1
|
Dai Y, Yang L, Cao G, Mo L, Yang C, Zhu Y, Guo Y, Hong Y, Xu H, Lu S, Du S, He J. Combination therapy and drug co-delivery systems for atherosclerosis. J Control Release 2025; 381:113543. [PMID: 39986476 DOI: 10.1016/j.jconrel.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of plaque within the arteries. Despite advances in therapeutic strategies including anti-inflammatory, antioxidant, and lipid metabolism modulation treatments over the past two decades, the treatment of atherosclerosis remains challenging, as arterial damage is the result of interconnected pathological factors. Therefore, current monotherapies often fail to address the complex nature of this disease, leading to insufficient therapeutic outcomes. This review addressed this paucity of effective treatment options by comprehensively exploring the potential for combination therapies and advanced drug co-delivery systems for the treatment of atherosclerosis. We investigated the pathological features of and risk factors for atherosclerosis, underscoring the importance of drug combination therapies for the treatment of atherosclerotic diseases. We discuss herein mathematical models for quantifying the efficacy of the combination therapies and provide a systematic summary of drug combinations for the treatment of atherosclerosis. We also provide a detailed review of the latest advances in nanoparticle-based drug co-delivery systems for the treatment of atherosclerosis, focusing on the design of carriers with high biocompatibility and efficacy. By exploring the possibilities and challenges inherent to this approach, we aim to highlight cutting-edge technologies that can foster the development of innovative strategies, optimize drug co-administration, improve treatment outcomes, and reduce the burden of atherosclerosis-related morbidity and mortality on the healthcare system.
Collapse
Affiliation(s)
- Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hanlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Wang H, Ding K, He J, Wang J. Tetrahydropalmatine promotes macrophage autophagy by inhibiting the AMPK/mTOR pathway to attenuate atherosclerosis. Histol Histopathol 2025; 40:697-710. [PMID: 39359170 DOI: 10.14670/hh-18-809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive arterial disease that is associated with macrophage autophagy and AMP-activated protein kinase (AMPK)/mechanistic target of the rapamycin (mTOR) pathway. Tetrahydropalmatine (THP) can activate AMPK-dependent autophagy. We aim to study the mechanism of macrophage autophagy mediated by THP in the treatment of AS via the AMPK/mTOR pathway. METHODS High-fat diet apolipoprotein E-deficient mice and ox-LDL-induced RAW264.7 cells were used to mimic the AS model, then THP was administered. Cell viability was detected by MTT. Pathological aorta lesions were detected using Hematoxylin and Eosin, Masson, and oil red staining. Lipid metabolism indices and inflammatory factors were measured using ELISA. A transmission electron microscope was used to observe autophagosomes. Autophagy and AMPK/mTOR pathway protein expression was detected by immunofluorescence and Western blot. The AMPK inhibitor 9-β-d-Arabinofuranosyl Adenine (Ara-A) was used to validate the effect of THP. The mRNA expression of Beclin-1 and MCP-1 was detected by q-PCR. RESULTS THP administration regulated lipid metabolism by lowering total cholesterol, triacylglycerol, low-density lipoprotein, and high-density lipoprotein levels, and suppressed aortic damage. THP suppressed aortic damage and regulated lipid metabolism by altering serum lipid levels. THP reduced inflammation and macrophage CD68 expression. Twenty μg/mL THP reduced cell viability. THP decreased cholesterol uptake and increased efflux, promoting autophagy. THP increased autophagosome number, LC3B expression, and autophagy markers p-AMPK/AMPK and LC3-II/LC3-I. THP also decreased p-mTOR/mTOR and P62. THP increased Beclin-1 mRNA expression and decreased MCP-1 mRNA expression. Ara-A reversed THP's effects. CONCLUSION THP promotes macrophage autophagy by inhibiting the AMPK/mTOR pathway to attenuate AS.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Jiaqi He
- Traditional Chinese Medicine Dispensary, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiahong Wang
- Traditional Chinese Medicine Dispensary, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gu X, Du L, Lin R, Ding Z, Guo Z, Wei J, Li Y. How Advanced Is Nanomedicine for Atherosclerosis? Int J Nanomedicine 2025; 20:3445-3470. [PMID: 40125442 PMCID: PMC11928726 DOI: 10.2147/ijn.s508757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in nanotechnology have opened new avenues for precision therapy, personalized medicine, and multifunctional theranostics in atherosclerosis (AS). This review provides a comprehensive overview of the role of nanoparticles (NPs) in precision medicine for AS, discussing their applications, challenges, and future prospects. The review first analyzes the current treatment landscape of AS and outlines potential biological targets for therapy. Various nanocarriers, including organic, inorganic, and hybrid systems, are evaluated for their therapeutic potential, with a focus on targeted drug delivery, anti-inflammatory therapy, vascular repair, plaque stabilization, and lipid clearance. Additionally, the review explores NP preparation methods, emphasizing strategies to enhance drug loading, stability, and controlled release. Finally, the translational challenges of NP-based therapies, including biocompatibility, large-scale production, regulatory hurdles, and clinical implementation, are critically analyzed. Future directions highlight the importance of interdisciplinary collaboration and technological innovation in advancing nanoparticle-based precision medicine for AS.
Collapse
Affiliation(s)
- Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruifang Lin
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zehui Ding
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiaming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
4
|
Zahid A, Khurshid A, Rehman SU, Hassan SMU, Akhtar R. Enhanced Intracellular Delivery of Curcumin Using Polymeric Nanocarriers: A Natural Photosensitizing Agent for Anti-Cancer Photodynamic Therapy. J Fluoresc 2025:10.1007/s10895-025-04179-0. [PMID: 40056323 DOI: 10.1007/s10895-025-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/10/2025]
Abstract
Curcumin ranks among the extensively investigated Phytocompounds with a wide array of therapeutic properties. It has bioactive and photoactive properties that enhance its potential as an anti-cancer agent. However, poor solubility and low bioavailability are associated with it which hinders its applications. To address the limitations related to free curcumin (CUR), the present study focuses on the synthesis of curcumin-loaded poly lactic-co-glycolic acid nanoparticles (CUR NPs). The single emulsion solvent evaporation technique was used to synthesize CUR NPs with an average size of 187 nm and a zeta potential of -13.3 mV. Photophysical properties, drug loading efficiency, and drug release profile of synthesized CUR NPs were studied. Confocal fluorescence imaging was employed to study the cellular uptake of both formulations of CUR. The In-vitro investigation was conducted using BT-474 human breast cancer cells to evaluate the dark and phototoxic effect of both variants of curcumin (free CUR and CUR NPs). The cytotoxicity was quantified through half-maximal inhibitory concentration (IC50) obtained after conducting in-vitro dark and phototoxic experiments. The study revealed that CUR NPs showed better cytotoxic responses compared to the free CUR. During the phototoxic study, CUR NPs exhibit improved efficacy in the presence of light. The CUR NPs effectively deliver curcumin to enhance its potential in photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Aleena Zahid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| | - Ahmat Khurshid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shakeel Ur Rehman
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Syed Mujtaba Ul Hassan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ribqa Akhtar
- Department of Virology and Immunology, National Institute of Health, Park Road, Islamabad, Pakistan
| |
Collapse
|
5
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Cheng Y, Xu Q, Yu M, Dang C, Deng L, Chen H. Curcumin Nanoparticles-related Non-invasive Tumor Therapy, and Cardiotoxicity Relieve. Curr Med Chem 2025; 32:447-467. [PMID: 38918994 PMCID: PMC11826934 DOI: 10.2174/0109298673305616240610153554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Non-invasive antitumor therapy can treat tumor patients who cannot tolerate surgery or are unsuitable. However, tumor resistance to non-invasive antitumor therapy and cardiotoxicity caused by treatment seriously affect the quality of life and prognosis of patients. As a kind of polyphenol extracted from herbs, curcumin has many pharmacological effects, such as anti-inflammation, antioxidation, antitumor, etc. Curcumin plays the antitumor effect by directly promoting tumor cell death and reducing tumor cells' invasive ability. Curcumin exerts the therapeutic effect mainly by inhibiting the nuclear factor-κB (NF-κB) signal pathway, inhibiting the production of cyclooxygenase-2 (COX-2), promoting the expression of caspase-9, and directly inducing reactive oxygen species (ROS) production in tumor cells. Curcumin nanoparticles can solve curcumin's shortcomings, such as poor water solubility and high metabolic rate, and can be effectively used in antitumor therapy. Curcumin nanoparticles can improve the prognosis and quality of life of tumor patients by using as adjuvants to enhance the sensitivity of tumors to non-invasive therapy and reduce the side effects, especially cardiotoxicity. In this paper, we collect and analyze the literature of relevant databases. It is pointed out that future research on curcumin tends to alleviate the adverse reactions caused by treatment, which is of more significance to tumor patients.
Collapse
Affiliation(s)
- Yuhang Cheng
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Qian Xu
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Miao Yu
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Chenwei Dang
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Limei Deng
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Huijun Chen
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
7
|
Baranauskas V, Jaruseviciene R, Grigalavicius M, Galgauskas S, Karabanovas V, Steponkiene S. Biomimetic Curcumin-Loaded Liposomes for the Treatment of Dry Eyes and Meibomian Gland Dysfunction: An In Vivo Study. J Clin Med 2024; 13:6436. [PMID: 39518574 PMCID: PMC11546689 DOI: 10.3390/jcm13216436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Meibomian gland dysfunction (MGD) and dry eye syndrome (DES) are common eye diseases characterized by altered tear film stability and inflammation of the ocular surface, causing significant discomfort and possible visual impairment. This study aimed to investigate the efficacy of curcumin-loaded liposomes (Lipo@Cur) compared to cyclosporine A-loaded liposomes (Lipo@CycA) in experimental rabbit models of MGD and DES, with a focus on their ability to improve tear film stability and reduce ocular surface inflammation. Methods: MGD and DES were induced using complete Freund's adjuvant (CFA) and treated to evaluate the effect of liposomal formulations on tear break-up time (TBUT), clinical signs of inflammation (telangiectasia, conjunctival hyperemia, meibomian foramen occlusion), and corneal as well as conjunctival histological cells. Results: Lipo@Cur increased TBUT and reduced the signs of ocular surface inflammation, potentially approaching the effectiveness of clinically approved cyclosporine A encapsulated in liposomes (Lipo@CycA). Histological analysis suggested improvements in corneal epithelial thickness and goblet cell density in the treated groups, which may indicate a reversal of DES-induced damage to the ocular surface. Conclusions: Plant-originated curcumin encapsulated in liposomes offers a promising therapeutic strategy for the management of MGD and DES that may improve patient outcomes by addressing the underlying inflammatory mechanisms of these conditions.
Collapse
Affiliation(s)
- Vytautas Baranauskas
- Institute of Biochemistry, Life Science Centre, Vilnius University, Sauletekio av 7, LT 10257 Vilnius, Lithuania
| | - Ruta Jaruseviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, LT 03101 Vilnius, Lithuania (S.G.)
| | - Mantas Grigalavicius
- Laser Research Center, Faculty of Physics, Vilnius University, Saulėtekio av. 9, III bld., LT 10222 Vilnius, Lithuania;
| | - Saulius Galgauskas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21, LT 03101 Vilnius, Lithuania (S.G.)
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, Santariskių Str. 1, LT 08660 Vilnius, Lithuania;
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT 10223 Vilnius, Lithuania
| | - Simona Steponkiene
- Biomedical Physics Laboratory, National Cancer Institute, Santariskių Str. 1, LT 08660 Vilnius, Lithuania;
| |
Collapse
|
8
|
Mo L, Wan S, Zékány-Nagy T, Luo X, Yang X. The Effect of Curcumin on Glucolipid Metabolic Disorders: A Review. FOOD REVIEWS INTERNATIONAL 2024:1-35. [DOI: 10.1080/87559129.2024.2405654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Siyu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Tekla Zékány-Nagy
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoyi Luo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
9
|
Chen L, Xu W, Yang Z, McClements DJ, Peng X, Xu Z, Meng M, Zou Y, Chen G, Jin Z. Co-encapsulation of quercetin and resveratrol: Comparison in different layers of zein-carboxymethyl cellulose nanoparticles. Int J Biol Macromol 2024; 278:134827. [PMID: 39154680 DOI: 10.1016/j.ijbiomac.2024.134827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Three nanoparticles were fabricated for the co-delivery of quercetin and resveratrol. Nanoparticles consisted of a zein and carboxymethyl cellulose assembled using antisolvent precipitation/layer-by-layer deposition method. Nanoparticles contained quercetin in the core and resveratrol in the shell, resveratrol in the core and quercetin in the shell or both quercetin and resveratrol in the core. The particle sizes of nanoparticles were 280.4, 214.8, and 181.8 nm, respectively. Zeta-potential was about -50 mV and PDI was about 0.3. The different positions of polyphenol distribution nanoparticles could reduce the competition between the two polyphenols, the encapsulation rate, loading rate and storage stability reached up to 91.7 %, 5.37 % and 97.1 %, respectively. FT-IR showed that hydrophobic and electrostatic interactions were the main driving forces of nanoparticle assembly. XRD showed that two polyphenols were successfully encapsulated in nanoparticles. TGA showed that distributing the nanoparticles in different layers would enhance thermal stability. TEM and SEM showed that polysaccharides attached to the surface of nanoparticles formed a core-shell structure with uniform particle size. All three nanoparticles could release two polyphenols slowly in simulated gastrointestinal digestion, Korsmeyer-Peppas was the most suitable kinetic release model. Therefore, biopolymer-based nanocarriers can be created to enhance the loading, stability, and bioaccessibility of co-encapsulated nutraceuticals.
Collapse
Affiliation(s)
- Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhongyu Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Yixing Skystone Feed Co., Ltd, Wuxi 214251, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
10
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
11
|
Jiang Y, Yu M, Song ZF, Wei ZY, Huang J, Qian HY. Targeted Delivery of Mesenchymal Stem Cell-Derived Bioinspired Exosome-Mimetic Nanovesicles with Platelet Membrane Fusion for Atherosclerotic Treatment. Int J Nanomedicine 2024; 19:2553-2571. [PMID: 38505171 PMCID: PMC10949310 DOI: 10.2147/ijn.s452824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose Accumulating evidence indicates that mesenchymal stem cells (MSCs)-derived exosomes hold significant potential for the treatment of atherosclerosis. However, large-scale production and organ-specific targeting of exosomes are still challenges for further clinical applications. This study aims to explore the targeted efficiency and therapeutic potential of biomimetic platelet membrane-coated exosome-mimetic nanovesicles (P-ENVs) in atherosclerosis. Methods To produce exosome-mimetic nanovesicles (ENVs), MSCs were successively extruded through polycarbonate porous membranes. P-ENVs were engineered by fusing MSC-derived ENVs with platelet membranes and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. The stability and safety of P-ENVs were also assessed. The targeted efficacy of P-ENVs was evaluated using an in vivo imaging system (IVIS) spectrum imaging system and immunofluorescence. Histological analyses, Oil Red O (ORO) staining, and Western blot were used to investigate the anti-atherosclerotic effectiveness of P-ENVs. Results Both ENVs and P-ENVs exhibited similar characteristics to exosomes. Subsequent miRNA sequencing of P-ENVs revealed their potential to mitigate atherosclerosis by influencing biological processes related to cholesterol metabolism. In an ApoE-/- mice model, the intravenous administration of P-ENVs exhibited enhanced targeting of atherosclerotic plaques, resulting in a significant reduction in lipid deposition and necrotic core area. Our in vitro experiments showed that P-ENVs promoted cholesterol efflux and reduced total cholesterol content in foam cells. Further analysis revealed that P-ENVs attenuated intracellular cholesterol accumulation by upregulating the expression of the critical cholesterol transporters ABCA1 and ABCG1. Conclusion This study highlighted the potential of P-ENVs as a novel nano-drug delivery platform for enhancing drug delivery efficiency while concurrently mitigating adverse reactions in atherosclerotic therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Miao Yu
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhi-Feng Song
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhi-Yao Wei
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ji Huang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Hai-Yan Qian
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
15
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
de Souza Ferreira JN, Vasconcelos VVV, Figueiredo BS, Alves DP, de Abreu ALLV, de Souza PP, Costa DLN, da Silva AR. PLGA nanoparticles for treatment of cardiovascular diseases. POLY(LACTIC-CO-GLYCOLIC ACID) (PLGA) NANOPARTICLES FOR DRUG DELIVERY 2023:267-302. [DOI: 10.1016/b978-0-323-91215-0.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
18
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Chen JY, Xiao-Yun Tian, Wei SS, Yang YJ, Deng S, Jiao CJ, Wang CJ, Chu KD, Ma XQ, Xu W. Perspectives of herbs and their natural compounds, and herb formulas on treating diverse diseases through regulating complicated JAK/STAT signaling. Front Pharmacol 2022; 13:993862. [PMID: 36324680 PMCID: PMC9619051 DOI: 10.3389/fphar.2022.993862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.
Collapse
|
20
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|