1
|
Lin Y, Zhao X, Yang Z, Dongfang Z, Zeng Y, Du C, Li J, Yin X, Xiao J, Hu C, Huang M, Huang F, Yu X. Integrating transcriptomics and network pharmacology to reveal the effect and mechanism of Bai-Jie-Jing-Xie ointment on improving skin inflammation of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119680. [PMID: 40158831 DOI: 10.1016/j.jep.2025.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a global chronic, immune-mediated, inflammatory skin disease. Bai-Jie-Jing-Xie (BJJX) ointment has been widely used in the clinic practice for its notable efficacy and is an empirical prescription for psoriasis treatment in hospitals. Nevertheless, its precise mechanism of action on psoriasis remains unclear. AIM OF THE STUDY To study the mechanism of action of the hospital empirical prescription BJJX in the treatment of psoriasis. MATERIAL AND METHODS Imiquimod (IMQ) was used to induce the psoriasis model in BALB/c mice and UPLC-MS/MS analysis was used for quality control. Subsequently, a combination of network pharmacology (NP) and Transcriptomic (RNA-Seq) methodology was used to assess the potential targets and mechanisms of action of BJJX on psoriasis. Finally, further validation was performed using flow cytometry, RT-qPCR, and western blotting. RESULTS BJJX significantly ameliorated IMQ-induced skin damage in psoriatic mice, reduced keratinocyte proliferation, and inhibited the levels of inflammatory factors (IL-23, IL-22, IL-17A, IL-6, IL-1β, and IL-8). NP predicts that BJJX may exert its therapeutic effects on psoriasis by modulating the IL-17 signaling pathway and Th17 cell differentiation. RNA-Seq analysis showed that BJJX regulated the expression of IL-17 pathway-related genes. Further experimental results demonstrated that BJJX treatment significantly reduced the mRNA expression of inflammatory factors CXCL2, CXCL3, MMP13, IL-1β, IL-23, IL-22, and IL-17A, as well as the proportion of Th17 cells. In addition, BJJX significantly inhibited the protein expression of JAK2 and STAT3. CONCLUSIONS BJJX attenuated IMQ-induced skin lesions in psoriasis mice by decreasing the expression of cytokines and chemokines mediated by the Th17/IL-17 axis. This study revealed, for the first time, the mechanism used by BJJX to treat psoriasis, providing a new paradigm for its pharmacological role in the clinical treatment of psoriasis.
Collapse
Affiliation(s)
- Yuping Lin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xiujuan Zhao
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ziqing Yang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Zihan Dongfang
- School of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yongcheng Zeng
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chenghong Du
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Jiang Li
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xunqing Yin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Juan Xiao
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Mei Huang
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Feng Huang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Xiaoling Yu
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|
2
|
Swapna B, Kotha S, Selvaraj D, Ramachandra S, Acharya A. Probing the dark chemical matter against PDE4 for the management of psoriasis using in silico, in vitro and in vivo approach. Mol Divers 2025:10.1007/s11030-025-11159-w. [PMID: 40095248 DOI: 10.1007/s11030-025-11159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
The potential downsides for the present treatment for psoriasis are drug resistance, reduced efficacy, risk of mental episodes, and drug interactions. Hence, this study aims to discover a new drug for psoriasis by considering global research efforts and exploring underrepresented chemical space regions. The objective was to identify novel PDE4D inhibitors from the dark chemical matter (DCM) database for treating psoriasis. To address this we have coupled molecular docking and pharmacophore screening with molecular dynamics (MD) to identify hit molecules. Additionally, pharmacokinetics optimization was performed using machine learning and artificial intelligence which are key parts of drug discovery and development processes. The 139,353 DCM molecules were evaluated for their binding mode and interaction with critical residues such as GLN369, ILE336, PHE340, and PHE372 of the phosphodiesterase-4D (PDE4D) enzyme. Here, 15 hits were obtained through successive virtual screening procedures and all the 15 molecules were subjected to MD simulations for hit identification. In the MD studies, a stable root mean square deviation (RMSD) and ligand-protein interactions were found with four molecules, namely 027230, 060628, 060576, and 085881. The ligand 085881 was found promising because it inhibits LPS-induced IL-6 and TNF-alpha secretion from THP-1 cells with IC50 of 18.41 μM and 34.43 μM, respectively. In vivo erythema grading showed that 085881 possesses mild to moderate anti-psoriatic action. This study demonstrates the effective use of computational techniques to discover novel PDE4D inhibitors and provides insight into their therapeutic potential for treating inflammatory diseases such as psoriasis.
Collapse
Affiliation(s)
- B Swapna
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India.
| | - Satvik Kotha
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India
| | - Divakar Selvaraj
- Department of Pharmacology, Prime College of Pharmacy, Erattayal, Palakkad, Kerala, India
| | | | - Aruna Acharya
- Department of Pharmacology, Government College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Gosia M, Doshi G, Bagwe Parab S, Godad A. Innovative Approaches to Psoriasis: Small Molecules Targeting Key Signaling Pathways. Immunol Invest 2025:1-37. [PMID: 39819440 DOI: 10.1080/08820139.2025.2449960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
BACKGROUND Psoriasis (Pso) is a chronic, immune-mediated dermatological condition characterized by dysregulated inflammatory responses and the hyperproliferation of keratinocytes. Biologics, which target specific cytokines such as IL-17 and IL-23, have revolutionized the management by addressing key drivers of its pathophysiology. Despite their efficacy, biologics are not without limitations, including the need for intermittent administration and ongoing monitoring. In contrast, small molecules offer a promising alternative by selectively inhibiting key signaling pathways that modulate pro-inflammatory cytokines involved in the inflammatory cascade. METHODS AND RESULTS This review suggests a new therapeutic strategy for Pso treatment, emphasizing the intricate relationships between small molecules and important signaling pathways involved in the pathophysiology of skin conditions. Improving treatment outcomes and reducing the side effects associated with conventional medicines, this review aims to better understand how tailored small-molecule inhibitors might efficiently control these pathways. This creative approach promotes the creation of individualized treatment plans that can greatly enhance the quality of life of patients with Psoby utilizing the knowledge gathered from recent developments in signaling pathway research. CONCLUSION This review delves into the molecular mechanisms underlying Pso and explores how small molecules can be harnessed to enhance treatment outcomes, presenting a new paradigm for managing this chronic skin disorder.
Collapse
Affiliation(s)
- Meeral Gosia
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Siddhi Bagwe Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
4
|
Gao Y, Xu T, Wang Y, Hu Y, Yin S, Qin Z, Yu H. Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics 2025; 17:56. [PMID: 39861704 PMCID: PMC11769081 DOI: 10.3390/pharmaceutics17010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions. The administration of psoriasis medications, whether oral, injectable, or topical, is associated with a range of side effects and compliance issues. Topical medications, despite their advantages in patient compliance and reduced systemic side effects, are hindered by the altered skin barrier in psoriasis, which impedes effective drug penetration and retention. In recent years, the development of novel transdermal drug delivery systems represents a promising frontier in psoriasis management. Nanotechnology-, microneedle- and dressing-based systems have demonstrated the potential for improved skin penetration, enhanced bioavailability, or extended retention time. Here, we will focus on the latest insights into the etiology, diagnostic methodologies, and therapeutic approaches for psoriasis, with a particular emphasis on the evolution and challenges of novel transdermal drug delivery systems.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Tianqi Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yu Wang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yanjinhui Hu
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Zhiguo Qin
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| |
Collapse
|
5
|
Khalil RM, Abdelhameed MF, Abou Taleb S, El-Saied MA, Shalaby ES. Preparation and characterisation of esculetin-loaded nanostructured lipid carriers gels for topical treatment of UV-induced psoriasis. Pharm Dev Technol 2024; 29:886-898. [PMID: 39315459 DOI: 10.1080/10837450.2024.2407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
SIGNIFICANCE As an inflammatory and autoimmune skin condition, psoriasis affects 2-3% of people worldwide. Psoriasis requires prolonged treatments with immunosuppressive medications which have severe adverse effects. Esculetin (Esc) is a natural medication that has been utilised to treat psoriasis. OBJECTIVE The goal of this work is to improve Esc's solubility by developing novel Esc nanostructured lipid carriers (NLCs) for treating psoriasis and increasing the residence time on the skin which infers better skin absorption. METHODS The particle size, zeta potential and entrapment efficiency (EE) of Esc NLCs were assessed. Incorporating NLCs into gum Arabic gel preparation enhances their industrial applicability, absorption and residence time on the skin. Esc NLC gels were evaluated by in vitro release and in vivo effectiveness on a rat model of UV-induced psoriasis. RESULTS Esc NLCs showed high EE reaching more than 95% and reasonable particle size ranging between (53.86 ± 0.38 to 236.3 ± 0.11 nm) and were spherical. The release study of Esc NLCs gel demonstrated a fast release of Esc denoting enhanced bioavailability. Compared to free Esc, Esc NLCs gel (F2) could considerably lower the level of CD34 and TNF-α in the skin. The results were validated through histopathological analysis. CONCLUSION As Esc NLCs gel (F2) has strong anti-inflammatory properties, our results showed that it presented a significant potential for healing psoriasis.
Collapse
Affiliation(s)
- Rawia M Khalil
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Chen L, Zhu S, Xie Y, Wang L, Gao J, Luo T, Li J, Deng X, Ma D, Liu S, Luo Z. Synthesis and biological evaluation of novel isoxazoloquinone derivatives as potent STAT3-targeting antipsoriasis agents. Bioorg Chem 2024; 151:107617. [PMID: 39053100 DOI: 10.1016/j.bioorg.2024.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Psoriasis is a troublesome scaling skin disease with no high-effective medication available by far. Signal transducer and activator of transcription 3 (STAT3) has recently been revealed as a crucial player in the pathogenesis and progression of psoriasis and emerged as an intriguing antipsoriatic drug target. Naturally occurring lapachol and its quinone analogs had been discovered as effective STAT3 inhibitors, however, their antipsoriatic effects are not well investigated. Previously, we have reported a series of isothiazoloquinone lapachol derivatives. Here, the antipsoriastic potentials of these isothiazoloquinones were investigated and, in addition, 35 novel isoxazoloquinone derivatives were prepared and studied for their anti-psoriasis properties. Among them, the most potent antipsoriatic compound B20 determined by in vitro test on HaCaT cells could directly bind to STAT3, reduce STAT3 level and inhibit STAT3 nuclear translocation. In vivo studies showed that topical application of B20 could effectively alleviate IMQ-induced psoriasis in mice with no obvious side effects. In addition, B20 inhibited the production of interleukin 17 (IL-17A), a STAT3-downstream cytokine essential for the progression of psoriasis, both in vitro and in vivo. Thus, isoxazoloquinone B20 is a potent STAT3-targeting antipsoriatic agent worth of further investigation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liuliu Wang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
| | - Jinlei Gao
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
| | - Tiao Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jijia Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China.
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China.
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
7
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
8
|
Chen L, Wang L, Gao J, Xie Y, Deng X, Tian G, Li M, Sui Z, Luo C, Liu L, Huang X, Zhu X, Zhu S, Luo Z, Ma D, Liu S. Design, Synthesis, and Biological Activity of Novel Quinone Derivatives as Potent STAT3 Inhibitors for Psoriasis Treatment. J Med Chem 2024; 67:15438-15455. [PMID: 39151117 DOI: 10.1021/acs.jmedchem.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Psoriasis, which severely affects the sufferer's life quality, is a chronic skin disease still lacking satisfactory medication. Recently, signal transducer and activator of transcription 3 (STAT3) was revealed playing an important role in the progression of psoriasis. In this paper, a total of 59 quinone derivatives with various scaffolds were designed, synthesized, and evaluated for antipsoriatic potential as STAT3 inhibitors. Among them, 15e was identified as the most potent antipsoriatic agent and could bind to STAT3; reduce both total and phosphorylated STAT3 levels, inhibit the nuclear translocation of STAT3; and, therefore, inhibit the transcription and expression of the propsoriatic factor IL-17A. In vivo experiments on mice showed that the topical application of 15e was effective in alleviating IMQ-induced psoriasis without noticeable side effects. In all, this research rendered 15e as a promising drug candidate for psoriasis.
Collapse
Affiliation(s)
- Ling Chen
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Liuliu Wang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jinlei Gao
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Guang Tian
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Mingjian Li
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Zhongtai Sui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Cailin Luo
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Li Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Xinyu Huang
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Xinyu Zhu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
9
|
Le S, Wu X, Dou Y, Song T, Fu H, Luo H, Zhang F, Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne) 2024; 11:1386783. [PMID: 39296901 PMCID: PMC11408484 DOI: 10.3389/fmed.2024.1386783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease and has been increasing year by year. It is linked to other serious illnesses, such as psoriatic arthritis, cardiometabolic syndrome, and depression, resulting in a notable decrease in the quality of life for patients. Existing therapies merely alleviate symptoms, rather than providing a cure. An in-depth under-standing of the pathogenesis of psoriasis is helpful to discover new therapeutic targets and develop effective novel therapeutic agents, so it has important clinical significance. This article reviews the new progress in the study of pathogenesis and natural products of psoriasis in recent years. These natural products were summarized, mainly classified as terpenoids, polyphenols and alkaloids. However, the translation of experimental results to the clinic takes a long way to go.
Collapse
Affiliation(s)
- Sihua Le
- Ningbo Medical Center LiHuiLi Hosptial, Ningbo, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Dou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
10
|
Zhao X, Du C, Zeng Y, Chen Y, Xu J, Yin X, Hu C, Mao Z, Lin Y. Discovery of novel chrysin derivatives as potential Anti-Psoriasis agents. Bioorg Chem 2024; 150:107599. [PMID: 38955004 DOI: 10.1016/j.bioorg.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Psoriasis is a chronic inflammatory disease and is difficult to cure. In this work, a series of novel chrysin derivatives have been designed and prepared while evaluating anti-inflammatory activities in vitro and in vivo. In vitro, RAW264.7 cells were used to detect the inflammatory activities at first, and compounds 4h, 4k, and 4o significantly decreased the levels of NO, TNF-α, and IL-6. In particular, compound 4o showed superior anti-inflammatory activities than other compounds. Moreover, compound 4o decreased the level of IL-17A in LPS-induced HaCaT cells in vitro. The effect and mechanism of anti-inflammatory activities on psoriasis were determined by imiquimod (IMQ)-induced psoriasis-like mice in vivo. Compound 4o deduced the level of IL-6, IL-17A, IL-22, IL-23, and TNF-α, and showed potent anti-psoriasis activity. Further mechanism study suggested that compound 4o could improve the skin inflammation of psoriasis by inhibiting the NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Xiujuan Zhao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Chenghong Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yongcheng Zeng
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yanmei Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Jiacai Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xunqing Yin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Yuping Lin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
11
|
Li X, Chen S, Chen S, Cheng S, Lan H, Wu Y, Qiu G, Zhang L. Skin microbiome and causal relationships in three dermatological diseases: Evidence from Mendelian randomization and Bayesian weighting. Skin Res Technol 2024; 30:e70035. [PMID: 39218780 PMCID: PMC11366447 DOI: 10.1111/srt.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PSO), rosacea, and other related immune skin diseases are affected by multiple complex factors such as genetic and microbial components. This research investigates the causal relationships between specific skin microbiota and these diseases by using Mendelian randomization (MR), and Bayesian weighted Mendelian randomization (BWMR). METHODS We utilized genome-wide association study (GWAS) data to analyze the associations between various skin bacteria and three dermatological diseases. Single nucleotide polymorphisms (SNPs) served as instrumental variables (IVs) in MR methods, including inverse variance weighted (IVW), and MR Egger. BWMR was employed to validate results and address pleiotropy. RESULTS The IVW analysis identified significant associations between specific skin microbiota and dermatological diseases. ASV006_Dry, ASV076_Dry, and Haemophilus_Dry were significantly positively associated with AD, whereas Kocuria_Dry was negatively associated. In PSO, ASV005_Dry was negatively associated, whereas ASV004_Dry, Rothia_Dry, and Streptococcus_Moist showed positive associations. For rosacea, ASV023_Dry was significantly positively associated, while ASV016_Moist, Finegoldia_Dry, and Rhodobacteraceae_Moist were significantly negatively associated. These results were corroborated by BWMR analysis. CONCLUSION Bacterial species such as Finegoldia, Rothia, and Streptococcus play crucial roles in the pathogenesis of AD, PSO, and rosacea. Understanding these microbial interactions can aid in developing targeted treatments and preventive strategies, enhancing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xiaojian Li
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shiyu Chen
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shupeng Chen
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Shiping Cheng
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Hongrong Lan
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
| | - Yunbo Wu
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Guirong Qiu
- Clinical Medical CollegeJiangxi University of Chinese MedicineNanchangChina
- Dermatology DepartmentAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Lingjin Zhang
- Dermatology DepartmentShenzhen Luohu Hospital of Traditional Chinese MedicineShenzhenChina
| |
Collapse
|
12
|
Başar Kılıç Ş, Taheri S, Mehmetbeyoğlu Duman E, Öksüm Solak E, Yılmaz Şükranlı Z, Rassoulzadegan M, Borlu M. Psoriatic skin transcript phenotype: androgen/estrogen and cortisone/cortisol imbalance with increasing DNA damage response. Mol Biol Rep 2024; 51:933. [PMID: 39180588 DOI: 10.1007/s11033-024-09782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.
Collapse
Affiliation(s)
- Şeyma Başar Kılıç
- Dermatology and Venereology Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ecmel Mehmetbeyoğlu Duman
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Murat Borlu
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
13
|
Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, Hao E, Yao C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front Pharmacol 2024; 15:1365949. [PMID: 38903995 PMCID: PMC11187351 DOI: 10.3389/fphar.2024.1365949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
14
|
Nazimek K, Bryniarski K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int J Mol Sci 2024; 25:5306. [PMID: 38791342 PMCID: PMC11121292 DOI: 10.3390/ijms25105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Psoriasis is a systemic autoimmune/autoinflammatory disease that can be well studied in established mouse models. Skin-resident macrophages are classified into epidermal Langerhans cells and dermal macrophages and are involved in innate immunity, orchestration of adaptive immunity, and maintenance of tissue homeostasis due to their ability to constantly shift their phenotype and adapt to the current microenvironment. Consequently, both macrophage populations play dual roles in psoriasis. In some circumstances, pro-inflammatory activated macrophages and Langerhans cells trigger psoriatic inflammation, while in other cases their anti-inflammatory stimulation results in amelioration of the disease. These features make macrophages interesting candidates for modern therapeutic strategies. Owing to the significant progress in knowledge, our review article summarizes current achievements and indicates future research directions to better understand the function of macrophages in psoriasis.
Collapse
Affiliation(s)
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
15
|
Zhang Y, Dong S, Ma Y, Mou Y. Burden of psoriasis in young adults worldwide from the global burden of disease study 2019. Front Endocrinol (Lausanne) 2024; 15:1308822. [PMID: 38414821 PMCID: PMC10897041 DOI: 10.3389/fendo.2024.1308822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background To determine the global burden of psoriasis in young adults, i.e., those aged 15-49, from 1990 to 2019 and predict trends in this burden for 2020 to 2030. Methods Age-standardized disease burden indicators and their estimated annual percentage changes were assessed and used to compare the estimated burden between regions. In addition, generalized additive models were used to predict the burden in this population from 2020 to 2030. Results From 1990 to 2019, the overall burden of psoriasis in young adults worldwide trended downward, as the age-standardized incidence rate and the age-standardized disability-adjusted life year rate decreased. From 1990 to 2019, there were gender differences in the burden of psoriasis between regions with different Socio-demographic index. Specifically, there was a smaller increase in the burden in young men than in young women in middle- and low-middle-Socio-demographic index areas. In 2019, Western Europe, Australasia, and Southern Latin America had the highest age-standardized incidence rate of psoriasis in young adults, whereas age-standardized disability-adjusted life year rates of psoriasis in young adults were highest in high-income North America. In 2019, the psoriasis burden in young adults was the highest in high-Socio-demographic index areas and the lowest in low-Socio-demographic index regions. We predict that from 2020 to 2030, the incidence rate and disability-adjusted life year rate of psoriasis in all age groups of young adults will continue to decline, but the burden in those aged 30-39 will increase. Conclusion From 1990 to 2019, the overall burden of psoriasis in each age group trended downward in this period. We predict that from 2020 to 2030, the burden of psoriasis in those aged 30-39 will increase.
Collapse
Affiliation(s)
| | | | | | - Yan Mou
- Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Kurosu T, Okuzaki D, Sakai Y, Kadi MA, Phanthanawiboon S, Ami Y, Shimojima M, Yoshikawa T, Fukushi S, Nagata N, Suzuki T, Kamimura D, Murakami M, Ebihara H, Saijo M. Dengue virus infection induces selective expansion of Vγ4 and Vγ6TCR γδ T cells in the small intestine and a cytokine storm driving vascular leakage in mice. PLoS Negl Trop Dis 2023; 17:e0011743. [PMID: 37939119 PMCID: PMC10659169 DOI: 10.1371/journal.pntd.0011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/β and γ receptor knockout mice (IFN-α/β/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/β/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1β, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mohamad Al Kadi
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Suita, Osaka, Japan
| | | | - Yasusi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Chen H, Su Z, Pan X, Zheng X, Li H, Ye Z, Tang B, Lu Y, Zheng G, Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155041. [PMID: 37678054 DOI: 10.1016/j.phymed.2023.155041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Pan
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuwei Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeting Ye
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Fukasawa T, Yamashita T, Enomoto A, Toyama S, Yoshizaki-Ogawa A, Tateishi S, Kanda H, Miyagawa K, Sato S, Yoshizaki A. Utility of nailfold capillary assessment for predicting pustulotic arthro-osteitis in palmoplantar pustulosis based on a prospective cohort study. J Am Acad Dermatol 2023; 89:984-991. [PMID: 37517674 DOI: 10.1016/j.jaad.2023.07.1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Pustulotic arthro-osteitis (PAO) is 1 of the most serious comorbidities associated with palmoplantar pustulosis (PPP). Risk factors of PAO development are not well-known. OBJECTIVE To evaluate the clinical significance of nailfold capillary (NFC) changes in patients with PPP. METHODS We conducted a prospective cohort study in a population of 102 PPP patients. Correlations of NFC abnormalities, including nailfold bleeding and enlarged capillaries, with the prevalence of PAO, the incidence of new PAO, and serum levels of cytokines were analyzed. RESULTS Detailed examination revealed that of 102 PPP patients, 52 without PAO and 50 with PAO. Both nailfold bleeding and enlarged capillaries were significantly more frequent in patients with PAO (50.0% vs 92.0%, P < .0001; 50.0% vs 94.0%, P < .0001). In addition, PPP patients without PAO were prospectively observed before they developed PAO (mean 28 months [1-52 months]). Multivariate analysis suggested that these NFC abnormalities were predictors of PAO development (hazard ratio 3.37, 95% confidence interval 1.13-10.07; 3.37, 1.13-10.07) and guselkumab prevent PAO development (0.093, 0.012-0.76). The degree of NFC abnormalities correlated with the severity of PAO and serum cytokine levels. LIMITATIONS All participants were Japanese. CONCLUSION NFC abnormalities could be predictors of PAO in PPP patients, and their degree indicators of disease severity.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shoko Tateishi
- Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Kanda
- Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Fukasawa T, Toyama S, Enomoto A, Yoshizaki-Ogawa A, Norimatsu Y, Tateishi S, Kanda H, Miyagawa K, Sato S, Yoshizaki A. Utility of nailfold capillary assessment for predicting psoriatic arthritis based on a prospective observational cohort study. Rheumatology (Oxford) 2023; 62:2418-2425. [PMID: 36440919 DOI: 10.1093/rheumatology/keac664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES PsA is one of the most serious comorbidities associated with psoriasis. While the early intervention in PsA is demanded, risk factors of PsA development are not well-known. This is the first prospective study to evaluate the clinical significance of nailfold capillary (NFC) changes in patients with psoriasis. METHODS We conducted a prospective cohort study in a population of 449 psoriasis patients who had not been treated with systemic therapy or topical finger therapy. NFCs were observed by dermoscopy and capillaroscopy, and the correlation of NFC abnormalities, including nailfold bleeding (NFB) and enlarged capillaries, with the prevalence of PsA, incidence of new PsA, and serum levels of TNF-a, IL-17A and IL-23 were analysed. RESULTS Detailed examination at the time of inclusion revealed that of 449 patients, 236 had Psoriasis vulgaris (PsV) and 213 had PsA. Both NFB and enlarged capillaries were significantly more frequent in patients with PsA (34.7% vs 84.5%, P < 0.0001; 25.4% vs 100%, P < 0.0001). In addition, PsV patients were prospectively observed before they developed PsA (mean 21 months, 95% CI 2, 77 months). Multivariate analysis suggested that the appearance of NFB and enlarged capillaries was a predictor of PsA development (HR 2.75, 95% CI 1.38, 5.47 and HR 4.49, 95% CI 2.25, 8.96, respectively). The degree of NFC abnormalities also correlated with the severity of PsA and serum cytokine levels. CONCLUSIONS NFC abnormalities were suggested to be a predictor of PsA in psoriasis patients, and at the same time, its degree could be an indicator of disease severity.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shoko Tateishi
- Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Kanda
- Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Psoriasis Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Immune-Mediated Diseases Therapy Center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Yeung J, Bourcier M, Gooderham MJ, Grewal P, Hong C, Lansang P, Lynde C, Maari C, Prajapati VH, Turchin I, Vender R. Management of Moderate‐to‐Severe Plaque Psoriasis with Biologics: A Treat‐to‐Target Position Paper. Dermatol Ther 2022; 35:e15777. [DOI: 10.1111/dth.15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jensen Yeung
- Division of Dermatology, Women's College Hospital and the Department of Medicine University of Toronto Toronto ON Canada
- Probity Medical Research, Inc. Waterloo ON Canada
| | - Marc Bourcier
- Faculty of Medicine Université de Sherbrooke, Sherbrooke QC Canada
| | - Melinda J. Gooderham
- Probity Medical Research, Inc. Waterloo ON Canada
- Queen's University Kingston ON Canada
- Skin Centre for Dermatology Peterborough ON Canada
| | - Parbeer Grewal
- Division of Dermatology University of Alberta Edmonton AB Canada
- Rejuvenation Dermatology Edmonton AB Canada
| | - Chih‐Ho Hong
- Department of Dermatology and Skin Science University of British Columbia Vancouver BC Canada
- Probity Medical Research Waterloo ON Canada
- Dr. Chih‐Ho Hong Medical Inc. Surrey BC Canada
| | - Perla Lansang
- Division of Dermatology Women's College Hospital Toronto ON Canada
- Division of Dermatology, Faculty of Medicine University of Toronto Toronto ON Canada
- Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre University of Toronto ON Canada
- The Hospital for Sick Children Toronto ON Canada
| | - Charles Lynde
- Probity Medical Research, Inc. Waterloo ON Canada
- Lynde Institute for Dermatology Markham ON Canada
| | | | - Vimal H. Prajapati
- Division of Dermatology, Department of Medicine University of Calgary Calgary AB Canada
- Section of Community Pediatrics, Department of Pediatrics University of Calgary Calgary AB Canada
- Section of Pediatric Rheumatology, Department of Pediatrics University of Calgary Calgary AB Canada
- Dermatology Research Institute Calgary AB Canada
- Skin Health & Wellness Centre Calgary AB Canada
| | - Irina Turchin
- Probity Medical Research Waterloo ON Canada
- Brunswick Dermatology Center Fredericton NB Canada
- Dalhousie University Halifax NS Canada
| | - Ron Vender
- Department of Medicine, Division of Dermatology McMaster University Hamilton ON Canada
- Dermatrials Research Inc Hamilton ON Canada
| |
Collapse
|
21
|
The Growth Factor Release from a Platelet-Rich Plasma Preparation Is Influenced by the Onset of Guttate Psoriasis: A Case Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The involvement of platelets in immune and inflammatory processes is generally recognized; nevertheless, in psoriasis, their role is not clearly understood. We studied the in vitro growth factor release from a platelet-rich plasma preparation, the concentrated growth factors (CGF), in a case of a psoriasis subject three days before the onset of the papule. The CGF clots were incubated in a cell culture medium without growth supplements for 5 h and 1, 3, 6, 7, and 8 days, and the release kinetics of PDGF-AB, VEGF, TNF-α, and TGF-β1 were evaluated. The data, based on the results obtained during the case study, report a general increase in growth factor release in the psoriasis subject with respect to the healthy control, indicating an imbalance of growth factor production from blood cells. Although the results should be validated in the future, they show new aspects of this dermatological pathology, opening new possibilities both as the method of study, using CGF, and the involvement of platelets and growth factors in its development and maintenance.
Collapse
|
22
|
Ujiie H, Rosmarin D, Schön MP, Ständer S, Boch K, Metz M, Maurer M, Thaci D, Schmidt E, Cole C, Amber KT, Didona D, Hertl M, Recke A, Graßhoff H, Hackel A, Schumann A, Riemekasten G, Bieber K, Sprow G, Dan J, Zillikens D, Sezin T, Christiano AM, Wolk K, Sabat R, Kridin K, Werth VP, Ludwig RJ. Unmet Medical Needs in Chronic, Non-communicable Inflammatory Skin Diseases. Front Med (Lausanne) 2022; 9:875492. [PMID: 35755063 PMCID: PMC9218547 DOI: 10.3389/fmed.2022.875492] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
An estimated 20-25% of the population is affected by chronic, non-communicable inflammatory skin diseases. Chronic skin inflammation has many causes. Among the most frequent chronic inflammatory skin diseases are atopic dermatitis, psoriasis, urticaria, lichen planus, and hidradenitis suppurativa, driven by a complex interplay of genetics and environmental factors. Autoimmunity is another important cause of chronic skin inflammation. The autoimmune response may be mainly T cell driven, such as in alopecia areata or vitiligo, or B cell driven in chronic spontaneous urticaria, pemphigus and pemphigoid diseases. Rare causes of chronic skin inflammation are autoinflammatory diseases, or rheumatic diseases, such as cutaneous lupus erythematosus or dermatomyositis. Whilst we have seen a significant improvement in diagnosis and treatment, several challenges remain. Especially for rarer causes of chronic skin inflammation, early diagnosis is often missed because of low awareness and lack of diagnostics. Systemic immunosuppression is the treatment of choice for almost all of these diseases. Adverse events due to immunosuppression, insufficient therapeutic responses and relapses remain a challenge. For atopic dermatitis and psoriasis, a broad spectrum of innovative treatments has been developed. However, treatment responses cannot be predicted so far. Hence, development of (bio)markers allowing selection of specific medications for individual patients is needed. Given the encouraging developments during the past years, we envision that many of these challenges in the diagnosis and treatment of chronic inflammatory skin diseases will be thoroughly addressed in the future.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David Rosmarin
- Department of Dermatology, Tufts Medical Center, Boston, MA, United States
| | - Michael P. Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
- Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sonja Ständer
- Center for Chronic Pruritus, Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Martin Metz
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute for Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Allergology and Immunology, Berlin, Germany
| | - Diamant Thaci
- Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Connor Cole
- Division of Dermatology, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Kyle T. Amber
- Division of Dermatology, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität, Marburg, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Graßhoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Schumann
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gant Sprow
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Joshua Dan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tanya Sezin
- Department of Dermatology, Columbia University Medical Center, New York, NY, United States
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Medical Center, New York, NY, United States
| | - Kerstin Wolk
- Psoriasis Research and Treatment Centre, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Centre, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Victoria P. Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|