1
|
Dauba A, Spitzlei C, Bautista KJB, Jourdain L, Selingue E, VanTreeck KE, Mattern JA, Denis C, Ouldali M, Arteni AA, Truillet C, Larrat B, Tsuruta J, Durham PG, Papadopoulou V, Dayton PA, Tsapis N, Novell A. Low-boiling-point perfluorocarbon nanodroplets for adaptable ultrasound-induced blood-brain barrier opening. J Control Release 2024; 376:441-456. [PMID: 39419451 DOI: 10.1016/j.jconrel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Low-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (C3F8) or decafluorobutane (C4F10) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization. Transmission electron microscopy (TEM) and cryo-TEM were employed to confirm droplet formation while providing high-resolution insights into the droplet surface and lipid arrangement assessed from electron density observation after condensation. The vaporization threshold of NDs was determined with a high-speed camera, and the frequency signal emitted by the freshly vaporized bubbles was analyzed using cavitation detection. C3F8 NDs exhibited vaporization at 0.3 MPa (f0 = 1.5 MHz, 50 cycles), and emitted signals at 2 f0 and 1.5 f0 from 0.45 MPa onwards (f0 = 1.5 MHz, 50 cycles), while broadband noise was measured starting from 0.55 MPa. NDs with the higher boiling point C4F10 vaporized at 1.15 MPa and emitted signals at 2 f0 from 0.65 MPa and 1.5 f0 from 0.9 MPa, while broadband noise was detected starting from 0.95 MPa. Both ND formulations were used to permeabilize the BBB in healthy mice using tailored ultrasound sequences, allowing for the identification of optimal applications for each NDs type. C3F8 NDs proved suitable and safe for permeabilizing a large area, potentially the entire brain, at low acoustic pressure. Meanwhile, C4F10 droplets facilitated very localized (400 μm isotropic) permeabilization at higher pressure. This study prompts a closer examination of the structural rearrangements occurring during the condensation of microbubbles into NDs and highlights the potential to tailor solutions for different brain pathologies by choosing the composition of the NDs and adjusting the ultrasound sequence.
Collapse
Affiliation(s)
- Ambre Dauba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Claire Spitzlei
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Laurène Jourdain
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - Kelly E VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacob A Mattern
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline Denis
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette 91191, France
| | - James Tsuruta
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Phillip G Durham
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA; Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, North Carolina, USA
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France.
| |
Collapse
|
2
|
Soyer A, Goutal S, Leterrier S, Marie S, Larrat B, Selingue E, Winkeler A, Sarazin M, Bottlaender M, Tournier N. [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET imaging repurposed for quantitative estimation of blood-brain barrier permeability in a rat model of Alzheimer's disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:822-829. [PMID: 38657857 DOI: 10.1016/j.pharma.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.
Collapse
Affiliation(s)
- Amélie Soyer
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sébastien Goutal
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sarah Leterrier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Solène Marie
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Benoit Larrat
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Erwan Selingue
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Alexandra Winkeler
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Marie Sarazin
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Michel Bottlaender
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Nicolas Tournier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
3
|
López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release 2024; 372:901-913. [PMID: 38971426 DOI: 10.1016/j.jconrel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This review delves into the innovative technology of Blood-Brain Barrier (BBB) opening with low-intensity focused ultrasound in combination with microbubbles (LIFU-MB), a promising therapeutic modality aimed at enhancing drug delivery to the central nervous system (CNS). The BBB's selective permeability, while crucial for neuroprotection, significantly hampers the efficacy of pharmacological treatments for CNS disorders. LIFU-MB emerges as a non-invasive and localized method to transiently increase BBB permeability, facilitating the delivery of therapeutic molecules. Here, we review the procedural stages of LIFU-MB interventions, including planning and preparation, sonication, evaluation, and delivery, highlighting the technological diversity and methodological challenges encountered in current clinical applications. With an emphasis on safety and efficacy, we discuss the crucial aspects of ultrasound delivery, microbubble administration, acoustic feedback monitoring and assessment of BBB permeability. Finally, we explore the critical choices for effective BBB opening with LIFU-MB, focusing on selecting therapeutic agents, optimizing delivery methods, and timing for delivery. Overcoming existing barriers to integrate this technology into clinical practice could potentially revolutionize CNS drug delivery and treatment paradigms in the near future.
Collapse
Affiliation(s)
- Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Physics, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Castillo-Ortiz
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Technologies for Health and Well-being, Polytechnic University of Valencia, Valencia, Spain; Molecular Imaging Technologies Research Institute (I3M), Polytechnic University of Valencia, Valencia, Spain
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Biomedical Engineering, Polytechnic University of Madrid, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain.
| |
Collapse
|
4
|
Leterrier S, Goutal S, Hugon G, Goislard M, Saba W, Hosten B, Specklin S, Winkeler A, Tournier N. Imaging quantitative changes in blood-brain barrier permeability using [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET in relation to glial cell recruitment in a mouse model of endotoxemia. J Cereb Blood Flow Metab 2024; 44:1117-1127. [PMID: 38441006 PMCID: PMC11179610 DOI: 10.1177/0271678x241236755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
The quantitative relationship between the disruption of the blood-brain barrier (BBB) and the recruitment of glial cells was explored in a mouse model of endotoxemia. [18F]2-Fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging was used as a paracellular marker for quantitative monitoring of BBB permeability after i.v injection of increasing doses of lipopolysaccharide (LPS) or vehicle (saline, n = 5). The brain distribution of [18F]FDS (VT, mL.cm-3) was estimated using kinetic modeling. LPS dose-dependently increased the brain VT of [18F]FDS after injection of LPS 4 mg/kg (5.2 ± 2.4-fold, n = 4, p < 0.01) or 5 mg/kg (9.0 ± 9.1-fold, n = 4, p < 0.01) but not 3 mg/kg (p > 0.05, n = 7). In 12 individuals belonging to the different groups, changes in BBB permeability were compared with expression of markers of astrocyte (GFAP) and microglial cell (CD11b) using ex vivo immunohistochemistry. Increased expression of CD11b and GFAP expression was observed in mice injected with 3 mg/kg of LPS, which did not increase with higher LPS doses. Quantitative [18F]FDS PET imaging can capture different levels of BBB permeability in vivo. A biphasic effect was observed with the lowest dose of LPS that triggered neuroinflammation without disruptive changes in BBB permeability, and higher LPS doses that increased BBB permeability without additional recruitment of glial cells.
Collapse
Affiliation(s)
- Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Gaëlle Hugon
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Wadad Saba
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Benoit Hosten
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Simon Specklin
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Alexandra Winkeler
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| |
Collapse
|
5
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
6
|
Hosten B, Goutal S, Leterrier S, Corvo C, Breuil L, Barret O, Specklin S, Truillet C, Tournier N. Brain delivery enabled by transient blood-brain barrier disruption induced by regadenoson: a PET imaging study. Expert Opin Drug Deliv 2024; 21:797-807. [PMID: 38881261 DOI: 10.1080/17425247.2024.2369765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Regadenoson, an agonist of adenosine A2 receptors, enables transient blood-brain barrier (BBB) disruption. The relevance of regadenoson as a pharmacological strategy for brain delivery was investigated using in vivo PET imaging in rats. RESEARCH DESIGN AND METHODS Kinetic modeling of brain PET data was performed to estimate the impact of regadenoson (0.05 mg.kg-1, i.v.) on BBB permeation compared with control rats (n = 4-6 per group). Three radiolabeled compounds of different sizes, which do not cross the intact BBB, were tested. RESULTS Regadenoson significantly increased the BBB penetration (+116 ± 13%, p < 0.001) of [18F]2-deoxy-2-fluoro-D-sorbitol ([18F]FDS, MW = 183 Da), a small-molecule marker of BBB permeability. The magnitude of the effect was different across brain regions, with a maximum increase in the striatum. Recovery of BBB integrity was observed 30 min after regadenoson injection. Regadenoson also increased the brain penetration (+72 ± 45%, p < 0.05) of a radiolabeled nanoparticle [89Zr]AGuIX (MW = 9 kDa). However, the brain kinetics of a monoclonal antibody ([89Zr]mAb, MW = 150 kDa) remained unchanged (p > 0.05). CONCLUSIONS PET imaging showed the features and limitations of BBB disruption induced by regadenoson in terms of extent, regional distribution, and reversibility. Nevertheless, regadenoson enables the brain delivery of small molecules or nanoparticles in rats.
Collapse
Affiliation(s)
- Benoit Hosten
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
- INSERM UMR1144, Université Paris Cité, Paris, France
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sarah Leterrier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Cassandre Corvo
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
- INSERM UMR1144, Université Paris Cité, Paris, France
| | - Olivier Barret
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses, France
| | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
7
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Chevaleyre C, Novell A, Tournier N, Dauba A, Dubois S, Kereselidze D, Selingue E, Jego B, Maillère B, Larrat B, Nozach H, Truillet C. Efficient PD-L1 imaging of murine glioblastoma with FUS-aided immunoPET by leveraging FcRn-antibody interaction. Theranostics 2023; 13:5584-5596. [PMID: 37908736 PMCID: PMC10614689 DOI: 10.7150/thno.87168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: The passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model. Methods: Transcranial FUS were applied over the whole brain in mice shortly before injecting the anti-PD-L1 IgG 89Zr-DFO-C4 or its FcRn low-affinity mutant 89Zr-DFO-C4Fc-MUT in a syngeneic glioblastoma murine model (GL261-GFP). Brain uptake was measured from PET scans acquired up to 7 days post-injection. Kinetic modeling was performed to compare the brain kinetics of both C4 formats. Results: FUS efficiently enhanced the delivery of both C4 radioligands in the brain with high reproducibility. 89Zr-DFO-C4Fc-MUT mean concentrations in the brain reached a significant uptake of 3.75±0.41%ID/cc with FUS against 1.92±0.45%ID/cc without, at 1h post-injection. A substantial and similar entry of both C4 radioligands was observed at a rate of 0.163±0.071 mL/h/g of tissue during 10.4±4.6min. The impaired interaction with FcRn of 89Zr-DFO-C4Fc-MUT significantly decreased the efflux constant from the healthy brain tissue to plasma compared with non-mutated IgG. Abolishing FcRn interaction allows determining the target engagement related to the specific binding as soon as 12h post-injection. Conclusion: Abolishing Fc-FcRn interaction confers improved kinetic properties to 89Zr-DFO-C4Fc-MUT for immunoPET imaging. FUS-aided BBB/BTB disruption enables quantitative imaging of PD-L1 expression by glioblastoma tumors within the brain.
Collapse
Affiliation(s)
- Céline Chevaleyre
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Anthony Novell
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Nicolas Tournier
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Ambre Dauba
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Steven Dubois
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Dimitri Kereselidze
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Erwan Selingue
- Paris-Saclay University, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Benoit Jego
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| | - Bernard Maillère
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Benoit Larrat
- Paris-Saclay University, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Hervé Nozach
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Charles Truillet
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay France
| |
Collapse
|
9
|
Goutal S, Novell A, Leterrier S, Breuil L, Selingue E, Gerstenmayer M, Marie S, Saubaméa B, Caillé F, Langer O, Truillet C, Larrat B, Tournier N. Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function. J Control Release 2023; 361:483-492. [PMID: 37562557 DOI: 10.1016/j.jconrel.2023.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [11C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB. A FUS protocol was devised in rats to induce a substantial and targeted disruption of the BBB in the left hemisphere. BBB disruption was confirmed by the Evan's Blue extravasation test or the minimally-invasive contrast-enhanced MRI. The expression of P-gp was measured 24 h or 48 h after FUS using immunostaining and fluorescence microscopy. The brain kinetics of [11C]metoclopramide was studied by PET at baseline, and both immediately or 24 h after FUS, with or without half-maximum P-gp inhibition (tariquidar 1 mg/kg). In each condition (n = 4-5 rats per group), brain exposure of [11C]metoclopramide was estimated as the area-under-the-curve (AUC) in regions corresponding to the sonicated volume in the left hemisphere, and the contralateral volume. Kinetic modeling was performed to estimate the uptake clearance ratio (R1) of [11C]metoclopramide in the sonicated volume relative to the contralateral volume. In the absence of FUS, half-maximum P-gp inhibition increased brain exposure (+135.0 ± 12.9%, p < 0.05) but did not impact R1 (p > 0.05). Immediately after FUS, BBB integrity was selectively disrupted in the left hemisphere without any detectable impact on the brain kinetics of [11C]metoclopramide compared with the baseline group (p > 0.05) or the contralateral volume (p > 0.05). 24 h after FUS, BBB integrity was fully restored while P-gp expression was maximally down-regulated (-45.0 ± 4.5%, p < 0.001) in the sonicated volume. This neither impacted AUC nor R1 in the FUS + 24 h group (p > 0.05). Only when P-gp was inhibited with tariquidar were the brain exposure (+130 ± 70%) and R1(+29.1 ± 15.4%) significantly increased in the FUS + 24 h/tariquidar group, relative to the baseline group (p < 0.001). We conclude that the brain kinetics of [11C]metoclopramide specifically depends on P-gp function rather than BBB integrity. Delayed FUS-induced down-regulation of P-gp function can be detected. Our results suggest that almost complete down-regulation is required to substantially enhance the brain delivery of P-gp substrates.
Collapse
Affiliation(s)
- Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Anthony Novell
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Sarah Leterrier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France; Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Erwan Selingue
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Solène Marie
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Bruno Saubaméa
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Benoît Larrat
- Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France.
| |
Collapse
|
10
|
Knippenberg N, Bauwens M, Schijns O, Hoogland G, Florea A, Rijkers K, Cleij TJ, Eersels K, van Grinsven B, Diliën H. Visualizing GABA transporters in vivo: an overview of reported radioligands and future directions. EJNMMI Res 2023; 13:42. [PMID: 37171631 PMCID: PMC10182260 DOI: 10.1186/s13550-023-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmission. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychiatric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant transporter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radioligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioligands in the future.
Collapse
Affiliation(s)
- Niels Knippenberg
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands.
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Olaf Schijns
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6200 MD, Maastricht, The Netherlands
- Academic Center for Epileptology (ACE), Maastricht University Medical Centre+ (MUMC+), 6229 HX, Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
11
|
Johansen PM, Hansen PY, Mohamed AA, Girshfeld SJ, Feldmann M, Lucke-Wold B. Focused ultrasound for treatment of peripheral brain tumors. EXPLORATION OF DRUG SCIENCE 2023; 1:107-125. [PMID: 37171968 PMCID: PMC10168685 DOI: 10.37349/eds.2023.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Collapse
Affiliation(s)
| | - Payton Yerke Hansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah J. Girshfeld
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marc Feldmann
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Blesa J, Pineda-Pardo JA, Inoue KI, Gasca-Salas C, Balzano T, Del Rey NLG, Reinares-Sebastián A, Esteban-García N, Rodríguez-Rojas R, Márquez R, Ciorraga M, del Álamo M, García-Cañamaque L, Ruiz de Aguiar S, Rachmilevitch I, Trigo-Damas I, Takada M, Obeso JA. BBB opening with focused ultrasound in nonhuman primates and Parkinson's disease patients: Targeted AAV vector delivery and PET imaging. SCIENCE ADVANCES 2023; 9:eadf4888. [PMID: 37075119 PMCID: PMC10115413 DOI: 10.1126/sciadv.adf4888] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A. Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University; Inuyama, Aichi 484-8506, Japan
| | - Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| | - Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Alejandro Reinares-Sebastián
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Rafael Rodríguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Raquel Márquez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - María Ciorraga
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Marta del Álamo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Lina García-Cañamaque
- University CEU-San Pablo, Madrid, Spain
- Department of Nuclear Medicine, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | | | | | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University; Inuyama, Aichi 484-8506, Japan
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - José A. Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| |
Collapse
|
13
|
Petrovskaya A, Tverskoi A, Medvedeva A, Nazarova M. Is blood-brain barrier a probable mediator of non-invasive brain stimulation effects on Alzheimer's disease? Commun Biol 2023; 6:416. [PMID: 37059824 PMCID: PMC10104838 DOI: 10.1038/s42003-023-04717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have shown multiple evidence of being able to alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in terms of their neuronal effects, while their possible non-neuronal effects, including mitigation of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover, such studies are important considering the safety issues of TMS/tDCS use in the advanced AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence of NIBS-induced BBB opening and closing in various models from in vitro to humans, and highlight its importance in AD.
Collapse
Affiliation(s)
- Aleksandra Petrovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Artem Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Angela Medvedeva
- Department of Chemistry, Rice University, Houston, TX, 77005, US
| | - Maria Nazarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| |
Collapse
|
14
|
Leterrier S, Goutal S, Saba W, Hugon G, Goislard M, Specklin S, Lebon V, Winkeler A, Tournier N. Détermination quantitative de la perméabilité de la barrière hémato-encéphalique évaluée par le [18F]2-fluoro-2-deoxy-sorbitol comme caractéristique de la neuroinflammation dans un modèle murin d’endotoxémie. MÉDECINE NUCLÉAIRE 2023. [DOI: 10.1016/j.mednuc.2023.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Porret E, Kereselidze D, Dauba A, Schweitzer-Chaput A, Jegot B, Selingue E, Tournier N, Larrat B, Novell A, Truillet C. Refining the delivery and therapeutic efficacy of cetuximab using focused ultrasound in a mouse model of glioblastoma: An 89Zr-cetuximab immunoPET study. Eur J Pharm Biopharm 2023; 182:141-151. [PMID: 36529256 DOI: 10.1016/j.ejpb.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and deadly form of primary brain tumor. Between 30 % and 60 % of GBM are characterized by overexpression of the Epidermal Growth Factor Receptor (EGFR). The anti-EGFR antibody Cetuximab (CTX) showed a favorable effect for EGFR+ colorectal cancer but failed to demonstrate efficacy for GBM. Insufficient CTX passage through the blood-brain barrier (BBB) and the blood-tumor barrier (BTB) is assumed to be the primary determinant of the limited efficacy of this immunotherapy. OBJECTIVE Using positron emission tomography (PET) imaging, we have previously demonstrated that focused ultrasound (FUS) combined with microbubbles (µB) allowed significant and persistent delivery of CTX across the BBB in healthy mice. In the current study, we investigated by PET imaging the combination impact of CTX and FUS on orthotopic GBM preclinical model. METHODS After radiolabeling CTX with the long half-life isotope 89Zr, PET images have been acquired overtime in mice bearing U251 (EGFR+) with or without FUS treatment. Autoradiography combined with immunofluorescence staining was used to corroborate CTX delivery with EGFR expression. A survival study was conducted simultaneously to evaluate the therapeutic benefit of repeated CTX monotherapy associated or not with FUS. RESULTS Ex vivo analysis confirmed that FUS enhanced and homogenized the delivery of CTX into all the FUS exposure area, including the tumor and the contralateral hemisphere at the early-time-point. Interestingly, FUS did not improve the long-term accumulation and retention of CTX in the tumor compared with the control group (no FUS). No significant difference in the CTX treatment efficacy, determined by the survival between FUS and non-FUS groups, has been either observed. This result is consistent with the absence of change in the CTX distribution through the GBM tumor after FUS. The neuroinflammation induced by FUS is not significant enough to explain the failure of the CTX delivery improvement. CONCLUSION All together, these data suggest that the role of FUS combined with µB on the CTX distribution, even after multiple therapeutic sessions and glial cell activation is insufficient to improve survival of GBM mice compared with CTX treatment alone in this model.
Collapse
Affiliation(s)
- Estelle Porret
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Ambre Dauba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Arnaud Schweitzer-Chaput
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Benoit Jegot
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Benoît Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France.
| |
Collapse
|
17
|
Molecular Imaging of Ultrasound-Mediated Blood-Brain Barrier Disruption in a Mouse Orthotopic Glioblastoma Model. Pharmaceutics 2022; 14:pharmaceutics14102227. [PMID: 36297663 PMCID: PMC9610067 DOI: 10.3390/pharmaceutics14102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically. Non-invasive, sensitive, and reliable imaging approaches are required to better understand the impact of FUS on the BBB and brain microenvironment. In this study, nuclear imaging (SPECT/CT and PET/CT) was used to quantify neuroinflammation 48 h post-FUS and estimate the influence of FUS on BBB opening and tumor growth in vivo. BBB disruptions were performed on healthy and GBM-bearing mice (U-87 MG xenograft orthotopic model). The BBB recovery kinetics were followed and quantified by [99mTc]Tc-DTPA SPECT/CT imaging at 0.5 h, 3 h and 24 h post-FUS. The absence of neuroinflammation was confirmed by [18F]FDG PET/CT imaging 48 h post-FUS. The presence of the tumor and its growth were evaluated by [68Ga]Ga-RGD2 PET/CT imaging and post-mortem histological analysis, showing that tumor growth was not influenced by FUS. In conclusion, molecular imaging can be used to evaluate the time frame for systemic treatment combined with transient BBB opening and to test its efficacy over time.
Collapse
|
18
|
Wang S, Feng Y, Chen L, Yu J, Van Ongeval C, Bormans G, Li Y, Ni Y. Towards updated understanding of brain metastasis. Am J Cancer Res 2022; 12:4290-4311. [PMID: 36225632 PMCID: PMC9548021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023] Open
Abstract
Brain metastasis (BM) is a common complication in cancer patients with advanced disease and attributes to treatment failure and final mortality. Currently there are several therapeutic options available; however these are only suitable for limited subpopulation: surgical resection or radiosurgery for cases with a limited number of lesions, targeted therapies for approximately 18% of patients, and immune checkpoint inhibitors with a response rate of 20-30%. Thus, there is a pressing need for development of novel diagnostic and therapeutic options. This overview article aims to provide research advances in disease model, targeted therapy, blood brain barrier (BBB) opening strategies, imaging and its incorporation with artificial intelligence, external radiotherapy, and internal targeted radionuclide theragnostics. Finally, a distinct type of BM, leptomeningeal metastasis is also covered.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU LeuvenHerestraat 49, Leuven 3000, Belgium
| | - Guy Bormans
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| |
Collapse
|
19
|
Agrahari V, Kumar P. Novel Approaches for Overcoming Biological Barriers. Pharmaceutics 2022; 14:pharmaceutics14091851. [PMID: 36145599 PMCID: PMC9501509 DOI: 10.3390/pharmaceutics14091851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Vibhuti Agrahari
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
- Correspondence: (V.A.); (P.K.)
| | - Prashant Kumar
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
- Correspondence: (V.A.); (P.K.)
| |
Collapse
|
20
|
Perfluorocarbon Nanodroplets as Potential Nanocarriers for Brain Delivery Assisted by Focused Ultrasound-Mediated Blood–Brain Barrier Disruption. Pharmaceutics 2022; 14:pharmaceutics14071498. [PMID: 35890391 PMCID: PMC9323719 DOI: 10.3390/pharmaceutics14071498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood–brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood–brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood–brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice’ bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood–brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents.
Collapse
|
21
|
Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-Intensity Focused Ultrasound Technique in Glioblastoma Multiforme Treatment. Front Oncol 2022; 12:903059. [PMID: 35677164 PMCID: PMC9169875 DOI: 10.3389/fonc.2022.903059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is one of the central nervous system most aggressive and lethal cancers with poor overall survival rate. Systemic treatment of glioblastoma remains the most challenging aspect due to the low permeability of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), limiting therapeutics extravasation mainly in the core tumor as well as in its surrounding invading areas. It is now possible to overcome these barriers by using low-intensity focused ultrasound (LIFU) together with intravenously administered oscillating microbubbles (MBs). LIFU is a non-invasive technique using converging ultrasound waves which can alter the permeability of BBB/BTB to drug delivery in a specific brain/tumor region. This emerging technique has proven to be both safe and repeatable without causing injury to the brain parenchyma including neurons and other structures. Furthermore, LIFU is also approved by the FDA to treat essential tremors and Parkinson's disease. It is currently under clinical trial in patients suffering from glioblastoma as a drug delivery strategy and liquid biopsy for glioblastoma biomarkers. The use of LIFU+MBs is a step-up in the world of drug delivery, where onco-therapeutics of different molecular sizes and weights can be delivered directly into the brain/tumor parenchyma. Initially, several potent drugs targeting glioblastoma were limited to cross the BBB/BTB; however, using LIFU+MBs, diverse therapeutics showed significantly higher uptake, improved tumor control, and overall survival among different species. Here, we highlight the therapeutic approach of LIFU+MBs mediated drug-delivery in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rajneesh Mungur
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesheng Zheng
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Tong
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|