1
|
Attar M, Tash Shamsabadi F, Soltani A, Joghataei MT, Khandoozi SR, Teimourian S, Shahbazi M, Erfani-Moghadam V. MF59-based lipid nanocarriers for paclitaxel delivery: optimization and anticancer evaluation. Sci Rep 2025; 15:6583. [PMID: 39994380 PMCID: PMC11850822 DOI: 10.1038/s41598-025-91504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is the most common invasive cancer in women worldwide, necessitating innovative therapeutic strategies to enhance treatment efficacy and safety. This study focuses on the development and optimization of novel paclitaxel (PTX)-loaded nanostructured lipid carriers (NLCs) that incorporate components of MF59, an oil-in-water emulsion adjuvant approved for use in influenza vaccines and known for its safety in humans. The formulation of these NLCs is designed to overcome significant challenges in PTX delivery, particularly its poor solubility and the side effects associated with traditional formulations containing Cremophor EL. We prepared two sets of NLC formulations using different liquid-to-solid lipid ratios through hot melt ultrasonication. Characterization of the selected formulations, NLCPre and NLCLec, was conducted using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The mean diameters were 120.6 ± 36.4 nm and 112 ± 41.7 nm, with encapsulation efficiencies (EE) of 85% and 82%, and drug loading (DL) of 4.25% and 4.1%, respectively for NLCPre and NLCLec. In vitro cytotoxicity assays demonstrated that these MF59-based NLCs effectively target MCF-7 (Michigan Cancer Foundation) breast cancer cells while minimizing toxicity to normal HDF (human dermal fibroblasts) cells, thus enhancing the therapeutic index of PTX and offering promising clinical implications for breast cancer treatment.
Collapse
Affiliation(s)
- Marzieh Attar
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
| | - Fatemeh Tash Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran
| | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran
| | - Seyed Reza Khandoozi
- Cancer Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Shahram Teimourian
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran.
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, 1416634793, Iran.
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences (GOUMS), Gorgan, 4934174515, Iran.
| |
Collapse
|
2
|
Pallathadka H, Jabir M, Rasool KH, Hanumanthaiah M, Sharma N, Pramanik A, Rab SO, Jawad SF, Oghenemaro EF, Mustafa YF. siRNA-based therapy for overcoming drug resistance in human solid tumours; molecular and immunological approaches. Hum Immunol 2025; 86:111221. [PMID: 39700968 DOI: 10.1016/j.humimm.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
RNA interference (RNAi) is a primordial biological process that protects against external intrusion. SiRNA has the potential to selectively silence disease-related genes in a sequence-specific way, thus offering a promising therapeutic approach. The efficacy of siRNA-based therapies in cancer treatment has gained significant recognition due to multiple studies demonstrating its ability to effectively suppress cancer cells' growth and multiplication. Moreover, siRNA-based medicines have shown considerable promise in enhancing the sensitivity of cancer cells to chemotherapy and other treatment methods by suppressing genes that play a role in the development of drug resistance. Exploring and identifying functional genes linked to cancer cell characteristics and drug resistance is crucial for developing effective siRNAs for cancer treatment and advancing targeted and personalized therapeutics. Targeting and silencing genes in charge of resistance mechanisms, such as those involved in drug efflux, cell survival, or DNA repair, is possible with siRNA therapy in the context of drug resistance, especially cancer. Through inhibiting these genes, siRNA therapy can prevent resistance and restore the efficacy of traditional medications. This review addresses the potential of siRNAs in addressing drug resistance in human tumours, opening up new possibilities in cancer therapy. This review article offers a non-systematic summary of how different siRNA types contribute to cancer cells' treatment resistance. Using pertinent keywords, sources were chosen from reliable databases, including PubMed, Scopus, and Google Scholar. The review covered essential papers in this area and those that mainly addressed the function of siRNA in drug resistance. The articles examined in connection with the title of this review were primarily published from 2020 onward and are based on in vitro studies. Furthermore, this article examines the potential barriers and prospective perspectives of siRNA therapies.
Collapse
Affiliation(s)
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | | | - Malathi Hanumanthaiah
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri - 140307, Mohali, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001 Babil, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Delta State University, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
4
|
Garbuzenko OB, Sapiezynski J, Girda E, Rodriguez-Rodriguez L, Minko T. Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307462. [PMID: 38342698 PMCID: PMC11316847 DOI: 10.1002/smll.202307462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The response to treatment is substantially varied between individual patients with ovarian cancer. However, chemotherapy treatment plans rarely pay sufficient attention to the mentioned factors. Instead, standardized treatment protocols are usually employed for most ovarian cancer patients. Variations in an individual's sensitivity to drugs significantly limit the effectiveness of treatment in some patients and lead to severe toxicities in others. In the present investigation, a nanotechnology-based approach for personalized treatment of ovarian carcinoma (the most lethal type of gynecological cancer) constructed on the individual genetic profile of the patient's tumor is developed and validated. The expression of predefined genes and proteins is analyzed for each patient sample. Finally, a mixture of the complex nanocarrier-based targeted delivery system containing drug(s)/siRNA(s)/targeted peptide is selected from the pre-synthesized bank and tested in vivo on murine cancer model using cancer cells isolated from tumors of each patient. Based on the results of the present study, an innovative approach and protocol for personalized treatment of ovarian cancer are suggested and evaluated. The results of the present study clearly show the advantages and perspectives of the proposed individual treatment approach.
Collapse
Affiliation(s)
- Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
| | - Eugenia Girda
- Department of Gynecology Oncology, Robert Wood Johnson School of Medicine, Rutgers the State University of New Jersey, New Brunswick, NJ USA 08901
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA 91010
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, Piscataway, NJ USA 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA 08901
| |
Collapse
|
5
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
6
|
Omidian H, Gill EJ, Cubeddu LX. Lipid Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:644. [PMID: 38794306 PMCID: PMC11124812 DOI: 10.3390/pharmaceutics16050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This manuscript explores the use of lipid nanoparticles (LNPs) in addressing the pivotal challenges of lung cancer treatment, including drug delivery inefficacy and multi-drug resistance. LNPs have significantly advanced targeted therapy by improving the precision and reducing the systemic toxicity of chemotherapeutics such as doxorubicin and paclitaxel. This manuscript details the design and benefits of various LNP systems, including solid lipid-polymer hybrids, which offer controlled release and enhanced drug encapsulation. Despite achievements in reducing tumor size and enhancing survival, challenges such as manufacturing complexity, biocompatibility, and variable clinical outcomes persist. Future directions are aimed at refining targeting capabilities, expanding combinatorial therapies, and integrating advanced manufacturing techniques to tailor treatments to individual patient profiles, thus promising to transform lung cancer therapy through interdisciplinary collaboration and regulatory innovation.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
7
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
8
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
9
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
10
|
Crintea A, Constantin AM, Motofelea AC, Crivii CB, Velescu MA, Coșeriu RL, Ilyés T, Crăciun AM, Silaghi CN. Targeted EGFR Nanotherapy in Non-Small Cell Lung Cancer. J Funct Biomater 2023; 14:466. [PMID: 37754880 PMCID: PMC10532491 DOI: 10.3390/jfb14090466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Alexandru C. Motofelea
- Department of Internal Medicine, University of Medicine and Pharmacy “Victor Babeș”, 300041 Timișoara, Romania;
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Maria A. Velescu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| | - Răzvan L. Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mureș, Romania;
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Alexandra M. Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| |
Collapse
|
11
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
12
|
Shen AM, Malekshah OM, Pogrebnyak N, Minko T. Plant-derived single domain COVID-19 antibodies. J Control Release 2023; 359:1-11. [PMID: 37225092 PMCID: PMC10231691 DOI: 10.1016/j.jconrel.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
13
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15051457. [PMID: 37242697 DOI: 10.3390/pharmaceutics15051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sona Gandhi
- Department of Chemistry, School of Basic & Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
15
|
Kashapov R, Razuvayeva Y, Kashapova N, Ziganshina A, Salnikov V, Sapunova A, Voloshina A, Zakharova L. Emergence of Nanoscale Drug Carriers through Supramolecular Self-Assembly of RNA with Calixarene. Int J Mol Sci 2023; 24:ijms24097911. [PMID: 37175618 PMCID: PMC10178118 DOI: 10.3390/ijms24097911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Supramolecular self-assembly is a powerful tool for the development of polymolecular assemblies that can form the basis of useful nanomaterials. Given the increasing popularity of RNA therapy, the extension of this concept of self-assembly to RNA is limited. Herein, a simple method for the creation of nanosized particles through the supramolecular self-assembly of RNA with a three-dimensional macrocycle from the calixarene family was reported for the first time. This self-assembly into nanoparticles was realized using cooperative supramolecular interactions under mild conditions. The obtained nanoparticles are able to bind various hydrophobic (quercetin, oleic acid) and hydrophilic (doxorubicin) drugs, as a result of which their cytotoxic properties are enhanced. This work demonstrates that intermolecular interactions between flexible RNA and rigid calixarene is a promising route to bottom-up assembly of novel supramolecular soft matter, expanding the design possibilities of nanoscale drug carriers.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18, Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| |
Collapse
|
16
|
Gorachinov F, Mraiche F, Moustafa DA, Hishari O, Ismail Y, Joseph J, Crcarevska MS, Dodov MG, Geskovski N, Goracinova K. Nanotechnology - a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:240-261. [PMID: 36865093 PMCID: PMC9972888 DOI: 10.3762/bjnano.14.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.
Collapse
Affiliation(s)
- Filip Gorachinov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2R3 Edmonton, Canada
| | | | - Ola Hishari
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yomna Ismail
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Jensa Joseph
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
17
|
Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges. Pharmaceutics 2023; 15:pharmaceutics15010194. [PMID: 36678823 PMCID: PMC9864317 DOI: 10.3390/pharmaceutics15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Over the past decades, many drugs based on the use of nanotechnology and nucleic acids have been developed. However, until recently, most of them remained at the stage of pre-clinical development and testing and did not find their way to the clinic. In our opinion, the main reason for this situation lies in the enormous complexity of the development and industrial production of such formulations leading to their high cost. The development of nanotechnology-based drugs requires the participation of scientists from many and completely different specialties including Pharmaceutical Sciences, Medicine, Engineering, Drug Delivery, Chemistry, Molecular Biology, Physiology and so on. Nevertheless, emergence of coronavirus and new vaccines based on nanotechnology has shown the high efficiency of this approach. Effective development of vaccines based on the use of nucleic acids and nanomedicine requires an understanding of a wide range of principles including mechanisms of immune responses, nucleic acid functions, nanotechnology and vaccinations. In this regard, the purpose of the current review is to recall the basic principles of the work of the immune system, vaccination, nanotechnology and drug delivery in terms of the development and production of vaccines based on both nanotechnology and the use of nucleic acids.
Collapse
|
18
|
Nanotechnology-Based Nucleic Acid Vaccines for Treatment of Ovarian Cancer. Pharm Res 2023; 40:123-144. [PMID: 36376606 PMCID: PMC9663189 DOI: 10.1007/s11095-022-03434-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Anticancer vaccines represent a promising approach for effective treatment of cancer and along with recent advantages of nucleic acid-based vaccines for other diseases form a prospective and potentially efficacious direction of the research, development and clinical applications. Despite the ongoing several clinical trials of mRNA vaccines for the treatment of various types of cancer, to-date no cancer vaccines were approved by the US Food and Drug Administration. The present review analyzes and summarizes major approaches for treating of different forms of ovarian cancer including mRNA-based vaccines as well as nanotechnology-based approaches for their delivery.
Collapse
|
19
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
20
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
21
|
Eljack S, David S, Faggad A, Chourpa I, Allard-Vannier E. Nanoparticles design considerations to co-deliver nucleic acids and anti-cancer drugs for chemoresistance reversal. Int J Pharm X 2022; 4:100126. [PMID: 36147518 PMCID: PMC9486027 DOI: 10.1016/j.ijpx.2022.100126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.
Collapse
|
22
|
PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238295. [PMID: 36500387 PMCID: PMC9737185 DOI: 10.3390/molecules27238295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.
Collapse
|
23
|
Eljack S, David S, Chourpa I, Faggad A, Allard-Vannier E. Formulation of Lipid-Based Nanoparticles for Simultaneous Delivery of Lapatinib and Anti-Survivin siRNA for HER2+ Breast Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15121452. [PMID: 36558904 PMCID: PMC9784347 DOI: 10.3390/ph15121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, lipid-based nanoparticles (LBNP) were designed to combine tyrosine kinase inhibitor (TKI) Lapatinib (LAPA) with siRNA directed against apoptosis inhibitor protein Survivin (siSurvivin) in an injectable form. This nanosystem is based on lipid nanocapsules (LNCs) coated with a cationic polymeric shell composed of chitosan grafted through a transacylation reaction. The hydrophobic LAPA is solubilized in the inner oily core, while hydrophilic siRNA is associated electrostatically onto the nanocarrier’s surface. The co-loaded LBNP showed a narrow size distribution (polydispersity index (PDI) < 0.3), a size of 130 nm, and a slightly positive zeta potential (+21 mV). LAPA and siRNA were loaded in LBNP at a high rate of >90% (10.6 mM) and 100% (4.6 µM), respectively. The siRNA-LAPA_LBNP was readily uptaken by the human epidermal growth factor receptor 2 overexpressed (HER2+) breast cancer cell line SK-BR-3. Moreover, the cytotoxicity studies confirmed that the blank chitosan decorated LBNP is not toxic to the cells with the tested concentrations, which correspond to LAPA concentrations from 1 to 10 µM, at different incubation times up to 96 h. Furthermore, siCtrl.-LAPA_LBNP had a more cytotoxic effect than Lapatinib salt, while siSurvivin-LAPA_LBNP had a significant synergistic cytotoxic effect compared to siCtrl.-LAPA_LBNP. All these findings suggested that the developed modified LBNP could potentiate anti-Survivin siRNA and LAPA anti-cancer activity.
Collapse
Affiliation(s)
- Sahar Eljack
- EA6295 Nanomédicaments et Nanosondes (NMNS), University of Tours, 37020 Tours, France
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Stephanie David
- EA6295 Nanomédicaments et Nanosondes (NMNS), University of Tours, 37020 Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes (NMNS), University of Tours, 37020 Tours, France
| | - Areeg Faggad
- Department of Molecular Biology, National Cancer Institute, University of Gezira (NCI-UG), Wad Medani 21111, Sudan
| | - Emilie Allard-Vannier
- EA6295 Nanomédicaments et Nanosondes (NMNS), University of Tours, 37020 Tours, France
- Correspondence:
| |
Collapse
|
24
|
Kumar R, Dkhar DS, Kumari R, Supratim Mahapatra D, Srivastava A, Dubey VK, Chandra P. Ligand conjugated lipid-based nanocarriers for cancer theranostics. Biotechnol Bioeng 2022; 119:3022-3043. [PMID: 35950676 DOI: 10.1002/bit.28205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of cancer cell. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand decorated lipid-based nanomedicines with their clinical status has been explained in tabulated form to provide a wider scope to the readers regarding ligand coupled NLBCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Divya Supratim Mahapatra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
25
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
27
|
Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zhou X, Jin T, Wang L, Zhao E, Xiao X. Clinical practice of epidermal growth factor receptor-tyrosine kinase inhibitor targeted drugs combined with gadolinium oxide nanoparticles in the treatment of non-small cell lung cancer. Bioengineered 2022; 13:128-139. [PMID: 34818973 PMCID: PMC8805885 DOI: 10.1080/21655979.2021.2009969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
It was to explore the clinical efficacy and safety of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted drugs combined with hyaluronic acid-gadolinium sesquioxide-nanoparticles (HA-Gd2O3-NPs) in non-small cell lung cancer (NSCLC). In this study, 70 patients with stage IV EGFR mutant NSCLC diagnosed in the First Affiliated Hospital of Jinzhou Medical University were selected. They were randomly divided into the combined group (35 cases) and the control group (35 cases). HA-Gd2O3-NPs were prepared by hydrothermal polymerization, and combined with EGFR-TKI in the clinical treatment of NSCLC. The results showed that HA-Gd2O3-NPs were spherical with a uniform particle size of about 124 nm. The NSCLC survival rate of the combined group was 37.2 ± 5.3% under 6 Gy X-ray irradiation, and that of the control group was 98.4 ± 12.6% under 6 Gy X-ray irradiation. The total effective rate of the control group (20%) was significantly lower than that of the study group (42.86%) (P < 0.05). The one-year survival rate of the combined group (94%) was significantly higher than that of the control group (75%) (P < 0.05). The median progression-free survival (PFS) in the control group was 8 months, and that in the combined group was 12 months, with statistical difference (P < 0.05). EGFR-TKI targeted drugs combined with HA-Gd2O3-NPs can significantly improve the clinical efficacy of stage IV EGFR mutant NSCLC patients and benefit their survival.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ting Jin
- Department of Rehabilitation, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Likun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Erlin Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xuyang Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|