1
|
Yook G, Nam J, Jo Y, Yoon H, Yang D. Metabolic engineering approaches for the biosynthesis of antibiotics. Microb Cell Fact 2025; 24:35. [PMID: 39891166 PMCID: PMC11786382 DOI: 10.1186/s12934-024-02628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals. MAIN TEXT The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples. CONCLUSION These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.
Collapse
Affiliation(s)
- Geunsoo Yook
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwoo Nam
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonseo Jo
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunji Yoon
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Chen YJ, Guo ZT, Chen HQ, Zhang SF, Bao YX, Xie Z, Ke JL, Ye WJ, Liang JC, Chen JC, Li N, Zheng FX, Liao H, Wu T, Pang JX. Salinomycin, a potent inhibitor of XOD and URAT1, ameliorates hyperuricemic nephropathy by activating NRF2, modulating the gut microbiota, and promoting SCFA production. Chem Biol Interact 2024; 403:111220. [PMID: 39222901 DOI: 10.1016/j.cbi.2024.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Long-term hyperuricemia can induce kidney damage, clinically referred to as hyperuricemic nephropathy (HN), which is characterized by renal fibrosis, inflammation, and oxidative stress. However, currently used uric acid-lowering drugs are not capable of protecting the kidneys from damage. Therefore, uric acid-lowering drugs that can also protect the kidneys are urgently needed. In this study, we first discovered that salinomycin, an antibiotic, can regulate uric acid homeostasis and ameliorate kidney damage in mice with HN. Mechanistically, salinomycin inhibited serum and hepatic xanthine oxidase (XOD) activities and downregulated renal urate transporter 1 (URAT1) expression and transport activity, thus exerting uric acid-lowering effects in mice with HN. Furthermore, we found that salinomycin promoted p-NRF2 Ser40 expression, resulting in increased nuclear translocation of NRF2 and activation of NRF2. More importantly, salinomycin affected the gut microbiota and promoted the generation of short-chain fatty acids (SCFAs) in mice with HN. In conclusion, our results revealed that salinomycin maintains uric acid homeostasis and alleviates kidney injury in mice with HN by multiple mechanisms, suggesting that salinomycin might be a desirable candidate for HN treatment in the clinic.
Collapse
Affiliation(s)
- Yong-Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Tao Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hai-Qiao Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Fan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Xia Bao
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, China
| | - Zhoufan Xie
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, China
| | - Jia-le Ke
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Jie Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Cheng Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Chen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Feng-Xin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Xin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
4
|
Spišáková D, Kožárová I, Hriciková S, Marcinčák S. Comprehensive Screening of Salinomycin in Feed and Its Residues in Poultry Tissues Using Microbial Inhibition Tests Coupled to Enzyme-Linked Immunosorbent Assay (ELISA). Foods 2024; 13:1661. [PMID: 38890889 PMCID: PMC11171941 DOI: 10.3390/foods13111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Salinomycin is a coccidiostat approved as a feed additive for the prevention of coccidiosis in poultry. Official control of its residues is set by the Commission Delegated Regulation (EU) 2022/1644. The aim of our study was to assess the suitability of three microbial inhibition tests (MITs), Premi®Test, Explorer 2.0, and the Screening Test for Antibiotic Residues (STAR) linked to the enzyme-linked immunosorbent assay (ELISA), for the screening of salinomycin residues in the tissues of broiler chickens (breast and thigh muscle, heart, liver, gizzard, kidneys, lungs, spleen, skin, and fat) fed commercially produced feed containing 70 mg.kg-1 of salinomycin in the complete feed. The first residue screening (Sampling A) was performed on the last day of administration of the salinomycin-medicated feed (day 30), and the second screening (Sampling B) was performed on the day of slaughter (day 37) after the expiry of the withdrawal period with the feeding of non-medicated feed. Based on the quantitative confirmation of salinomycin residues in the examined chicken tissues by the ELISA method (Sampling A from 0.025 to 0.241 mg.kg-1; Sampling B from 0.003 to 0.076 mg.kg-1), all the MITs with the preference of the bacterial strain Bacillus stearothermophilus var. calidolactis ATCC 10149 demonstrated the ability to detect the residues of salinomycin in the examined tissues of broiler chickens at the level of the maximum residue limits set from 0.015 to 0.150 mg.kg-1 by Commission Implementing Regulation (EU) 2017/1914 and confirmed the relevance of their sensitivity to the coccidiostat salinomycin.
Collapse
Affiliation(s)
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia; (D.S.); (S.H.); (S.M.)
| | | | | |
Collapse
|
5
|
Kanchan S, Marwaha D, Tomar B, Agrawal S, Mishra S, Kapoor R, Sushma, Jha G, Sharma D, Bhatta RS, Mishra PR, Rath SK. Nanocarrier - Mediated Salinomycin Delivery Induces Apoptosis and Alters EMT Phenomenon in Prostate Adenocarcinoma. AAPS PharmSciTech 2024; 25:104. [PMID: 38724836 DOI: 10.1208/s12249-024-02817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sonam Kanchan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Mishra
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Radhika Kapoor
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gaurav Jha
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Petkov N, Tadjer A, Encheva E, Cherkezova-Zheleva Z, Paneva D, Stoyanova R, Kukeva R, Dorkov P, Pantcheva I. Experimental and DFT Study of Monensinate and Salinomycinate Complexes Containing {Fe 3(µ 3-O)} 7+ Core. Molecules 2024; 29:364. [PMID: 38257278 PMCID: PMC10818969 DOI: 10.3390/molecules29020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Two trinuclear oxo-centred iron(III) coordination compounds of monensic and salinomycinic acids (HL) were synthesized and their spectral properties were studied using physicochemical/thermal methods (FT-IR, TG-DTA, TG-MS, EPR, Mössbauer spectroscopy, powder XRD) and elemental analysis. The data suggested the formation of [Fe3(µ3-O)L3(OH)4] and the probable complex structures were modelled using the DFT method. The computed spectral parameters of the optimized constructs were compared to the experimentally measured ones. In each complex, three metal centres were joined together at the axial position by a μ3-O unit to form a {Fe3O}7+ core. The antibiotics monoanions served as bidentate ligands through the carboxylate and hydroxyl groups located at the termini. The carboxylate moieties played a dual role bridging each two metal centres. Hydroxide anions secured the overall neutral character of the coordination species. Mössbauer spectra displayed asymmetric quadrupole doublets that were consistent with the existence of two types of high-spin iron(III) sites with different environments-two Fe[O5] and one Fe[O6] centres. The solid-state EPR studies confirmed the +3 oxidation state of iron with a total spin St = 5/2 per trinuclear cluster. The studied complexes are the first iron(III) coordination compounds of monensin and salinomycin reported so far.
Collapse
Affiliation(s)
- Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| | - Alia Tadjer
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| | - Elzhana Encheva
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Zara Cherkezova-Zheleva
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.C.-Z.); (D.P.)
| | - Daniela Paneva
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.C.-Z.); (D.P.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Petar Dorkov
- Research and Development Department, Biovet Ltd., 4550 Peshtera, Bulgaria;
| | - Ivayla Pantcheva
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| |
Collapse
|
7
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
9
|
Li L, Zeng P, Yu L, Yang J, Man J, Zhou L, Zhao L. Salinomycin sodium exerts anti diffuse large B-cell lymphoma activity through inhibition of LRP6-mediated Wnt/β-catenin and mTORC1 signaling. Leuk Lymphoma 2023:1-10. [PMID: 37092573 DOI: 10.1080/10428194.2023.2202291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Low-density lipoprotein receptor-related protein-6 (LRP6) is overexpressed in various cancers. The small molecule salinomycin sodium inhibits LRP6. We observed a higher proportion of subjects with non-germinal center B (non-GCB) subtypes having high LRP6 expression than those with GCB subtypes by immunohistochemistry. The PCR and Western blot assays demonstrated increased LRP6 expression in non-GCB subtype cells. In addition, CCK-8 assays and transwell cell migration assays revealed that salinomycin sodium exhibited dose- and time-dependent inhibition of proliferation and migration in non-GCB subtype cells. Furthermore, Western blot assays showed that salinomycin sodium decreased the expression of Bcl2, while increasing the expression of Bax. Additionally, salinomycin sodium suppressed LRP6 expression, blocked LRP6 phosphorylation, and inhibited the Wnt/β-catenin and mTORC1 signaling pathways. Our results suggest that LRP6 is highly expressed in non-GCB subtype. Furthermore, salinomycin sodium inhibited LRP6 expression and the Wnt/β-catenin and mTORC1 signaling in non-GCB subtype cells, and displayed potent anticancer activity.
Collapse
Affiliation(s)
- Liangliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Lili Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Medical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Jincai Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jiancheng Man
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Lanxia Zhou
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, P.R. China
| | - Li Zhao
- Central Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, P.R. China
| |
Collapse
|
10
|
Anees M, Mehrotra N, Tiwari S, Kumar D, Kharbanda S, Singh H. Polylactic acid based biodegradable hybrid block copolymeric nanoparticle mediated co-delivery of salinomycin and doxorubicin for cancer therapy. Int J Pharm 2023; 635:122779. [PMID: 36842520 DOI: 10.1016/j.ijpharm.2023.122779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Existence of cancer stem cells (CSCs) are primarily responsible for chemoresistance, cancer reoccurrence and treatment failure in cancer patients. Eliminating CSCs along with bulk tumor is a necessity to achieve complete cancer inhibition. Salinomycin (SAL) has potential to specifically target and kill CSCs through blocking their multiple pathways simultaneously. SAL has also been reported to improve anti-cancer efficacy of numerous chemo-based drugs when used in combination therapy. However, clinical use of SAL is restricted due to its high off targeted toxicity. Herein, we have developed a PLA based hybrid block copolymer for concomitant delivery of SAL and doxorubicin (DOX) with an aim to reduce their adverse side effects and enhance the therapeutic efficacy of the treatment. Designed PLA based nanoplatform showed high encapsulation and sustained release profile for both the drugs. Cytotoxicity evaluation on cancer cell lines confirmed the synergistic effect of SAL:DOX co-loaded NPs. Additionally, prepared SAL NPs were also found to be highly effective against chemo-resistant cancer cells and CSCs derived from cancer patient. Most importantly, encapsulation of SAL in PLA NPs improved its pharmacokinetics and biodistribution profile. Consequently, undesired toxicity with SAL NPs was significantly reduced which in-turn increased the dose tolerability in mice as compared to free SAL. Treatment of EAC tumor bearing mice with SAL:DOX co-loaded NPs resulted in excellent tumor regression and complete inhibition of cancer reoccurrence. These results conclude that concomitant delivery of SAL and DOX using PLA based block copolymeric nano-carrier have a strong potential for cancer therapy.
Collapse
Affiliation(s)
- Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sachchidanand Tiwari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kumar
- National Institute of Health and Family Welfare (NIHFW), New Delhi 110067, India
| | | | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
11
|
Tefas LR, Toma I, Sesarman A, Banciu M, Jurj A, Berindan-Neagoe I, Rus L, Stiufiuc R, Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J Liposome Res 2022:1-17. [PMID: 36472146 DOI: 10.1080/08982104.2022.2153139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Lucia Rus
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022; 18:2209-2233. [PMID: 35876959 PMCID: PMC9489588 DOI: 10.1007/s12015-022-10426-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
The physiological state of the tumor microenvironment (TME) plays a central role in cancer development due to multiple universal features that transcend heterogeneity and niche specifications, like promoting cancer progression and metastasis. As a result of their preponderant involvement in tumor growth and maintenance through several microsystemic alterations, including hypoxia, oxidative stress, and acidosis, TMEs make for ideal targets in both diagnostic and therapeutic ventures. Correspondingly, methodologies to target TMEs have been investigated this past decade as stratagems of significant potential in the genre of focused cancer treatment. Within targeted oncotherapy, nanomedical derivates-nanocarriers (NCs) especially-have emerged to present notable prospects in enhancing targeting specificity. Yet, one major issue in the application of NCs in microenvironmental directed therapy is that TMEs are too broad a spectrum of targeting possibilities for these carriers to be effectively employed. However, cancer stem cells (CSCs) might portend a solution to the above conundrum: aside from being quite heavily invested in tumorigenesis and therapeutic resistance, CSCs also show self-renewal and fluid clonogenic properties that often define specific TME niches. Further scrutiny of the relationship between CSCs and TMEs also points towards mechanisms that underly tumoral characteristics of metastasis, malignancy, and even resistance. This review summarizes recent advances in NC-enabled targeting of CSCs for more holistic strikes against TMEs and discusses both the current challenges that hinder the clinical application of these strategies as well as the avenues that can further CSC-targeting initiatives. Central role of CSCs in regulation of cellular components within the TME.
Collapse
Affiliation(s)
- Aadya Nayak
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
13
|
Uncovering drug repurposing candidates for head and neck cancers: insights from systematic pharmacogenomics data analysis. Sci Rep 2021; 11:23933. [PMID: 34907286 PMCID: PMC8671460 DOI: 10.1038/s41598-021-03418-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Effective treatment options for head and neck squamous cell carcinoma (HNSCC) are currently lacking. We exploited the drug response and genomic data of the 28 HNSCC cell lines, screened with 4,518 compounds, from the PRISM repurposing dataset to uncover repurposing drug candidates for HNSCC. A total of 886 active compounds, comprising of 418 targeted cancer, 404 non-oncology, and 64 chemotherapy compounds were identified for HNSCC. Top classes of mechanism of action amongst targeted cancer compounds included PI3K/AKT/MTOR, EGFR, and HDAC inhibitors. We have shortlisted 36 compounds with enriched killing activities for repurposing in HNSCC. The integrative analysis confirmed that the average expression of EGFR ligands (AREG, EREG, HBEGF, TGFA, and EPGN) is associated with osimertinib sensitivity. Novel putative biomarkers of response including those involved in immune signalling and cell cycle were found to be associated with sensitivity and resistance to MEK inhibitors respectively. We have also developed an RShiny webpage facilitating interactive visualization to fuel further hypothesis generation for drug repurposing in HNSCC. Our study provides a rich reference database of HNSCC drug sensitivity profiles, affording an opportunity to explore potential biomarkers of response in prioritized drug candidates. Our approach could also reveal insights for drug repurposing in other cancers.
Collapse
|