1
|
Lou H, Hu G, Luan X, Steinbach-Rankins JM, Hageman MJ. Application of a UV-vis spectrometer to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. J Pharm Sci 2025; 114:256-264. [PMID: 39278591 DOI: 10.1016/j.xphs.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
To date, the commonly used methods for diffusion coefficient measurements have some hurdles that prevent them from being widely applied in pharmaceutical laboratories. This study aimed to modify a method developed by di Cagno et al. based on the use of a UV-Vis spectrometer and apply the method to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. A total of five small molecules and two proteins in different aqueous media and polymer solutions were investigated in this study. By attaching a 3D-printed cover with an open slit to a standard UV-Vis cuvette, the incident UV light could only pass through the open slit to measure the local drug concentration. During the diffusion experiment, drug molecules diffused from the cuvette bottom to the slit. According to the concentration measured as a function of time, diffusion coefficient was calculated based on Fick's law of diffusion using the analytical and numerical approaches. As a result, diffusion coefficients could be accurately measured with high reproducibility. The results also suggested that different media could affect the diffusion coefficients of small molecules by < 10% and proteins by < 15%. Since the UV-Vis spectrometer is a routine instrument, this method can potentially be employed by many pharmaceutical laboratories for diffusion coefficient measurements.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Jill M Steinbach-Rankins
- Innovation Technology Lead, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
2
|
Lamirande P, Gaffney EA, Gertz M, Maini PK, Crawshaw JR, Caruso A. A First-Passage Model of Intravitreal Drug Delivery and Residence Time-Influence of Ocular Geometry, Individual Variability, and Injection Location. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 39412819 PMCID: PMC11488524 DOI: 10.1167/iovs.65.12.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Standard of care for various retinal diseases involves recurrent intravitreal injections. This motivates mathematical modeling efforts to identify influential factors for ocular drug residence time, aiming to minimize administration frequency. We sought to describe the vitreal diffusion of therapeutics in nonclinical species frequently used during drug development assessments. In human eyes, we investigated the impact of variability in vitreous cavity size and eccentricity, and in injection location, on drug disposition. Methods Using a first-passage time approach, we modeled the transport-controlled distribution of two standard therapeutic protein formats (Fab and IgG) and elimination through anterior and posterior pathways. Anatomical three-dimensional geometries of mouse, rat, rabbit, cynomolgus monkey, and human eyes were constructed using ocular images and biometry datasets. A scaling relationship was derived for comparison with experimental ocular half-lives. Results Model simulations revealed a dependence of residence time on ocular size and injection location. Delivery to the posterior vitreous resulted in increased vitreal half-life and retinal permeation. Interindividual variability in human eyes had a significant influence on residence time (half-life range of 5-7 days), showing a strong correlation to axial length and vitreal volume. Anterior exit was the predominant route of drug elimination. Contribution of the posterior pathway displayed a 3% difference between protein formats but varied between species (10%-30%). Conclusions The modeling results suggest that experimental variability in ocular half-life is partially attributed to anatomical differences and injection site location. Simulations further suggest a potential role of the posterior pathway permeability in determining species differences in ocular pharmacokinetics.
Collapse
Affiliation(s)
- Patricia Lamirande
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford, United Kingdom
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford, United Kingdom
| | - Michael Gertz
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford, United Kingdom
| | - Jessica R. Crawshaw
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford, United Kingdom
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Antonello Caruso
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|
3
|
Hernandez-Montelongo J, Salazar-Araya J, Mas-Hernández E, Oliveira DS, Garcia-Sandoval JP. Unraveling Drug Delivery from Cyclodextrin Polymer-Coated Breast Implants: Integrating a Unidirectional Diffusion Mathematical Model with COMSOL Simulations. Pharmaceutics 2024; 16:486. [PMID: 38675147 PMCID: PMC11055099 DOI: 10.3390/pharmaceutics16040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer ranks among the most commonly diagnosed cancers worldwide and bears the highest mortality rate. As an integral component of cancer treatment, mastectomy entails the complete removal of the affected breast. Typically, breast reconstruction, involving the use of silicone implants (augmentation mammaplasty), is employed to address the aftermath of mastectomy. To mitigate postoperative risks associated with mammaplasty, such as capsular contracture or bacterial infections, the functionalization of breast implants with coatings of cyclodextrin polymers as drug delivery systems represents an excellent alternative. In this context, our work focuses on the application of a mathematical model for simulating drug release from breast implants coated with cyclodextrin polymers. The proposed model considers a unidirectional diffusion process following Fick's second law, which was solved using the orthogonal collocation method, a numerical technique employed to approximate solutions for ordinary and partial differential equations. We conducted simulations to obtain release profiles for three therapeutic molecules: pirfenidone, used for preventing capsular contracture; rose Bengal, an anticancer agent; and the antimicrobial peptide KR-12. Furthermore, we calculated the diffusion profiles of these drugs through the cyclodextrin polymers, determining parameters related to diffusivity, solute solid-liquid partition coefficients, and the Sherwood number. Finally, integrating these parameters in COMSOL multiphysics simulations, the unidirectional diffusion mathematical model was validated.
Collapse
Affiliation(s)
- Jacobo Hernandez-Montelongo
- Department of Physical and Mathematical Sciences, Catholic University of Temuco, Temuco 4813302, Chile
- Department of Translational Bioengineering, University of Guadalajara, Guadalajara 44430, Mexico
| | - Javiera Salazar-Araya
- Department of Mathematics and Statistics, University of La Frontera, Temuco 4811230, Chile;
| | - Elizabeth Mas-Hernández
- Faculty of Chemistry, Autonomous University of Queretaro, Campus Pedro Escobedo, Queretaro 76700, Mexico;
- Department of Mathematical Engineering, University of La Frontera, Temuco 4811230, Chile
| | - Douglas Soares Oliveira
- Jandaia do Sul Advanced Campus, Federal University of Parana, Jandaia do Sul 86900-000, PR, Brazil;
| | | |
Collapse
|
4
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Jiao X, Peng X, Jin X, Liu N, Yu Y, Liu R, Li Z. Nano-composite system of traditional Chinese medicine for ocular applications: molecular docking and three-dimensional modeling insight for intelligent drug evaluation. Drug Deliv Transl Res 2023; 13:3132-3144. [PMID: 37355484 DOI: 10.1007/s13346-023-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
The absorption of drugs was impeded in the posterior part of the eye due to the special structure. In addition, it was crucial to comprehend transport laws of molecules in ocular drug delivery for designing effective strategies. However, the current quality evaluation methods of the eye were backward and lack of dynamic monitoring of drug processes in vivo. Herein, nano-drug delivery system and three-dimensional (3D) model were combined to overcome the problems of low bioavailability and diffusion law. The model drugs were screened by molecular docking. The flexible nano-liposome (FNL) and temperature-sensitive gel (TSG) composite formulation was characterized through comprehensive evaluation. COMSOL software was utilized to build 3D eyeball to predict the bioavailability of drugs. The size of the preparation was about 98.34 nm which is relatively optimal for the enhanced permeability of the eyes. The formulation showed a stronger safety and non-irritant. The pharmacokinetics results of aqueous humor showed that the AUC of two drugs in this system increased by 3.79 and 3.94 times, respectively. The results of 3D calculation model proved that the concentrations of drugs reaching the retina were 1.90×10-5 mol/m3 and 6.37×10-6 mol/m3. In conclusion, the FNL-TSG markedly improved the bioavailability of multiple components in the eye. More importantly, a simplified 3D model was developed to preliminarily forecast the bioavailability of the retina after drug infusion, providing technical support for the accurate evaluation of ocular drug delivery. It provided new pattern for the development of intelligent versatile ophthalmic preparations.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingru Peng
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Jin
- Military Medicine Section, Dongli District, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, China
| | - Ning Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Yu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Li
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
6
|
Chacin Ruiz EA, Swindle-Reilly KE, Ford Versypt AN. Experimental and mathematical approaches for drug delivery for the treatment of wet age-related macular degeneration. J Control Release 2023; 363:464-483. [PMID: 37774953 PMCID: PMC10842193 DOI: 10.1016/j.jconrel.2023.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Several chronic eye diseases affect the posterior segment of the eye. Among them age-related macular degeneration can cause vision loss if left untreated and is one of the leading causes of visual impairment in the world. Most treatments are based on intravitreally injected therapeutics that inhibit the action of vascular endothelial growth factor. However, due to the need for monthly injections, this method is associated with poor patient compliance. To address this problem, numerous drug delivery systems (DDSs) have been developed. This review covers a selection of particulate systems, non-stimuli responsive hydrogels, implants, and composite systems that have been developed in the last few decades. Depending on the type of DDS, polymer material, and preparation method, different mechanical properties and drug release profiles can be achieved. Furthermore, DDS development can be optimized by implementing mathematical modeling of both drug release and pharmacokinetic aspects. Several existing mathematical models for diffusion-controlled, swelling-controlled, and erosion-controlled drug delivery from polymeric systems are summarized. Compartmental and physiologically based models for ocular drug transport and pharmacokinetics that have studied drug concentration profiles after intravitreal delivery or release from a DDS are also reviewed. The coupling of drug release models with ocular pharmacokinetic models can lead to obtaining much more efficient DDSs for the treatment of age-related macular degeneration and other diseases of the posterior segment of the eye.
Collapse
Affiliation(s)
- Eduardo A Chacin Ruiz
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Katelyn E Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
8
|
Schulz A, Szurman P. Vitreous Substitutes as Drug Release Systems. Transl Vis Sci Technol 2022; 11:14. [PMID: 36125790 PMCID: PMC9508686 DOI: 10.1167/tvst.11.9.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitreous substitutes are traditionally used to stabilize the retina after vitrectomy. In recent years, various approaches have been developed for using the vitreous substitute not only as a tamponade but also as a drug release system to tackle ocular diseases. This review provides an overview of the requirements for vitreous substitutes and discusses the current clinically applied as well as novel polymer-based vitreous substitutes as drug delivery systems, including their release mechanisms, efficiencies, challenges, and future perspectives.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach/Saar, Germany
- Klaus Heimann Eye Research Institute (KHERI), Sulzbach/Saar, Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach/Saar, Germany
- Klaus Heimann Eye Research Institute (KHERI), Sulzbach/Saar, Germany
| |
Collapse
|
9
|
Habibi M, Mobasseri S, Zare A, Souriaee V. Numerical simulation of drug delivery with therapeutic lens for the glaucoma treatment in the anterior eye chamber. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|