models of skin diseases, wounds, and aging.
Collapse
Affiliation(s)
- Amjed Abdullah Karkad
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
- Faculty of Medical Technology, Elmergib University, Msallata 7310500, Libya
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Stojadinović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|
12
|
Tort S, Öztürk ZC, Kaynak-Onurdağ F, Mutlu-Ağardan NB. Preparation and evaluation the effects of retinoic acid loaded proliposomal nanofibers on microbial biofilm inhibition. Pharm Dev Technol 2024; 29:955-965. [PMID: 39330701 DOI: 10.1080/10837450.2024.2411034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
The electrospinning method involves the production of different drug delivery systems using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy. This study aimed to prepare ATRA-loaded proliposomal nanofibers and evaluate their effectiveness on microbial biofilm inhibition. Blank and ATRA-loaded proliposomal nanofiber formulations were fabricated in various polyvinylpyrrolidone, phosphatidylcholine and cholesterol ratios. TEM images verified the rapid formation of the liposomes after the hydration of nanofibers. The vesicle size, polydispersity index and zeta potential values of self-assembled liposomes were measured. The vesicle size values were found to be 321.9-363.8 nm with PDI values varying between 0.332 and 0.511 and zeta potential values of (-16.8) to (-20.5)mV. ATRA-loaded proliposomal nanofibers provided higher bioadhesion (0.25 mJ/cm2) than the commercial cream (0.07 mJ/cm2). The short-term stability results showed that the initial characteristics remained for three months at 4 °C. The proposed ATRA-loaded self-assembled proliposomal system provided antibacterial, fungistatic or fungicidal effects superior to retinoic acid itself and inhibited biofilm formation in lower concentrations. This approach can combine the stability advantage of nanofibers in the dry state with the high effectiveness of liposomes in acne treatment presenting antibacterial and anti-biofilm-forming activity against Candida albicans and Cutibacterium acnes.
Collapse
Affiliation(s)
- Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Ziya Canberk Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
- Pharmacy Services Department, Vocational School of Health Services, Yozgat Bozok University, Yozgat, Türkiye
| | - Fatma Kaynak-Onurdağ
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, Edirne, Türkiye
| | - N Başaran Mutlu-Ağardan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
13
|
Barbălată CI, Porfire AS, Ambrus R, Mukhtar M, Farkas Á, Tomuță I. Process development of inhalation powders containing simvastatin loaded liposomes using spray drying technology. J Liposome Res 2024; 34:421-434. [PMID: 37998080 DOI: 10.1080/08982104.2023.2287588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
The development of an inhalation powder (IP) for cancer therapy is desired to improve the therapeutic response and patient compliance. The latest studies highlighted that statins, a class of drugs used in hypercholesterolemia, can have anticancer and antiinflammatory properties. Therefore, the aim of the study was to develop an IP containing liposomes loaded with simvastatin using spray drying technology, as well as to investigate the influence of formulation factors on the quality attributes of the IP by means of experimental design. Results highlighted that the composition of liposomes, namely type of phospholipid and cholesterol concentration, highly influences the quality attributes of IP, and the use of optimal concentrations of excipients, i.e. D-mannitol and L-leucine, is essential to preserve the characteristics of liposomes throughout the spray drying process. The in vitro characterization of the optimal IP formulation revealed that the total percentage of released drug is higher from the IP formulation compared to the powder of active substance (53.38 vs. 42.76%) over a period of six hours, and 39.67% of dry particles have a size less than 5 µm, making them suitable for inhalation. As a conclusion, spray drying technology can be effectively used in the development and preparation of IP containing liposomes.
Collapse
Affiliation(s)
- Cristina-Ioana Barbălată
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Árpád Farkas
- Environmental Physiscs Department, Center for Energy Research, Budapest, Hungary
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, 'Iuliu Hatieganu' University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Zhang T, Zheng X, Lin R, Sun H, Wu H, Zhang J, Chen S, Li Y, Xu D, Gao J. Lyophilizable Stem Cell-Hybrid Liposome with Long-Term Stability and High Targeting Capacity. Adv Healthc Mater 2024; 13:e2400704. [PMID: 38781020 DOI: 10.1002/adhm.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The hybridization of liposome with stem cell membranes is an emerging technology to prepare the nanovehicle with the capacity of disease-responsive targeting. However, the long-term storage of this hybrid liposome has received limited attention in the literature, which is essential for its potential applicability in the clinic. Therefore, the preservation of long-term activity of stem cell-hybrid liposome using freeze-drying is investigated in the present study. Mesenchymal stem cell-hybrid liposome is synthesized and its feasibility for freeze-drying under different conditions is examined. Results reveal that pre-freezing the hybrid liposome at -20 °C in Tris buffer solution (pH 7.4) containing 10% trehalose can well preserve the liposomal structure for at least three months. Notably, major membrane proteins on the hybrid liposome are protected in this formulation and CXCR4-associated targeting capacity is maintained both in vitro and in vivo. Consequently, the hybrid liposome stored for three months demonstrates a comparable tumor inhibition as the fresh-prepared one. The present study provides the first insights into the long-term storage of stem cell hybrid liposome using lyophilization, which may make an important step forward in enhancing the long-term stability of these promising biomimetic nanovehicle and ease the logistics and the freeze-storage in the potential clinical applications.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaosheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Ji XY, Zou YX, Lei HF, Bi Y, Yang R, Tang JH, Jin QR. Advances in Cyclodextrins and Their Derivatives in Nano-Delivery Systems. Pharmaceutics 2024; 16:1054. [PMID: 39204399 PMCID: PMC11360519 DOI: 10.3390/pharmaceutics16081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The diversity of cyclodextrins and their derivatives is increasing with continuous research. In addition to monomolecular cyclodextrins with different branched chains, cyclodextrin-based polymers have emerged. The aim of this review is to summarize these innovations, with a special focus on the study of applications of cyclodextrins and their derivatives in nano-delivery systems. The areas covered include nanospheres, nano-sponges, nanogels, cyclodextrin metal-organic frameworks, liposomes, and emulsions, providing a comprehensive and in-depth understanding of the design and development of nano-delivery systems.
Collapse
Affiliation(s)
- Xin-Yu Ji
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Yi-Xuan Zou
- National institute of Metrology, Beijing 100029, China
| | - Han-Fang Lei
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Yong Bi
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Ji-Hui Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Qing-Ri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| |
Collapse
|
16
|
Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, Chukwu JA, Ufebe GO, Ladokun J, Audu DT, Agwu AO, Obasi DC, Okoro CO. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules 2024; 29:2584. [PMID: 38893460 PMCID: PMC11173789 DOI: 10.3390/molecules29112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 06/21/2024] Open
Abstract
There is a myriad of diseases that plague the world ranging from infectious, cancer and other chronic diseases with varying interventions. However, the dynamism of causative agents of infectious diseases and incessant mutations accompanying other forms of chronic diseases like cancer, have worsened the treatment outcomes. These factors often lead to treatment failure via different drug resistance mechanisms. More so, the cost of developing newer drugs is huge. This underscores the need for a paradigm shift in the drug delivery approach in order to achieve desired treatment outcomes. There is intensified research in nanomedicine, which has shown promises in improving the therapeutic outcome of drugs at preclinical stages with increased efficacy and reduced toxicity. Regardless of the huge benefits of nanotechnology in drug delivery, challenges such as regulatory approval, scalability, cost implication and potential toxicity must be addressed via streamlining of regulatory hurdles and increased research funding. In conclusion, the idea of nanotechnology in drug delivery holds immense promise for optimizing therapeutic outcomes. This work presents opportunities to revolutionize treatment strategies, providing expert opinions on translating the huge amount of research in nanomedicine into clinical benefits for patients with resistant infections and cancer.
Collapse
Affiliation(s)
- Chinedu O. Egwu
- Medical Research Council, London School of Hygiene and Tropical Medicine, Banjul 220, The Gambia
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Chinyere Aloke
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Kenneth T. Onwe
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Chukwunalu Igbudu Umoke
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Joseph Nwafor
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Robert A. Eyo
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Adaeze Chukwu
- World Health Organization, United Nations House Plot 617/618 Central Area District, P.M.B. 2861, Abuja 900211, Nigeria;
| | - Godswill O. Ufebe
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Ladokun
- Society for Family Health, 20 Omotayo Ojo Street, Allen, Ikeja 100246, Nigeria;
| | - David Tersoo Audu
- UNICEF Sokoto Field Office, 2 Rahamaniyya Street, Off Sama Road, Sokoto 840224, Nigeria;
| | - Anthony O. Agwu
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - David Chukwu Obasi
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| | - Chukwuemeka O. Okoro
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| |
Collapse
|
17
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024; 65:2765-2784. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Kakuda L, Maia Campos PMBG, Oliveira WP. Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes. Pharmaceutics 2024; 16:595. [PMID: 38794256 PMCID: PMC11124447 DOI: 10.3390/pharmaceutics16050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil-extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity-is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (L.K.); (P.M.B.G.M.C.)
| |
Collapse
|
19
|
Malakouti-Nejad M, Monti D, Burgalassi S, Bardania H, Elahi E, Morshedi D. A comparison between the effects of two liposome-encapsulated bevacizumab formulations on ocular neovascularization inhibition. Colloids Surf B Biointerfaces 2024; 234:113708. [PMID: 38141384 DOI: 10.1016/j.colsurfb.2023.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Bevacizumab (BVZ), an anti-VEGF antibody, has demonstrated reliable outcomes in the treatment of irritating ocular neovascularization. Frequent intravitreal injections are necessitated due to rapid clearance and short local accessibility. We recruited liposome as a highly prevailing drug delivery system to enhance drug availability. Two liposome formulations were characterized and their in vitro stability was analyzed. The toxicity of the formulations on some ocular cell lines was also evaluated. In addition, the anti-angiogenic effects of formulations were examined. Drug permeation was measured across ARPE-19 and HCE cell lines as in vitro cellular barrier models. Results revealed that NLP-DOPE-BVZ acquired high stability at 4 °C, 24 °C, and 37 °C for 45 days. It also showed more capacity to entrap BVZ in NLP-DOPE-BVZ (DEE% 69.1 ± 1.4 and DLE% 55.66 ± 1.15) as compared to NLP-BVZ (DEE% 43.57 ± 14.64, and DLE% 37.72 ± 12.01). Although both formulations inhibited the migration and proliferation of HUVECs, NLP-DOPE-BVZ was more effective at inhibiting angiogenesis. Furthermore, NLP-DOPE-BVZ better crossed our established barrier cellular models. Based on the findings, the inclusion of DOPE in NLPs has significantly enhanced the features of drug carriers. This makes them a potential candidate for treating ocular neovascularization and other related ailments.
Collapse
Affiliation(s)
- Maryam Malakouti-Nejad
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126 Pisa, Italy
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
20
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
21
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
22
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
23
|
Thiruvalluvan M, Kaur BP, Singh A, Kumari S. Enhancement of the bioavailability of phenolic compounds from fruit and vegetable waste by liposomal nanocarriers. Food Sci Biotechnol 2024; 33:307-325. [PMID: 38222914 PMCID: PMC10786787 DOI: 10.1007/s10068-023-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024] Open
Abstract
Fruits and vegetables are one of the most consumed and processed commodities globally and comprise abundant phenolic compounds, one of the main nutraceuticals in the food industry. Comparably elevated rates of these compounds are found in waste (peel, seeds, leaf, stem, etc.) in the food processing industry. They are being investigated for their potential use in functional foods. However, phenolic compounds' low bioavailability limits their application, which can be approached by loading the phenolic compounds into an encapsulation system such as liposomal carriers. This review aims to elucidate the recent trend in extracting phenolic compounds from the waste stream and the means to load them in stable liposomes. Furthermore, the application of these liposomes with only natural extracts in food matrices is also presented. Many studies have indicated that liposomes can be a proper candidate for encapsulating and delivering phenolic compounds and as a means to increase their bioavailability.
Collapse
Affiliation(s)
- Manonmani Thiruvalluvan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| | - Sanjana Kumari
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana India
| |
Collapse
|
24
|
Mohammed DM, El-Messery TM, Baranenko DA, Hashim MA, Boulkrane MS, El-Said MM. Enhancing date seed phenolic bioaccessibility in soft cheese through a dehydrated liposome delivery system and its effect on testosterone-induced benign prostatic hyperplasia in rats. Front Nutr 2023; 10:1273299. [PMID: 38178973 PMCID: PMC10765583 DOI: 10.3389/fnut.2023.1273299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION The consumption of dairy products, including soft cheese, has been associated with numerous health benefits due to their high nutritional value. However, the phenolic compounds bioaccessibility present in soft cheese is limited due to their poor solubility and stability during digestion. So, this study aimed to develop an innovative soft cheese enriched with date seed phenolic compounds (DSP) extracted ultrasonically and incorporated into homogeneous liposomes and study its attenuation effect on testosterone-induced benign prostatic hyperplasia (BPH) in rats. METHODS Date seed phenolic compounds were extracted using 98 and 50% ethanol along with water as solvents, employing ultrasonication at 10, 20, and 30-min intervals. The primary and secondary DSP-liposomes were prepared and dehydrated. The particle size, zeta potential, encapsulation efficiency, and morphology were measured. Incorporating dehydrated liposomes (1-3% w/w) into soft cheese and their impact on BPH using male Sprague-Dawley rats was assessed. After inducing BPH, rats were fed a cheese diet with dehydrated DSP-liposomes. Over 8 weeks, parameters including nutrition parameters, prostate enlargement analysis, biochemical parameters, hormones level, oxidative stress, and cytokines were analyzed. RESULTS AND DISCUSSION The results showed that ultrasound-assisted extraction effectively reduced the extraction time and 30 min extraction EtOH 50% was enough to extract high yield of phenolic compounds (558 mg GA/g) and flavonoids (55 mg qu/g) with high antioxidant activity (74%). The biological results indicate that prostate weight and prostate index% were diminished in the treatment groups (1 and 2) compared to the BPH control group. The high antioxidant content present in the DSP-liposomes acted as the catalyst for suppressing the responses of the inflammatory cytokines, inhibiting the anti-inflammatory IL-10 production, and suppressing the elevated levels of lipid peroxidation products compared to the BPH group. CONCLUSION The treatment group (2) supplemented with dehydrated secondary DSP-liposomes exhibited the most significant variance (p < 0.05) as opposed to the BPH group. Liposomal encapsulation was proved to be a feasible approach for administering DSP in soft cheese, thereby establishing new functional food category possessing prophylactic properties against the advancement of BPH in rats.
Collapse
Affiliation(s)
| | - Tamer M. El-Messery
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, Russia
| | - Denis A. Baranenko
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, Russia
| | - Mahmood A. Hashim
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, Russia
- Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mohamed Said Boulkrane
- International Research Centre “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, St. Petersburg, Russia
| | | |
Collapse
|
25
|
Chen JW, Liew FF, Tan HW, Misran M, Chung I. Cholesterol-linoleic acid liposomes induced extracellular vesicles secretion from immortalized adipose-derived mesenchymal stem cells for in vitro cell migration. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:346-360. [PMID: 37524112 DOI: 10.1080/21691401.2023.2237534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Extracellular vesicles (EVs) are small vesicles that are naturally released by cells and play a crucial role in cell-to-cell communication, tissue repair and regeneration. As naturally secreted EVs are limited, liposomes with different physicochemical properties, such as 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and linoleic acid (LA) with modifications have been formulated to improve EVs secretion for in vitro wound healing. Various analyses, including dynamic light scattering (DLS) and transmission electron microscopy (TEM) were performed to monitor the successful preparation of different types of liposomes. The results showed that cholesterol-LA liposomes significantly improved the secretion of EVs from immortalized adipose-derived mesenchymal stem cells (AD-MSCs) by 1.5-fold. Based on the cell migration effects obtained from scratch assay, both LA liposomal-induced EVs and cholesterol-LA liposomal-induced EVs significantly enhanced the migration of human keratinocytes (HaCaT) cell line. These findings suggested that LA and cholesterol-LA liposomes that enhance EVs secretion are potentially useful and can be extended for various tissue regeneration applications.
Collapse
Affiliation(s)
- Jzit Weii Chen
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fong Fong Liew
- Department of Oral Biology and Biomedical Science, Faculty of Dentistry, MAHSA University, Selangor, Malaysia
| | - Hsiao Wei Tan
- Institute of Research Management and Services, Research and Innovation Management Complex, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
27
|
Peng X, Ge Y, Li W, Lin X, Song H, Lin L, Zhao J, Gao Y, Wang J, Li J, Huang Y, Li Y, Li L. Targeting Lewis X oligosaccharide-modified liposomes encapsulated with house dust mite allergen Der f 2 to dendritic cells inhibits Th2 immune response. Eur J Pharm Sci 2023; 190:106570. [PMID: 37634600 DOI: 10.1016/j.ejps.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Allergen-specific immunotherapy (AIT) is the only curative treatment for allergic diseases. However, the long desensitization phase and potentially dangerous allergic side effects limit its broad application. Therefore, safer and more effective vaccines are required. Targeting dendritic cells (DCs) with novel allergen conjugates is a promising strategy for AIT. In this study, a novel vaccine with a DC-targeting effect for AIT was constructed. Liposomes were used as vehicles, and a targeted nanovaccine (Lex-lip-Der f 2) was constructed by loading the recombinant group 2 allergen of Dermatophagoides farinae (Der f 2) and conjugating with the DC-SIGN ligand Lewis X. The effect of the vaccine on DCs and T cell responses and the safety of the vaccine were investigated in vitro. The results showed that the Lex-lip-Der f 2 vaccine was spherical, with size of approximately 128 nm. The protein-loading capacity of the vaccine was 0.106 ± 0.001 mg per mg liposome and protein was gradually released from the liposomes during the first 12 h. Lex-lip-Der f 2 was taken up more efficiently by DCs than non-targeted liposomes or free Der f 2. Besides, Lex-lip-Der f 2 significantly inhibited the release of IL-4, IL-6, and TNF-a from DCs. Accordingly, Der f 2-lip loaded DCs significantly decreased IL-4 levels in autologous naïve CD4+T cells. Moreover, Lex-lip-Der f 2-treated basophils showed lower activation levels. These results suggest that DC-SIGN targeting mediated by Lewis X could inhibit the Th2 cell response and improve vaccine safety, and may be a novel vaccination strategy.
Collapse
Affiliation(s)
- Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China; Department of Laboratory Medicine, Shanghai Chest Hospital Affiliated Shanghai Jiao Tong University, China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Xiuke Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Jinyan Zhao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of medicine, China.
| |
Collapse
|
28
|
Yun JS, Hwangbo SA, Jeong YG. Preparation of Uniform Nano Liposomes Using Focused Ultrasonic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2618. [PMID: 37836259 PMCID: PMC10574396 DOI: 10.3390/nano13192618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Liposomes are microspheres produced by placing phospholipids in aqueous solutions. Liposomes have the advantage of being able to encapsulate both hydrophilic and hydrophobic functional substances and are thus important mediators used in cosmetics and pharmaceuticals. It is important for liposomes to have small sizes, uniform particle size distribution, and long-term stability. Previously, liposomes have been prepared using a homo mixer, microfluidizer, and horn and bath types of sonicators. However, it is difficult to produce liposomes with small sizes and uniform particle size distribution using these methods. Therefore, we have developed a focused ultrasound method to produce nano-sized liposomes with better size control. In this study, the liposome solutions were prepared using the focused ultrasound method and conventional methods. The liposome solutions were characterized for their size distribution, stability, and morphology. Results showed that the liposome solution prepared using focused ultrasonic equipment had a uniform particle size distribution with an average size of 113.6 nm and a polydispersity index value of 0.124. Furthermore, the solution showed good stability in dynamic light scattering measurements for 4 d and Turbiscan measurements for 1 week.
Collapse
Affiliation(s)
- Ji-Soo Yun
- Nanosafety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
- Department of Applied Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon-Ae Hwangbo
- Nanosafety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Young-Gyu Jeong
- Department of Applied Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
29
|
Lehman SE, Benkstein KD, Cleveland TE, Anderson KW, Carrier MJ, Vreeland WN. Particle Metrology Approach to Understanding How Storage Conditions Affect Long-Term Liposome Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12313-12323. [PMID: 37603854 PMCID: PMC10484209 DOI: 10.1021/acs.langmuir.3c01270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Lipid nanoparticles are a generic type of nanomaterial with broad applicability in medicine as drug delivery vehicles. Liposomes are a subtype of lipid nanoparticles and, as a therapeutic platform, can be loaded with a genetic material or pharmaceutical agents for use as drug treatments. An open question for these types of lipid nanoparticles is what factor(s) affect the long-term stability of the particles. The stability of the particle is of great interest to understand and predict the effective shelf-life and storage requirements. In this report, we detail a one-year study of liposome stability as a function of lipid composition, buffer composition/pH, and storage temperature. This was done in aqueous solution without freezing. The effect of lipid composition is shown to be a critical factor when evaluating stability of the measured particle size and number concentration. Other factors (i.e., storage temperature and buffer pH/composition) were shown to be less critical but still have some effect. The stability of these particles informs formulation and optimal storage requirements and assists with future developmental planning of a NIST liposome-based reference material. This work also highlights the complex nature of long-term soft particle storage in biopharmaceutical applications.
Collapse
Affiliation(s)
- Sean E. Lehman
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kurt D. Benkstein
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thomas E. Cleveland
- Biomolecular
Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Kyle W. Anderson
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Michael J. Carrier
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wyatt N. Vreeland
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
30
|
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:1944. [PMID: 37514130 PMCID: PMC10383758 DOI: 10.3390/pharmaceutics15071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.
Collapse
Affiliation(s)
- Shahla Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht 4199613776, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Azadeh Mohammadi Sepahvand
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7148664685, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol 9861335856, Iran
| | - Mohammad Mehdi Zahedi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
31
|
Teplensky MH, Evangelopoulos M, Dittmar JW, Forsyth CM, Sinegra AJ, Wang S, Mirkin CA. Multi-antigen spherical nucleic acid cancer vaccines. Nat Biomed Eng 2023; 7:911-927. [PMID: 36717738 PMCID: PMC10424220 DOI: 10.1038/s41551-022-01000-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
Cancer vaccines must activate multiple immune cell types to be effective against aggressive tumours. Here we report the impact of the structural presentation of two antigenic peptides on immune responses at the transcriptomic, cellular and organismal levels. We used spherical nucleic acid (SNA) nanoparticles to investigate how the spatial distribution and placement of two antigen classes affect antigen processing, cytokine production and the induction of memory. Compared with single-antigen SNAs, a single dual-antigen SNA elicited a 30% increase in antigen-specific T cell activation and a two-fold increase in T cell proliferation. Antigen placement within dual-antigen SNAs altered the gene expression of T cells and tumour growth. Specifically, dual-antigen SNAs encapsulating antigens targeting helper T cells and with externally conjugated antigens targeting cytotoxic T cells elevated antitumour genetic pathways, stalling lymphoma tumours in mice. Additionally, when combined with the checkpoint inhibitor anti-programmed-cell-death protein-1 in a mouse model of melanoma, a specific antigen arrangement within dual-antigen SNAs suppressed tumour growth and increased the levels of circulating memory T cells. The structural design of multi-antigen vaccines substantially impacts their efficacy.
Collapse
Affiliation(s)
- Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | | | - Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Connor M Forsyth
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Andrew J Sinegra
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Shuya Wang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
32
|
Effect of oligosaccharides as lyoprotectants on the stability of curcumin-loaded nanoliposomes during lyophilization. Food Chem 2023; 410:135436. [PMID: 36640657 DOI: 10.1016/j.foodchem.2023.135436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Nanoliposome is a promising delivery system, whereas its commercial application is limited by the structural instability, cargo leakage and particles aggregation during the processing such as freeze-drying. In this study, the effect of four oligosaccharides, fructo-oligosaccharides, lactose, inulin and sucrose (control), on the physicochemical properties, structural stability, and in vitro semi-dynamic digestion behavior of curcumin-loaded nanoliposomes were investigated before and after lyophilization. The results showed that the addition of the oligosaccharides inhibited the changes in particle size and reduced curcumin leakage from lyophilized nanoliposomes. Oligosaccharides significantly improved the physical stability of lyophilized nanoliposomes and delayed curcumin release during in vitro digestion. In addition, oligosaccharides could decrease the hydrophobicity of liposomal membrane and the tightness of phospholipid molecule arrangement, with the increase in micropolarity and fluidity of the bilayer membranes. These results suggested that fructo-oligosaccharides, lactose and inulin could be effective lyoprotectants for lyophilized nanoliposomes.
Collapse
|
33
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
34
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
Affiliation(s)
- Peichun Peng
- International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Academy of Medical Sciences, Nanning, China
| | - Miaodong Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bin Wen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- Department of Basic Medical Science College, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
35
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
36
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
37
|
Aman Mohammadi M, Farshi P, Ahmadi P, Ahmadi A, Yousefi M, Ghorbani M, Hosseini SM. Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives. Adv Pharm Bull 2023; 13:48-68. [PMID: 36721823 PMCID: PMC9871282 DOI: 10.34172/apb.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,These authors contributed equally in this Article
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan KS, USA.,These authors contributed equally in this Article
| | - Parisa Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| |
Collapse
|
38
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
39
|
Marchianò V, Matos M, Serrano E, Álvarez JR, Marcet I, Carmen Blanco-López M, Gutiérrez G. Lyophilised nanovesicles loaded with vitamin B12. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int J Mol Sci 2022; 23:ijms232012487. [PMID: 36293340 PMCID: PMC9603853 DOI: 10.3390/ijms232012487] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Collapse
Affiliation(s)
- George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wang Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| |
Collapse
|
41
|
Kasapoğlu KN, Demircan E, Gültekin-Özgüven M, Kruger J, Frank J, Arslaner A, Özçelik B. Recovery of Polyphenols Using Pressurized Hot Water Extraction (PHWE) from Black Rosehip Followed by Encapsulation for Increased Bioaccessibility and Antioxidant Activity. Molecules 2022; 27:molecules27206807. [PMID: 36296399 PMCID: PMC9610414 DOI: 10.3390/molecules27206807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40–80 °C) and the solvent-to-solid ratio (X2: 10–40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247–380 nm and a zeta-potential of 15–45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9–8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Ayla Arslaner
- Department of Food Engineering, Faculty of Engineering, Bayburt University, 69000 Bayburt, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
42
|
Yi X, Gao X, Zhang X, Xia G, Shen X. Preparation of liposomes by glycolipids/phospholipids as wall materials: studies on stability and digestibility. Food Chem 2022; 402:134328. [DOI: 10.1016/j.foodchem.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
43
|
Gbian DL, Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022; 10:2137. [PMID: 36140237 PMCID: PMC9495957 DOI: 10.3390/biomedicines10092137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
44
|
De Jesús Valle MJ, Zarzuelo Castañeda A, Maderuelo C, Cencerrado Treviño A, Loureiro J, Coutinho P, Sánchez Navarro A. Development of a Mucoadhesive Vehicle Based on Lyophilized Liposomes for Drug Delivery through the Sublingual Mucosa. Pharmaceutics 2022; 14:pharmaceutics14071497. [PMID: 35890395 PMCID: PMC9317145 DOI: 10.3390/pharmaceutics14071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
A pharmaceutical vehicle based on lyophilized liposomes is proposed for the buccal administration of drugs aimed at systemic delivery through the sublingual mucosa. Liposomes made of egg phosphatidylcholine and cholesterol (7/3 molar ratio) were prepared and lyophilized in the presence of different additive mixtures with mucoadhesive and taste-masking properties. Palatability was assayed on healthy volunteers. The lyophilization cycle was optimized, and the lyophilized product was compressed to obtain round and capsule-shaped tables that were evaluated in healthy volunteers. Tablets were also assayed regarding weight and thickness uniformities, swelling index and liposome release. The results proved that lyophilized liposomes in unidirectional round tablets have palatability, small size, comfortability and buccal retention adequate for sublingual administration. In contact with water fluids, the tablets swelled, and rehydrated liposomes were released at a slower rate than permeation efficiency determined using a biomimetic membrane. Permeability efficiency values of 0.72 ± 0.34 µg/cm2/min and 4.18 ± 0.95 µg/cm2/min were obtained for the liposomes with and without additives, respectively. Altogether, the results point to the vehicle proposed as a liposomal formulation suitable for systemic drug delivery through the sublingual mucosa.
Collapse
Affiliation(s)
- María José De Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.D.J.V.); (A.Z.C.); (C.M.); (A.C.T.)
- Institute of Biopharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Aranzazu Zarzuelo Castañeda
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.D.J.V.); (A.Z.C.); (C.M.); (A.C.T.)
- Institute of Biopharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Maderuelo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.D.J.V.); (A.Z.C.); (C.M.); (A.C.T.)
- Institute of Biopharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cencerrado Treviño
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.D.J.V.); (A.Z.C.); (C.M.); (A.C.T.)
| | - Jorge Loureiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (J.L.); (P.C.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (J.L.); (P.C.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (M.J.D.J.V.); (A.Z.C.); (C.M.); (A.C.T.)
- Institute of Biopharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-677-584152
| |
Collapse
|
45
|
Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02826-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
47
|
Zhang J, Chuesiang P, Kim JT, Shin GH. The role of nanostructured lipid carriers and type of biopolymers on the lipid digestion and release rate of curcumin from curcumin-loaded oleogels. Food Chem 2022; 392:133306. [PMID: 35636193 DOI: 10.1016/j.foodchem.2022.133306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/23/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Curcumin-nanostructured lipid carrier-loaded oleogels (Cur-NLC-OGs) have been developed with biopolymer cryogels as an efficient delivery system to overcome the extremely low water solubility and instability of curcumin. The effect of NLC and biopolymer types on the encapsulation and release of curcumin from Cur-OGs was investigated. Alginate, carboxymethyl cellulose (CMC), and pectin solutions were firstly freeze dried to make biopolymer cryogels and they were mixed with Cur and Cur-NLC to obtain stable and self-standing Cur-OGs and Cur-NLC-OGs, respectively. As compared to Cur-OGs, Cur-NLC-OGs had higher encapsulation efficiency and showed slower release of curcumin under acidic condition. Although Cur-NLC affected the rapid release of free fatty acids, the Cur-NLC-OGs prepared with CMC cryogel was most efficient in delaying lipid digestion. Overall, NLC and CMC-based OGs could be effectively used to improve encapsulation efficiency and control lipolysis of lipid droplets. These results will be advantageous for the development of oleogels with desirable functionality.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Piyanan Chuesiang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
48
|
Curcumin-Loaded Liposome Preparation in Ultrasound Environment under Pressurized Carbon Dioxide. Foods 2022; 11:foods11101469. [PMID: 35627039 PMCID: PMC9141155 DOI: 10.3390/foods11101469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023] Open
Abstract
Curcumin-loaded liposomes were prepared using a supercritical carbon dioxide (SCCO2)−ultrasound environment system. The experiments were performed at temperatures of 40−70 °C and pressures of 10−25 MPa in a batch system with ultrasonication for 60 min. Transmission electron microscopy (TEM) images revealed liposome products with spherical morphologies and diameters of <100 nm. Dynamic light scattering (DLS) analysis indicated that the curcumin-loaded liposome nanosuspension exhibited good stability. Changing the operating conditions influenced the amount of liposome-encapsulated curcumin; as the operating temperature or pressure increased, the diameter of the liposome products and the amount of liposome-encapsulated curcumin increased and decreased, respectively. Herein, we described an innovative and practical organic-solvent-free method for generating liposomes from phospholipids.
Collapse
|
49
|
Co-encapsulation of broccoli sprout extract nanoliposomes into basil seed gum: effects on in vitro antioxidant, antibacterial and anti-Listeria activities in ricotta cheese. Int J Food Microbiol 2022; 376:109761. [DOI: 10.1016/j.ijfoodmicro.2022.109761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
|
50
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|