1
|
Maki J, Oshimura A, Shiotani Y, Yamanaka M, Okuda S, Yanagita RC, Kitani S, Igarashi Y, Saito Y, Sakakibara Y, Tsukano C, Irie K. Validation of machine learning-assisted screening of PKC ligands: PKC binding affinity and activation. Biosci Biotechnol Biochem 2025; 89:668-679. [PMID: 39863420 DOI: 10.1093/bbb/zbaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins. We previously reported that machine learning combined with our knowledge of the pharmacophore yielded 15 PKC ligand candidates, but we did not evaluate their PKC binding affinities fully. In this paper, PKC binding affinities of four candidates were examined to assess their potential as PKC ligands and to validate machine learning-assisted screening. Although compound 3' did not bind to PKC C1 domains, 1a, 2', and 4a exhibited moderate PKC binding affinities, suggesting that machine learning-assisted screening is advantageous in identifying new PKC ligand scaffolds.
Collapse
Affiliation(s)
- Jumpei Maki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Asami Oshimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yudai Shiotani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maki Yamanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sogen Okuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryo C Yanagita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Shigeru Kitani
- College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Shinjuku-ku, Tokyo, Japan
| | | | - Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Lasota J, Krupińska M, Kaczorowski M, Chłopek M, Kinkor Z, Švajdler M, Perret R, Charville GW, Bradová M, Ylaya K, Wesołowska M, Rozmus-Piętoń M, Ryś J, Michal M, Michal M, Miettinen M. Utility of Protein Kinase C Beta II Immunohistochemistry in Differential Diagnosis of Ewing Sarcoma. Am J Surg Pathol 2025:00000478-990000000-00508. [PMID: 40230184 DOI: 10.1097/pas.0000000000002400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The diagnosis of Ewing sarcoma can be challenging, particularly when the tumor is present in an atypical location and resembles histologic mimics. The hallmark feature of Ewing sarcoma is chromosomal translocation, t(11;22)(q24;q12), involving EWSR1 and ETS gene family members. For decades, fluorescence in situ hybridization with a break-apart EWSR1 probe has been the diagnostic gold standard. However, EWSR1 rearrangements have been identified in other malignancies; thus, the detection of chimeric EWSR1 transcripts has become a preferable approach. Occasionally, insufficient tissue, severe RNA degradation, or economic constraints hamper molecular testing. This study evaluated Protein Kinase C Beta II (PKC β II) expression in >1000 tumors and assessed the utility of PKC β II immunohistochemistry in the differential diagnosis of Ewing sarcoma. Tumors harboring EWSR1::FLI1 (n=26), EWSR1::ERG, EWSR1::ETV4 (n=1), and FUS::ERG (n=6) fusions were evaluated, revealing strong diffuse immunoreactivity, although a patchy pattern was seen in 3 cases. Undifferentiated round cell sarcomas (n=46), including BCOR-, CIC-, NFATC2-, NUTM1-, and PATZ1 rearranged/fusion-sarcomas were negative. Two of the 130 synovial sarcomas, including 1 with a poorly differentiated morphology, showed diffuse, moderate-to-strong positivity. One of the 26 poorly differentiated carcinomas from the head and neck region, probably small cell lung carcinoma metastasis, showed strong PKC β II expression. Neuroblastomas (>50%) expressed PKC β II, although none showed a strong diffuse pattern. Diffuse moderate-to-strong immunoreactivity was observed in 2 sarcomatoid mesotheliomas and 2 metastatic melanomas. Diffuse but weak staining was observed in 73% (11/15) of the T-cell lymphoblastic lymphomas, including 10 CD99-positive cases. Similarly, weak predominantly patchy staining was seen in half (40/80) of other non-Hodgkin lymphomas and sporadically in embryonal rhabdomyosarcoma, Merkel cell carcinoma, small cell lung carcinoma, and Wilms tumor. Thus, diffuse and strong PKC β II immunoreactivity appears to be a reliable diagnostic marker for distinguishing classic Ewing sarcoma from histologic mimics.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Martyna Krupińska
- Department of Pathology, University Hospital of the Canary Islands, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław
| | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | | | - Marian Švajdler
- Bioptická Laboratoř Ltd., Pilsen
- Department of Pathology, Faculty of Medicine in Plzen, University Hospital Plzen, Charles University, Plzen, Czech Republic
| | - Raul Perret
- Department of Pathobiology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Martina Bradová
- Bioptická Laboratoř Ltd., Pilsen
- Department of Pathology, Faculty of Medicine in Plzen, University Hospital Plzen, Charles University, Plzen, Czech Republic
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Małgorzata Wesołowska
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Krakow, Poland
| | - Magdalena Rozmus-Piętoń
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Krakow, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Krakow, Poland
| | - Michael Michal
- Bioptická Laboratoř Ltd., Pilsen
- Department of Pathology, Faculty of Medicine in Plzen, University Hospital Plzen, Charles University, Plzen, Czech Republic
| | - Michal Michal
- Bioptická Laboratoř Ltd., Pilsen
- Department of Pathology, Faculty of Medicine in Plzen, University Hospital Plzen, Charles University, Plzen, Czech Republic
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
3
|
Li W, Zhu K, Liu Y, Liu M, Chen Q. Recent advances in PKC inhibitor development: Structural design strategies and therapeutic applications. Eur J Med Chem 2025; 287:117290. [PMID: 39904144 DOI: 10.1016/j.ejmech.2025.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Protein kinase C (PKC) isozymes play critical roles in diverse cellular processes and are implicated in numerous diseases, including cancer, diabetes, and autoimmune disorders. Despite extensive research efforts spanning four decades, only one PKC inhibitor has received clinical approval, highlighting the challenges in developing selective and efficacious PKC-targeting therapeutics. Here we review recent advances in the development of small-molecule PKC inhibitors, focusing on structural design strategies, pharmacological activities, and structure-activity relationships. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and natural product derivatization that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly for PKCα and PKCβ, which have proven crucial for therapeutic applications. We discuss how integration of computational methods, structural biology insights, and rational design principles has advanced our understanding of PKC inhibition mechanisms. This comprehensive analysis reveals key challenges in PKC drug development, including the need for enhanced selectivity and reduced off-target effects, while highlighting promising directions for future therapeutic development. Our findings provide a framework for designing next-generation PKC inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuyin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Meixi Liu
- Department of Endocrinology, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, 618000, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Woźnicki P, Bartusik-Aebisher D, Przygórzewska A, Aebisher D. Molecular mechanisms of the effects of photodynamic therapy on the brain: A review of the literature. Photodiagnosis Photodyn Ther 2025; 52:104536. [PMID: 40023269 DOI: 10.1016/j.pdpdt.2025.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most common primary brain tumors in adults. These tumors have a diverse molecular origin and a very poor prognosis. There is a lack of effective treatment at WHO grade IV glioma, and all glioblastomas progress or recur. Current treatments including surgical intervention, radiation therapy, and chemotherapy are insufficient and can cause damage to healthy brain tissue and neurological deficits. The preservation of healthy brain tissue during therapeutic intervention is made extremely difficult by the ability of malignant gliomas to diffusely infiltrate the surrounding brain parenchyma. Photodynamic therapy (PDT) is a treatment modality for glioma that can possibly overcome the inherent shortcommings of traditional therapies. Photodynamic therapy involves the use of a photosensitizer (PS) which, upon absorption of light by photosensitized tissue, triggers photochemical reactions generating reactive oxygen species (ROS) leading to the killing of tumor cells. Research focusing on the effective use of PDT in the treatment of glioma is already underway with promising results. Clinical studies on PDT for the treatment of gliomas have shown it to be a safe therapeutic modality with acceptable levels of side effects. However, some adverse sequelae have been observed during PDT of these tumours, such as increased photosensitivity, increased intracranial pressure or transient aphasia and worsening of pre-existing neurological deficits. Although the clinical sequelae of PDT are well described, the molecular mechanisms of PDT's effects on the healthy brain have not yet been thoroughly characterized. In our work, we attempt to summarize the molecular mechanisms of the effects of photosensitization on neural tissue, brain vasculature and the blood-brain barrier (BBB). We also point to findings presenting molecular approaches to protect the healthy brain from the adverse effects of photodynamic damage.
Collapse
Affiliation(s)
- Paweł Woźnicki
- Doctoral School, Medical College of the University of Rzeszów, Rzeszów 35-310, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland.
| |
Collapse
|
5
|
Gunawardana PBW, Gohil K, Moon KM, Foster LJ, Williams FJ. Proteomic Investigation of Neurotrophic trans-Banglene Reveals Potential Link to Iron Homeostasis. Mol Neurobiol 2025:10.1007/s12035-025-04772-1. [PMID: 40085355 DOI: 10.1007/s12035-025-04772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
In an effort to gain insight into cellular systems impacted by neurotrophic trans-banglene (t-BG), global proteomic profiling and Western blot analyses were employed. Expression level changes in response to t-BG treatment were compared to those observed with nerve growth factor (NGF), a natural neurotrophic protein and functional analog to t-BG. Findings from these studies did not point to direct interception of NGF/TrkA signaling by t-BG. Instead, significant alterations in iron-binding and iron-regulating proteins were observed. While total iron levels showed no change across all treatments, intracellular iron measurements and mitochondrial iron measurements demonstrated lower ferrous (Fe2+) ion levels in t-BG treated cells but not in NGF treated cells. These results highlight a potential connection between iron regulation and neurotrophic activity, a relationship which has, to date, not been well studied. These results are also notable given that iron dysregulation occurs in most neurodegenerative disease settings, and that iron has been shown to facilitate protein aggregation and apoptotic mechanisms.
Collapse
Affiliation(s)
| | - Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, University of British Colombia, Vancouver, Canada
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, University of British Colombia, Vancouver, Canada
| | | |
Collapse
|
6
|
Chu CC, Hu YH, Li GZ, Chen J, Zhang NN, Gu YX, Wu SY, Zhang HF, Xu YY, Guo HL, Tian X, Chen F. Unveiling the significance of AKAP79/150 in the nervous system disorders: An emerging opportunity for future therapies? Neurobiol Dis 2025; 206:106812. [PMID: 39864527 DOI: 10.1016/j.nbd.2025.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
A-kinase anchoring protein 79/150 (AKAP79/150) is a crucial scaffolding protein that positions various proteins at specific synaptic sites to modulate excitatory synaptic intensity. As our understanding of AKAP79/150's biology deepens, along with its significant role in the pathophysiology of various human disorders, there is growing evidence that reveals new opportunities for therapeutic interventions. In this review, we examine the fundamental structure and primary functions of AKAP79/150, emphasizing its pathophysiological mechanisms in different nervous system disorders, particularly inflammatory pain, epilepsy, depression, and Alzheimer's disease. We also discuss its potential therapeutic implications for patients suffering from these conditions.
Collapse
Affiliation(s)
- Chen-Chao Chu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gui-Zhou Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ning-Ning Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yi-Xue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Yu Wu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang-Yang Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
8
|
Irrinki AM, Kaur J, Randhawa B, McFadden R, Snyder C, Truong H, Soohoo D, Hu E, Yu H, Murray BP, Lu B, Kornyeyev D, Irwan ID, Nguyen L, Yang YS, Belzile JP, Schmitz U, Appleby TC, Schultz B, Lalezari J, Deeks S, Cihlar T, Murry JP. Activating PKC-ε induces HIV expression with improved tolerability. PLoS Pathog 2025; 21:e1012874. [PMID: 39913544 PMCID: PMC11801715 DOI: 10.1371/journal.ppat.1012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/01/2025] [Indexed: 02/11/2025] Open
Abstract
Despite suppressive antiretroviral therapy (ART), HIV-1 persists in latent reservoirs that seed new HIV infections if ART is interrupted, necessitating lifelong therapy for people with HIV. Activation of latent HIV during ART could improve recognition and elimination of infected cells by the immune system. Protein kinase C (PKC) isozymes increase HIV transcription and hence are potential latency reversal agents. However, the clinical utility of PKCs for this application is limited due to toxicity, which is poorly understood. Our studies showed that PKC activation with multiple classes of agonists leads to widespread platelet activation, consistent with disseminated intravascular coagulation, at concentrations that were similar to those required for T-cell activation. Differential expression analysis indicated that PKC-ε and PKC-η isoforms are expressed at high levels in human CD4+ T cells but not in platelets. Using structure-based drug design, we developed a novel PKC agonist, C-233, with increased selectivity for PKC-ε. C-233 increased both supernatant HIV RNA and p24 expression ex vivo after treatment of CD4+ T cells from ART-suppressed people with HIV. C-233 was 5-fold more potent for T-cell activation relative to platelet activation. Our studies support the use of structure-based drug design to create selective novel PKC agonists for the safe activation of HIV reservoirs and improved tolerability.
Collapse
Affiliation(s)
- Alivelu M. Irrinki
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jasmine Kaur
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bally Randhawa
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ryan McFadden
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Chelsea Snyder
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Hoa Truong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Daniel Soohoo
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Eric Hu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Helen Yu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bernard P. Murray
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Bing Lu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Dmytro Kornyeyev
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ishak Darryl Irwan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Lan Nguyen
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yu-San Yang
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | - Uli Schmitz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Todd C. Appleby
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Brian Schultz
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jay Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
9
|
Higashi T, Hashimoto K, Mai Y, Naganuma F, Yoshikawa T. Cystine transporter SLC7A11 regulates sensitivity to unsaturated carbonyl compounds in mouse macrophage cell lines. J Pharmacol Sci 2025; 157:96-103. [PMID: 39828398 DOI: 10.1016/j.jphs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
Cytotoxic effects of cigarette smoke are thought to be causes of cigarette smoking-related diseases such as respiratory infection, chronic obstructive pulmonary disease, and atherosclerosis. Unsaturated carbonyl compounds are major cytotoxic factors in the gas phase of cigarette smoke. Cell death induced by unsaturated carbonyl compounds in cigarette smoke is PKC-dependent ferroptosis. Although the cell sensitivity to unsaturated carbonyl compounds varies by cell types, the molecular mechanisms underlying this sensitivity remain unclear. In this study, we have examined the factors involved in determining sensitivity to unsaturated carbonyl compounds. We found that two mouse macrophage cell lines exhibited different sensitivities; J774.1 macrophages were sensitive to unsaturated carbonyl compounds, whereas RAW264.7 macrophages were resistant. Glutathione synthesis inhibitor increased the sensitivity of RAW264.7 macrophages to unsaturated carbonyl compounds. Quantitative RT-PCR revealed that the expression level of the cystine transporter SLC7A11 was higher in RAW264.7 macrophages than in J774.1 macrophages. Inhibition of SLC7A11 activity increased sensitivity to unsaturated carbonyl compounds, while overexpression of SLC7A11 enhances resistance to these compounds. The current results suggest that the SLC7A11 level is a key factor in determining the macrophage sensitivity to unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Tsunehito Higashi
- Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Konoka Hashimoto
- Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Fumito Naganuma
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takeo Yoshikawa
- Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
10
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
11
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
12
|
Li J, Hu M, Liu Y, Lu R, Feng W. Lead exposure leads to premature neural differentiation via inhibiting Wnt signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125232. [PMID: 39489322 DOI: 10.1016/j.envpol.2024.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Heavy metals, such as Lead (Pb), are ubiquitous environmental pollutants that is a considerable problem worldwide. Increasing evidences suggest that Pb exposure negatively impact central nervous system. However, the exact toxic mechanism of Pb on early human brain development remain unclear due to the limitations of animal models and 2D cell models. In this study, we used human cortical organoids to reveal that Pb had specific early neurodevelopmental toxicity during the neural differentiation stage. We observed that short-term Pb exposure (10 days) is sufficient to induce premature neuronal differentiation. Mechanistically, Pb exposure downregulates the Wnt signaling in cortical organoids, and the activation of Wnt signaling reverses the neurodevelopmental phenotype. In support, Pb exposure during pregnancy lead to premature neuronal differentiation and reduced neurogenesis in mice. In conclusion, our study reveals the neuropathogenesis of Pb exposure and uncovers the potential intervention role of Wnt activation.
Collapse
Affiliation(s)
- Jun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Meixin Hu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yingying Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rongrong Lu
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center (Shanghai), Shanghai, 201102, China
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Fujian Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Children's Hospital of Fudan University at Xiamen, Xiamen, 361006, China.
| |
Collapse
|
13
|
Zhou Z, Huang Z, Tang Y, Zhu Y, Li J. Modulating membrane-bound enzyme activity with chemical stimuli. Eur J Med Chem 2024; 280:116964. [PMID: 39406113 DOI: 10.1016/j.ejmech.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/25/2024]
Abstract
Membrane-bound enzymes play pivotal roles in various cellular processes, making their activity regulation essential for cellular homeostasis and signaling transduction. Given that dysregulation of membrane-bound enzymes involved in various disease, controlling enzyme activity offers valuable avenues for designing targeted therapies and novel pharmaceutical interventions. This review explores chemical stimuli-responsive strategies for modulating the activity of these enzymes, employing diverse stimuli such as small molecules, proteins, nucleic acids, and bifunctional molecules to either inhibit or enhance their catalytic function. We systematically delineate the mechanisms underlying enzyme activity regulation, including substrate binding site blockade, conformational changes, and local concentration of enzymes and substrates. Furthermore, based on some examples, we elucidate the binding modalities between stimuli and enzymes, along with potential modes of regulation, and discuss their potential medical applications and future prospects. This review underscores the significance of understanding and manipulating enzyme activity on the cell membrane for advancing biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
14
|
Ishii T, Kajimoto T, Kikkawa S, Narasaki S, Noguchi S, Imamura S, Harada K, Hide I, Tanaka S, Tsutsumi YM, Sakai N. Protein kinase C (PKC) inhibitor Calphostin C activates PKC in a light-dependent manner at high concentrations via the production of singlet oxygen. Eur J Pharmacol 2024; 984:177036. [PMID: 39368603 DOI: 10.1016/j.ejphar.2024.177036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Calphostin C (Cal-C) is a protein kinase C (PKC) inhibitor that binds to its C1 domain. The aim of the present study was to elucidate the action of Cal-C in addition to PKC inhibition. First, we confirmed that Cal-C at low concentrations (<200 nM) inhibit phorbol ester-induced PKC translocation and G-protein-coupled receptor (GPCR)-mediated PKC activation. Cal-C at higher concentrations (>2 μM) increased intracellular calcium ion concentrations ([Ca2+]i) in a concentration-dependent manner. The origin of this increase is the mobilization of the endoplasmic reticulum (ER), which does not involve GPCR or ryanodine receptors. Cal-C at high concentrations also cause structural changes in the ER, such as the formation of vacuoles and aggregates, and calcium leakage from the ER. At 2 μM, Cal-C translocated a calcium-sensitive PKCα. Studies using a C-kinase activity reporter and a myristoylated alanine-rich protein kinase C substrate fused with green fluorescent protein (GFP) have also revealed that Cal-C at high concentrations activate PKC in living cells. Additionally, the PKC-activating effects of Cal-C were light-dependent. Finally, studies using Si-DMA, an indicator of singlet oxygen, showed that Cal-C at high concentrations generated singlet oxygen, causing structural changes in the ER and leakage of calcium into the cytosol, which triggered PKC activation. This study confirms the novel action of Cal-C, solely considered a PKC inhibitor. Cal-C acted as a PKC inhibitor at low concentrations and a PKC activator at high concentrations by generating singlet oxygen in a light-dependent manner, suggesting that Cal-C can be used in photodynamic therapy.
Collapse
Affiliation(s)
- Tomomi Ishii
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yasuo M Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
15
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
16
|
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024; 13:1931. [PMID: 39682681 PMCID: PMC11640686 DOI: 10.3390/cells13231931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The main purpose of regenerative medicine for degenerative eye diseases is to create cells to replace lost or damaged ones. Due to their anatomical, genetic, and epigenetic features, characteristics of origin, evolutionary inheritance, capacity for dedifferentiation, proliferation, and plasticity, mammalian and human RPE cells are of great interest as endogenous sources of new photoreceptors and other neurons for the degrading retina. Promising methods for the reprogramming of RPE cells into retinal cells include genetic methods and chemical methods under the influence of certain low-molecular-weight compounds, so-called small molecules. Depending on the goal, which can be the preservation or the replacement of lost RPE cells and cellular structures, various small molecules are used to influence certain biological processes at different levels of cellular regulation. This review discusses the potential of the chemical reprogramming of RPE cells in comparison with other somatic cells and induced pluripotent stem cells (iPSCs) into neural cells of the brain and retina. Possible mechanisms of the chemically induced reprogramming of somatic cells under the influence of small molecules are explored and compared. This review also considers other possibilities in using them in the treatment of retinal degenerative diseases based on the protection, preservation, and support of survived RPE and retinal cells.
Collapse
Affiliation(s)
- Lyubov A. Rzhanova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena V. Alpeeva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | | |
Collapse
|
17
|
Saber S, Abdelhady R, Elhemely MA, Elmorsy EA, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, AlSheri AS, Youssef ME. PU-H71 (NSC 750424): a molecular masterpiece that targets HSP90 in cancer and beyond. Front Pharmacol 2024; 15:1475998. [PMID: 39564119 PMCID: PMC11573589 DOI: 10.3389/fphar.2024.1475998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a pivotal molecular chaperone with multifaceted roles in cellular health and disease. Herein, we explore how HSP90 orchestrates cellular stress responses, particularly through its partnership with heat shock factor 1 (HSF-1). PU-H71, a selective inhibitor of HSP90, demonstrates significant potential in cancer therapy by targeting a wide array of oncogenic pathways. By inducing the degradation of multiple client proteins, PU-H71 disrupts critical signaling pathways such as MAPK, PI3K/Akt, JAK/STAT, EGFR, and mTOR, which are essential for cancer cell survival, proliferation, and metastasis. We examined its impact on combating triple-negative breast cancer and enhancing the effectiveness of carbon-ion beam therapy, offering new avenues for cancer treatment. Furthermore, the dual inhibition of HSP90A and HSP90B1 by PU-H71 proves highly effective in the context of myeloma, providing fresh hope for patients with this challenging malignancy. We delve into its potential to induce apoptosis in B-cell lymphomas that rely on Bcl6 for survival, highlighting its relevance in the realm of hematologic cancers. Shifting our focus to hepatocellular carcinoma, we explore innovative approaches to chemotherapy. Moreover, the current review elucidates the potential capacity of PU-H71 to suppress glial cell activation paving the way for developing novel therapeutic strategies for neuroinflammatory disorders. Additionally, the present report also suggests the promising role of PU-H71 in JAK2-dependent myeloproliferative neoplasms. Eventually, our report sheds more light on the multiple functions of HSP90 protein as well as the potential therapeutic benefit of its selective inhibitor PU-H71 in the context of an array of diseases, laying the foundations for the development of novel therapeutic approaches that could achieve better treatment outcomes.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mai A Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ali S AlSheri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
18
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H, Peng C. Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol 2024; 282:136993. [PMID: 39489255 DOI: 10.1016/j.ijbiomac.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-induced myocardial dysfunction presents significant challenges in clinical management and is associated with increased mortality. Anisodamine (654-1/-2) has potentials in alleviating cardiac and endothelial impairments associated with sepsis. Exosomes, small vesicles secreted by cells, carry various bioactive molecules, such as nucleic acids, proteins, and lipids. These vesicles can travel to target cells to influence their function and modulating biological processes. In the context of endothelial-cardiac crosstalk, exosomes derived from endothelial cells can transfer signals that either exacerbate or mitigate myocardial injury, playing a crucial role in the progression of cardiovascular diseases. However, the precise role of endothelial-cardiac crosstalk, particularly through exosomes, in mediating the cardioprotective effects of anisodamine remains unclear. This study evaluated the effects of anisodamine on myocardial and endothelial injuries induced by LPS. Mechanisms were analyzed through network pharmacology, molecular docking, Western blotting, and RT-qPCR. The interaction between endothelial and cardiomyocyte inflammatory responses to anisodamine was assessed using a co-culture assay. Furthermore, both in vivo and in vitro assays were conducted to evaluate the effects of anisodamine-/LPS- treated HUVECs exosomes on A16 cell and myocardial function in mice. Anisodamine effectively mitigated apoptosis, inflammation, mitochondrial and myocardial injury, glycocalyx degradation, and oxidative stress by regulating the PI3K-AKT, NLRP-3/Caspase-1/ASC, TNF-α/PKCα/eNOs/NO, and NF-κB/iNOs/NO pathways in A16 cells and HUVECs. Moreover, in vivo and in vitro assays confirmed the protective effects of anisodamine against myocardial injuries mediated by exosomes derived from LPS-treated HUVECs. In summary, anisodamine ameliorated inflammation-induced endothelial and cardiomyocyte dysfunction. The in vitro and in vivo assays demonstrated that anisodamine could alleviate myocardial dysfunction through exosome-mediated mechanisms, offering new therapeutic avenues for treating myocardial injury and highlighting the potential of targeted exosome therapy in clinical settings.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- Chengdu NO. 1 Pharmaceutical Co., Ltd., No. 133, Section 2, East Third Ring Road, Tianpeng, Pengzhou 611930, Sichuan, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Xue W, Chu H, Wang J, Sun Y, Qiu X, Song C, Tan L, Ding C, Liao Y. Coronavirus nucleocapsid protein enhances the binding of p-PKCα to RACK1: Implications for inhibition of nucleocytoplasmic trafficking and suppression of the innate immune response. PLoS Pathog 2024; 20:e1012097. [PMID: 39602452 PMCID: PMC11633972 DOI: 10.1371/journal.ppat.1012097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The hallmark of coronavirus infection lies in its ability to evade host immune defenses, a process intricately linked to the nuclear entry of transcription factors crucial for initiating the expression of antiviral genes. Central to this evasion strategy is the manipulation of the nucleocytoplasmic trafficking system, which serves as an effective target for the virus to modulate the expression of immune response-related genes. In this investigation, we discovered that infection with the infectious bronchitis virus (IBV) dynamically impedes the nuclear translocation of several transcription factors such as IRF3, STAT1, STAT2, NF-κB p65, and the p38 MAPK, leading to compromised transcriptional induction of key antiviral genes such as IFNβ, IFITM3, and IL-8. Further examination revealed that during the infection process, components of the nuclear pore complex (NPC), particularly FG-Nups (such as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in size. These observations suggest a disruption in nucleocytoplasmic trafficking. Screening efforts identified the IBV nucleocapsid (N) protein as the agent responsible for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry of transcription factors and suppressing the expression of antiviral genes. Interactome analysis further revealed that the IBV N protein interacts with the scaffold protein RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PKCα) to RACK1 and relocating the p-PKCα-RACK1 complex to the cytoplasm. These observations are conserved across diverse coronaviruses N proteins. Concurrently, the presence of both RACK1 and PKCα/β proved essential for the phosphorylation and cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and efficient virus replication. These findings unveil a novel, highly effective, and evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Hongyan Chu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Jiehuang Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, P. R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| |
Collapse
|
20
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
21
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 PMCID: PMC11599458 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
22
|
de Brevern AG. Special Issue: "Molecular Dynamics Simulations and Structural Analysis of Protein Domains". Int J Mol Sci 2024; 25:10793. [PMID: 39409122 PMCID: PMC11477144 DOI: 10.3390/ijms251910793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The 3D protein structure is the basis for all their biological functions [...].
Collapse
Affiliation(s)
- Alexandre G. de Brevern
- DSIMB Bioinformatics Team, BIGR, INSERM, Université Paris Cité, F-75015 Paris, France; ; Tel.: +33-1-4449-3000
- DSIMB Bioinformatics Team, BIGR, INSERM, Université de la Réunion, F-97715 Saint Denis, France
| |
Collapse
|
23
|
Yu J, Xiang Y, Gao Y, Chang S, Kong R, Lv X, Yu J, Jin Y, Li C, Ma Y, Wang Z, Zhou J, Yuan H, Shang S, Hua F, Zhang X, Cui B, Li P. PKC α inhibitors promote breast cancer immune evasion by maintaining PD-L1 stability. Acta Pharm Sin B 2024; 14:4378-4395. [PMID: 39525583 PMCID: PMC11544271 DOI: 10.1016/j.apsb.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 11/16/2024] Open
Abstract
Protein kinase C α (PKCα) regulates diverse biological functions of cancer cells and is a promising therapeutic target. However, clinical trials of PKC-targeted therapies have not yielded satisfactory results. Recent studies have also indicated a tumor-suppressive role of PKCs via unclear molecular mechanisms. In this study, we found that PKCα inhibition enhances CD8+ T-cell-mediated tumor evasion and abolishes antitumor activity in immunocompetent mice. We further identified PKCα as a critical regulator of programmed cell death-ligand 1 (PD-L1) and found that it enhances T-cell-dependent antitumor immunity in breast cancer by interacting with PD-L1 and suppressing PD-L1 expression. We demonstrated that PKCα-mediated PD-L1 phosphorylation promotes PD-L1 degradation through β transducin repeat-containing protein. Notably, the efficacy of PKCα inhibitors was intensified by synergizing with anti-PD-L1 mAb therapy to boost antitumor T-cell immunity in vivo. Clinical analysis revealed that PKCα expression is positively correlated with T-cell function and the interferon-gamma signature in patients with breast cancer. This study demonstrated the antitumor capability of PKCα, identified potential therapeutic strategies to avoid tumor evasion via PKC-targeted therapies, and provided a proof of concept for targeting PKCα in combination with anti-PD-L1 mAb therapy as a potential therapeutic approach against breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Jiaojiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujin Xiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuzhen Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yunjie Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chenxi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiran Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhenhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Massey S, Kongchan N, Gao Y, Chaudhury A, Olokpa E, Karch J, Malovannaya A, Cheng C, Zhang X, Neilson JR. PKC-mediated phosphorylation governs the stability and function of CELF1 as a driver of EMT in breast epithelial cells. J Biol Chem 2024; 300:107826. [PMID: 39343007 PMCID: PMC11585768 DOI: 10.1016/j.jbc.2024.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is believed to be a principal factor contributing to cancer metastasis. The post-transcriptional and post-translational mechanisms underlying EMT are comparatively underexplored. We previously demonstrated that the CELF1 RNA binding protein is necessary and sufficient to drive the EMT of breast epithelial cells, and that the relative protein expression of CELF1 in this context was dictated at the post-translational level. Here, we elucidate the mechanism of this regulation. Mass spectrometric analysis of CELF1 isolated from mesenchymal MCF-10A cells identified multiple sites of serine and threonine phosphorylation on the protein, correlating with the increased stability of this protein in this cellular state. Analysis of phosphomimetic and serine/threonine-to-alanine phosphomutant variants of CELF1 revealed that these phosphorylation sites indeed dictate CELF1 stability, ubiquitination state, and function in vitro. Via co-immunoprecipitation and in vitro kinase assays, we identified the protein kinase C alpha and epsilon isozymes as the kinases responsible for CELF1 phosphorylation in a breast cell line. Genetic epistasis experiments confirmed that these PKCs function upstream of CELF1 in this EMT program, and CELF1 phosphorylation impacts tumor metastasis in a xenograft model. This work is the first to formally establish the mechanisms underlying post-translational control of CELF1 expression and function during EMT of breast epithelial cells. Given the broad dysregulation of CELF1 expression in human breast cancer, our results may ultimately provide knowledge that may be leveraged for novel therapeutic interventions in this context.
Collapse
Affiliation(s)
- Shebna Massey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Natee Kongchan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Gao
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Arindam Chaudhury
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emuejevoke Olokpa
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Joel R Neilson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
25
|
Zhang L, Li M, Li X, Xiao T, Zhou H, Zhang W, Wang P. Deciphering the role of PLCD3 in lung cancer: A gateway to glycolytic reprogramming via PKC-Rap1 activation. Heliyon 2024; 10:e37063. [PMID: 39296221 PMCID: PMC11408031 DOI: 10.1016/j.heliyon.2024.e37063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
PLCD3 belongs to the phospholipase C delta group and is involved in numerous biological functions, including cell growth, programmed cell death, and specialization. However, the role of PLCD3 in lung cancer still needs further investigation. This research aimed to investigate if PLCD3 influences glycolytic reprogramming and lung cancer development through the PKC-dependent Rap1 signaling pathway. This study found that PLCD3 was increased in lung cancer tissues. PLCD3 promotes the proliferation and invasion of lung cancer cells by activating the PKC-dependent Rap1 pathway. The detailed process involves PLCD3 triggering PKC, which subsequently stimulates the Rap1 pathway, leading to glycolytic reprogramming that supplies adequate energy and metabolic substrates necessary for the growth and spread of lung cancer cells. Moreover, PLCD3 can also promote the metastasis and invasion of lung cancer cells by activating the Rap1 pathway. This study reveals the mechanism of PLCD3 in lung cancer and provides new ideas for the treatment of lung cancer. Inhibiting PLCD3, PKC, and the Rap1 pathway may be an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Liang Zhang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, PR China
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Ting Xiao
- College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Honggang Zhou
- College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, PR China
| | - Ping Wang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, PR China
| |
Collapse
|
26
|
Cao M, Gao Y. Mast cell stabilizers: from pathogenic roles to targeting therapies. Front Immunol 2024; 15:1418897. [PMID: 39148726 PMCID: PMC11324444 DOI: 10.3389/fimmu.2024.1418897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely distributed in human tissues. When activated, they will release tryptase, histamine and other mediators that play major roles in a diverse array of diseases/disorders, including allergies, inflammation, cardiovascular diseases, autoimmune diseases, cancers and even death. The multiple pathological effects of MCs have made their stabilizers a research hotspot for the treatment of related diseases. To date, the clinically available MC stabilizers are limited. Considering the rapidly increasing incidence rate and widespread prevalence of MC-related diseases, a comprehensive reference is needed for the clinicians or researchers to identify and choose efficacious MC stabilizers. This review analyzes the mechanism of MC activation, and summarizes the progress made so far in the development of MC stabilizers. MC stabilizers are classified by the action mechanism here, including acting on cell surface receptors, disturbing signal transduction pathways and interfering exocytosis systems. Particular emphasis is placed on the clinical applications and the future development direction of MC stabilizers.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
28
|
Lim H. Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B. J Cheminform 2024; 16:59. [PMID: 38790018 PMCID: PMC11127438 DOI: 10.1186/s13321-024-00845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, and deep learning has been recognized as a promising solution. In this study, I developed an effective computational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the future of drug discovery and development. SCIENTIFIC CONTRIBUTION: The scientific contribution of this study lies in the development of the Scoring-Assisted Generative Exploration (SAGE) method, a novel computational approach that significantly enhances de novo molecular design. SAGE uniquely integrates virtual synthesis simulation, the generation of complex bridged bicyclic rings, and multiple scoring models to optimize drug-like properties comprehensively. By efficiently generating molecules that meet a broad spectrum of pharmacological criteria-including target specificity, synthetic accessibility, solubility, and metabolic stability-within a reasonable number of steps, SAGE represents a substantial advancement over traditional methods. Additionally, the application of SAGE to discover dual inhibitors for acetylcholinesterase and monoamine oxidase B not only demonstrates its potential to streamline and enhance the drug development process but also highlights its capacity to create more effective and precisely targeted therapies. This study emphasizes the critical and evolving role of de novo design strategies in reshaping the future of drug discovery and development, providing promising avenues for innovative therapeutic discoveries.
Collapse
Affiliation(s)
- Hocheol Lim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea.
| |
Collapse
|
29
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
30
|
Liu HL, Huang Z, Li QZ, Cao YZ, Wang HY, Alolgab RN, Deng XY, Zhang ZH. Schisandrin A alleviates renal fibrosis by inhibiting PKCβ and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155372. [PMID: 38382281 DOI: 10.1016/j.phymed.2024.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Renal fibrosis is a common pathway that drives the advancement of numerous kidney maladies towards end-stage kidney disease (ESKD). Suppressing renal fibrosis holds paramount clinical importance in forestalling or retarding the transition of chronic kidney diseases (CKD) to renal failure. Schisandrin A (Sch A) possesses renoprotective effect in acute kidney injury (AKI), but its effects on renal fibrosis and underlying mechanism(s) have not been studied. STUDY DESIGN Serum biochemical analysis, histological staining, and expression levels of related proteins were used to assess the effect of PKCβ knockdown on renal fibrosis progression. Untargeted metabolomics was used to assess the effect of PKCβ knockdown on serum metabolites. Unilateral Ureteral Obstruction (UUO) model and TGF-β induced HK-2 cells and NIH-3T3 cells were used to evaluate the effect of Schisandrin A (Sch A) on renal fibrosis. PKCβ overexpressed NIH-3T3 cells were used to verify the possible mechanism of Sch A. RESULTS PKCβ was upregulated in the UUO model. Knockdown of PKCβ mitigated the progression of renal fibrosis by ameliorating perturbations in serum metabolites and curbing oxidative stress. Sch A alleviated renal fibrosis by downregulating the expression of PKCβ in kidney. Treatment with Sch A significantly attenuated the upregulated proteins levels of FN, COL-I, PKCβ, Vimentin and α-SMA in UUO mice. Moreover, Sch A exhibited a beneficial impact on markers associated with oxidative stress, including MDA, SOD, and GSH-Px. Overexpression of PKCβ was found to counteract the renoprotective efficacy of Sch A in vitro. CONCLUSION Sch A alleviates renal fibrosis by inhibiting PKCβ and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qing-Zhen Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Zhi Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han-Yu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolgab
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xue-Yang Deng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhi-Hao Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
31
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Wang L, Cheng Q. APOBEC-1 Complementation Factor: From RNA Binding to Cancer. Cancer Control 2024; 31:10732748241284952. [PMID: 39334524 PMCID: PMC11439182 DOI: 10.1177/10732748241284952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND APOBEC-1 complementation factor (A1CF) and Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1 (APOBEC-1) constitute the minimal proteins necessary for the editing of apolipoprotein B (apoB) mRNA in vitro. Unlike APOBEC-1 and apoB mRNA, the ubiquitous expression of A1CF in human tissues suggests its unique biological significance, with various factors such as protein kinase C, thyroid hormones, and insulin regulating the activity and expression of A1CF. Nevertheless, few studies have provided an overview of this topic. OBJECTIVE We conducted a literature review to describe the molecular mechanisms of A1CF and its relevance to human diseases. METHOD In the PubMed database, we used the keywords 'A1CF' and 'APOBEC-1 complementation factor' to collect peer-reviewed articles published in English from 2000 to 2023. Two authors independently reviewed the articles and reached the consensus. RESULT After reviewing 127 articles, a total of 61 articles that met the inclusion criteria were included in the present review. Studies revealed that A1CF is involved in epigenetic regulation of reproductive cells affecting embryonic development, and that it is closely associated with the occurrence of gout due to its editing properties on apoB. A1CF can also affect the process of epithelial-mesenchymal transition in renal tubular epithelial cells and promote liver regeneration by controlling the stability of IL-6 mRNA, but no influence on cardiac function was found. Furthermore, increasing evidence suggests that A1CF may promote the occurrence and development of breast cancer, lung cancer, renal cell carcinoma, hepatocellular carcinoma, endometrial cancer, and glioma. CONCLUSION This review clarifies the association between A1CF and other complementary factors and their impact on the development of human diseases, aiming to provide guidance for further research on A1CF, which can help treat human diseases and promote health.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Cheng
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Tran U, Billingsley KL. Biological evaluation of indolactams for in vitro bryostatin 1-like activity. Bioorg Med Chem Lett 2024; 97:129570. [PMID: 38036273 DOI: 10.1016/j.bmcl.2023.129570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Small molecule activators of protein kinase C (PKC) have traditionally been classified as either tumor promoters or suppressors. Although bryostatin 1 has well established anti-cancer activity, most natural products that target the PKC regulator domain exhibit tumor promotion properties. In this study, we examine a focused library of indolactam analogues in cell-based assays to establish the structural features of the scaffold that enhance bryostatin 1-like activity. These systematic biological assessments identified specific indole substitution patterns that impart diminished tumor promotion behavior in vitro for indolactam analogues, while still maintaining nanomolar potency for PKC.
Collapse
Affiliation(s)
- UyenPhuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA
| | - Kelvin L Billingsley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA.
| |
Collapse
|
34
|
Wolf L, Vogt J, Alber J, Franjic D, Feger M, Föller M. PKC regulates αKlotho gene expression in MDCK and NRK-52E cells. Pflugers Arch 2024; 476:75-86. [PMID: 37773536 PMCID: PMC10758369 DOI: 10.1007/s00424-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Particularly expressed in the kidney, αKlotho is a transmembrane protein that acts together with bone hormone fibroblast growth factor 23 (FGF23) to regulate renal phosphate and vitamin D homeostasis. Soluble Klotho (sKL) is released from the transmembrane form and controls various cellular functions as a paracrine and endocrine factor. αKlotho deficiency accelerates aging, whereas its overexpression favors longevity. Higher αKlotho abundance confers a better prognosis in cardiovascular and renal disease owing to anti-inflammatory, antifibrotic, or antioxidant effects and tumor suppression. Serine/threonine protein kinase C (PKC) is ubiquitously expressed, affects several cellular responses, and is also implicated in heart or kidney disease as well as cancer. We explored whether PKC is a regulator of αKlotho. Experiments were performed in renal MDCK or NRK-52E cells and PKC isoform and αKlotho expression determined by qRT-PCR and Western Blotting. In both cell lines, PKC activation with phorbol ester phorbol-12-myristate-13-acetate (PMA) downregulated, while PKC inhibitor staurosporine enhanced αKlotho mRNA abundance. Further experiments with PKC inhibitor Gö6976 and RNA interference suggested that PKCγ is the major isoform for the regulation of αKlotho gene expression in the two cell lines. In conclusion, PKC is a negative regulator of αKlotho gene expression, an effect which may be relevant for the unfavorable effect of PKC on heart or kidney disease and tumorigenesis.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Vogt
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Domenic Franjic
- Core Facility Hohenheim, Data and Statistical Consulting, University of Hohenheim, 70599, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
35
|
Liu MH, Tang Y, Qu LQ, Song LL, Lo HH, Zhang RL, Yun XY, Wang HM, Chan JTW, Wu JH, Wang CR, Wong VKW, Wu AG, Law BYK. Raddeanin A isolated from Anemone raddeana Regel improves pathological and cognitive deficits of the mice model of Alzheimer's disease by targeting β-amyloidosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155121. [PMID: 37856988 DOI: 10.1016/j.phymed.2023.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Raddeanin A is a triterpenoid isolated from Anemone raddeana Regel. It exhibits a broad spectrum of biological activities such as anti-tumor and anti-inflammatory, however, its neuroprotective effect in targeting Alzheimer's disease (AD) remains uninvestigated. PURPOSE To provide scientific base for the development of novel AD drug by clarifying the neuroprotective effect and molecular mechanisms of raddeanin A in both in vitro and in vivo AD model. STUDY DESIGN To confirm the neuroprotective role of raddeanin A in the treatment of AD, its mechanisms and effects on β-amyloidosis and Aβ fibrillation was studied in U87 cells. Besides, the improvement on cognitive deficit, pathological defects, reactive astrocyte clusters, inhibition on neuronal inflammation and apoptosis were further studied in 3 x Tg-AD mice model of AD. METHODS Real-time PCR, western blot, dot blot, biolayer interferometry and bioinformatics analysis were used to confirm the in vitro effect and targets of raddeanin A on β-amyloidosis and its associated protein network. A series of experiments including Morris water maze, H&E staining, nissl staining and immunofluorescence analysis were conducted to confirm the protective behavioral effect of raddeanin A in the in vivo AD mice model. RESULTS Raddeanin A was identified to reduce β-amyloidosis in U87 cells and 3 x Tg-AD mice model of AD by decreasing level of BACE1, APP, APP-β and Aβ. Raddeanin A improved behavioral, spatial memory and learning ability in the AD mice. In the cortex and hippocampus, raddeanin A improved the morphology and arrangement of neurons, lower the level of reactive astrocyte marker GFAP and apoptotic marker proteins Bax/Bcl2 ratio. Moreover, raddeanin A upregulated the mRNA and protein level of Prkcα in the hippocampus of AD mice whose neuroprotective effect was exerted possibly via the activation of protein kinase C. CONCLUSION As a novel natural agent targeting β-amyloidosis, our results provide the first evidence of the multiple in vitro and in vivo neuroprotective effect of raddeanin A, suggesting its potential therapeutic application in preventing or alleviating the symptoms of AD.
Collapse
Affiliation(s)
- Meng Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Tang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui Long Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao Yun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian Hui Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cai Ren Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
36
|
Wang H, Li W. Puerarin alleviates the high glucose-induced oxidative stress via the RAGE/PKC/NOX4 axis in renal mesangial cells. J Toxicol Sci 2024; 49:497-507. [PMID: 39496386 DOI: 10.2131/jts.49.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, of which progression is related to high glucose (HG)-induced oxidative stress in renal mesangial cells. Our study aims to explore the antioxidant activity and the underlying mechanism of Puerarin (Pu) in renal mesangial cells exposed to HG. After the cells finished different treatments, DCFH-DA was used to detect the generation of ROS while the expression of AGE, MDA, SOD, and GSH-PX was measured by the ELISA and corresponding kits. The cell morphology was captured by optical microscopy. The mRNA expressions of RAGE, PKCα, PKCβ, PKCγ, and NOX4 were calculated by RT-PCR assays, while the protein expressions of RAGE, NOX4, and PKCβ were quantified via western blotting. Compared with the normal glucose (NG) group, the ROS level, SOD activity, and GSH-PX expression were markedly reduced in the HG group while the MDA expression was increased in the HG group. Then, Pu treatment was proved to significantly prevent the HG-induced up-regulation of ROS level, MDA expression, and down-regulation of SOD activity and GSH-PX expression. Besides, Pu treatment can notably inhibit the AGE expression and reverse the increased RAGE, PKCβ, and NOX4 expressions by HG environment at both RNA and protein levels. Moreover, the antioxidant effect of Pu against access glucose could not be observed in PKCβ knockdown cells. Pu can alleviate the HG-induced oxidative stress via the RAGE/PKC/NOX4 axis in renal mesangial cells, which innovatively suggests the therapeutic potential of Pu for DN treatment.
Collapse
Affiliation(s)
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, China
| |
Collapse
|
37
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
38
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
39
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
40
|
Narasaki S, Noguchi S, Urabe T, Harada K, Hide I, Tanaka S, Yanase Y, Kajimoto T, Uchida K, Tsutsumi YM, Sakai N. Identification of protein kinase C domains involved in its translocation induced by propofol. Eur J Pharmacol 2023; 955:175806. [PMID: 37230321 DOI: 10.1016/j.ejphar.2023.175806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Propofol is widely used for general anesthesia and sedation; however, the mechanisms of its anesthetic and adverse effects are not fully understood. We have previously shown that propofol activates protein kinase C (PKC) and induces its translocation in a subtype-specific manner. The purpose of this study was to identify the PKC domains involved in propofol-induced PKC translocation. The regulatory domains of PKC consist of C1 and C2 domains, and the C1 domain is subdivided into the C1A and C1B subdomains. Mutant PKCα and PKCδ with each domain deleted were fused with green fluorescent protein (GFP) and expressed in HeLa cells. Propofol-induced PKC translocation was observed by time-lapse imaging using a fluorescence microscope. The results showed that persistent propofol-induced PKC translocation to the plasma membrane was abolished by the deletion of both C1 and C2 domains in PKCα and by the deletion of the C1B domain in PKCδ. Therefore, propofol-induced PKC translocation involves the C1 and C2 domains of PKCα and the C1B domain of PKCδ. We also found that treatment with calphostin C, a C1 domain inhibitor, abolished propofol-induced PKCδ translocation. In addition, calphostin C inhibited the propofol-induced phosphorylation of endothelial nitric oxide synthase (eNOS). These results suggest that it may be possible to modulate the exertion of propofol effects by regulating the PKC domains involved in propofol-induced PKC translocation.
Collapse
Affiliation(s)
- Soshi Narasaki
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan; Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Soma Noguchi
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Tomoaki Urabe
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan; Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Kana Harada
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Izumi Hide
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Shigeru Tanaka
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Yuhki Yanase
- Dept of Pharmacotherapy, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Taketoshi Kajimoto
- Div of Biochem, Dept of Biochem and Mol Biol, Kobe Univ Grad Sch of Med, Japan
| | - Kazue Uchida
- Dept of Dermatology, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Yasuo M Tsutsumi
- Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Norio Sakai
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan.
| |
Collapse
|
41
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
42
|
Trehan D, Kumari R, Sharma J, Satuluri SH, Sahay S, Jha NK, Batra JK, Agrawal U. Inhibition of protein kinase C isozymes causes immune profile alteration and possibly decreased tumorigenesis in bladder cancer. Am J Cancer Res 2023; 13:3832-3852. [PMID: 37693140 PMCID: PMC10492116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/23/2023] [Indexed: 09/12/2023] Open
Abstract
Protein kinase C (PRKC) isozymes activate many signaling pathways and promote tumorigenesis, which can be confirmed by masking the kinase activity. In the present study, the kinase activity of PRKC ε and ζ isozymes was masked by siRNA in bladder cancer, and the consequent gene profile was evaluated. Here, we show that the commonly dysregulated genes affected by both the isozymes were the chemokines (CXCL8 & CXCL10), adhesion molecules (ICAM1, SPP1, MMP3, VEGFA) and mutated isoform of TP53. As these same genes were upregulated in bladder cancer patients, the activity of the kinase in downregulating them is confirmed. These genes are associated with regulating the tumor microenvironment, proliferation and differentiation of cancer cells and poor prognosis. The effect of kinase masking in downregulating these genes in bladder cancer indicates the benefits PRKC inhibitors may have in managing these patients.
Collapse
Affiliation(s)
- Deepika Trehan
- ICMR-National Institute of PathologyNew Delhi, India
- Jamia Hamdard UniversityNew Delhi, India
| | - Ranbala Kumari
- ICMR-National Institute of PathologyNew Delhi, India
- Amity UniversityNoida, UP, India
| | - Jyoti Sharma
- ICMR-National Institute of PathologyNew Delhi, India
| | | | - Satya Sahay
- ICMR-National Institute of PathologyNew Delhi, India
| | | | | | - Usha Agrawal
- ICMR-National Institute of PathologyNew Delhi, India
| |
Collapse
|
43
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
44
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
45
|
Gao ZG, Levitan IM, Inoue A, Wei Q, Jacobson KA. A 2B adenosine receptor activation and modulation by protein kinase C. iScience 2023; 26:107178. [PMID: 37404375 PMCID: PMC10316653 DOI: 10.1016/j.isci.2023.107178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Protein kinase C (PKC) isoforms regulate many important signaling pathways. Here, we report that PKC activation by phorbol 12-myristate 13-acetate (PMA) enhanced A2B adenosine receptor (AR)-mediated, but not β2-adrenergic receptor-mediated, cAMP accumulation, in H9C2 cardiomyocyte-like and HEK293 cells. In addition to enhancement, PKC (PMA-treatment) also activated A2BAR with low Emax (H9C2 and NIH3T3 cells endogenously expressing A2BAR), or with high Emax (A2BAR-overexpressing HEK293 cells) to induce cAMP accumulation. A2BAR activation induced by PKC was inhibited by A2BAR and PKC inhibitors but enhanced by A2BAR overexpression. Gαi isoforms and PKCγ isoform were found to be involved in both enhancement of A2BAR function and A2BAR activation. Thus, we establish PKC as an endogenous modulator and activator of A2BAR, involving Giα and PKCγ. Depending on signaling pathway, PKC could activate and enhance, or alternatively inhibit A2BAR activity. These findings are relevant to common functions of A2BAR and PKC, e.g. cardioprotection and cancer progression/treatment.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ian M. Levitan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Crossay E, Jullian V, Trinel M, Sagnat D, Hamel D, Groppi E, Rolland C, Stigliani JL, Mejia K, Cabanillas BJ, Alric L, Buscail E, El Kalamouni C, Mavingui P, Deraison C, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. and their PKCζ-dependent anti-proliferative activity on colorectal cancer cells. Bioorg Med Chem 2023; 90:117366. [PMID: 37329676 DOI: 10.1016/j.bmc.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.
Collapse
Affiliation(s)
- Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Toulouse Organoids Platform, Institut de Recherche en Santé Digestive, INSERM, Toulouse, France
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Emie Groppi
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Laurent Alric
- Pole Digestif, Centre Hospitalier Universitaire, Toulouse, France
| | - Etienne Buscail
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Département de Chirurgie Digestive, Unité de Chirurgie Colorectale, Centre Hospitalier Universitaire, Toulouse, France
| | - Chaker El Kalamouni
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Patrick Mavingui
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France.
| |
Collapse
|
47
|
Effects of exercise and bryostatin-1 on functional recovery and posttranslational modification in the perilesional cortex after cerebral infarction. Neuroreport 2023; 34:267-272. [PMID: 36881749 DOI: 10.1097/wnr.0000000000001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Strokes can cause a variety of sequelae, such as paralysis, particularly in the early stages after stroke onset. Rehabilitation therapy atthis time often provides some degree of paralysis recovery. Neuroplasticity in the peri-infarcted cerebral cortex induced by exercise training may contribute to recovery of paralysis after cerebral infarction. However, the molecular mechanism of this process remains unclear. This study focused on brain protein kinase C (PKC), which is speculated to be involved in neuroplasticity. We evaluated the functional recovery of cerebral infarction model rats, by using rotarod test after running wheel training and with/without administration of bryostatin, a PKC activator. In addition, the expression of phosphorylated and unphosphorylated PKC subtypes, glycogen synthase kinase 3β (GSK3β), and collapsin response-mediator proteins 2 (CRMP2) were analyzed by Western blotting. In the rotarod test, bryostatin administration alone had no effect on gait duration, but the combination of training and this drug significantly prolonged gait duration compared with training alone. In protein expression analysis, the combination of training and bryostatin significantly increased phosphorylation of PKCα and PKCε isoforms, increased phosphorylation of GSK3β, which acts downstream of PKC, and decreased phosphorylation of CRMP2. The effect of bryostatin in combination with training appears to be mediated via PKC phosphorylation, with effects on functional recovery occurring through the downstream regulation of GSK3β and CRMP2 phosphorylation.
Collapse
|
48
|
Indolyl-Derived 4H-Imidazoles: PASE Synthesis, Molecular Docking and In Vitro Cytotoxicity Assay. Processes (Basel) 2023. [DOI: 10.3390/pr11030846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
The strategy of the nucleophilic substitution of hydrogen (SNH) was first applied for the metal-free C-H/C-H coupling reactions of 4H-imidazole 3-oxides with indoles. As a result, a series of novel bifunctional azaheterocyclic derivatives were obtained in yields up to 95%. In silico experiments on the molecular docking were performed to evaluate the binding possibility of the synthesized small azaheterocyclic molecules to the selected biotargets (BACE1, BChE, CK1δ, AChE) associated with the pathogenesis of neurodegenerative diseases. To assess the cytotoxicity for the synthesized compounds, a series of in vitro experiments were also carried out on healthy human embryo kidney cells (HEK-293). The leading compound bearing both 5-phenyl-4H-imidazole and 1-methyl-1H-indole moieties was defined as the prospective molecule possessing the lowest cytotoxicity (IC50 > 300 µM on HEK-293) and the highest binding energy in the protein–ligand complex (AChE, −13.57 kcal/mol). The developed compounds could be of particular interest in medicinal chemistry, particularly in the targeted design of small-molecule candidates for the treatment of neurodegenerative disorders.
Collapse
|
49
|
Insertion Depth Modulates Protein Kinase C-δ-C1b Domain Interactions with Membrane Cholesterol as Revealed by MD Simulations. Int J Mol Sci 2023; 24:ijms24054598. [PMID: 36902029 PMCID: PMC10002858 DOI: 10.3390/ijms24054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Protein kinase C delta (PKC-δ) is an important signaling molecule in human cells that has both proapoptotic as well as antiapoptotic functions. These conflicting activities can be modulated by two classes of ligands, phorbol esters and bryostatins. Phorbol esters are known tumor promoters, while bryostatins have anti-cancer properties. This is despite both ligands binding to the C1b domain of PKC-δ (δC1b) with a similar affinity. The molecular mechanism behind this discrepancy in cellular effects remains unknown. Here, we have used molecular dynamics simulations to investigate the structure and intermolecular interactions of these ligands bound to δC1b with heterogeneous membranes. We observed clear interactions between the δC1b-phorbol complex and membrane cholesterol, primarily through the backbone amide of L250 and through the K256 side-chain amine. In contrast, the δC1b-bryostatin complex did not exhibit interactions with cholesterol. Topological maps of the membrane insertion depth of the δC1b-ligand complexes suggest that insertion depth can modulate δC1b interactions with cholesterol. The lack of cholesterol interactions suggests that bryostatin-bound δC1b may not readily translocate to cholesterol-rich domains within the plasma membrane, which could significantly alter the substrate specificity of PKC-δ compared to δC1b-phorbol complexes.
Collapse
|
50
|
Pérez-Vargas J, Shapira T, Olmstead AD, Villanueva I, Thompson CAH, Ennis S, Gao G, De Guzman J, Williams DE, Wang M, Chin A, Bautista-Sánchez D, Agafitei O, Levett P, Xie X, Nuzzo G, Freire VF, Quintana-Bulla JI, Bernardi DI, Gubiani JR, Suthiphasilp V, Raksat A, Meesakul P, Polbuppha I, Cheenpracha S, Jaidee W, Kanokmedhakul K, Yenjai C, Chaiyosang B, Teles HL, Manzo E, Fontana A, Leduc R, Boudreault PL, Berlinck RGS, Laphookhieo S, Kanokmedhakul S, Tietjen I, Cherkasov A, Krajden M, Nabi IR, Niikura M, Shi PY, Andersen RJ, Jean F. Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics. Antiviral Res 2023; 209:105484. [PMID: 36503013 PMCID: PMC9729583 DOI: 10.1016/j.antiviral.2022.105484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 μM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 μM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Andrea D Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ivan Villanueva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua De Guzman
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Meng Wang
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Aaleigha Chin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Diana Bautista-Sánchez
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Olga Agafitei
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul Levett
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Vitor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Virayu Suthiphasilp
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Achara Raksat
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Pornphimol Meesakul
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Isaraporn Polbuppha
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Helder Lopes Teles
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, CEP 78736-900, Rondonópolis, MT, Brazil
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy; Department of Biology, Università di Napoli "Federico II", Via Cupa Nuova Cinthia 21, 80126, Napoli, Italy
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP780, CEP13560-970, São Carlos, SP, Brazil
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS), School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ian Tietjen
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, School of Biomedical Engineering, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|