1
|
Bassalo D, Matthews SG, Bloise E. The canine blood-brain barrier in health and disease: focus on brain protection. Vet Q 2025; 45:12-32. [PMID: 39791202 PMCID: PMC11727060 DOI: 10.1080/01652176.2025.2450041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the ABCB1/MDR1 gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the ABCB1/MDR1 gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics. The review also covers factors that may disrupt the canine BBB, including the actions of aging, canine cognitive dysfunction, epilepsy, inflammation, infection, traumatic brain injury, among others. We highlight the critical importance of this barrier in maintaining central nervous system homeostasis and protecting against xenobiotics and conclude that a number of neurological-related diseases may increase vulnerability of the BBB in the canine species and discuss its profound impacts on canine health.
Collapse
Affiliation(s)
- Dimitri Bassalo
- Especialização em Farmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Romero-Ben E, Goswami U, Soto-Cruz J, Mansoori-Kermani A, Mishra D, Martin-Saldaña S, Muñoz-Ugartemendia J, Sosnik A, Calderón M, Beloqui A, Larrañaga A. Polymer-based nanocarriers to transport therapeutic biomacromolecules across the blood-brain barrier. Acta Biomater 2025; 196:17-49. [PMID: 40032217 DOI: 10.1016/j.actbio.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Therapeutic biomacromolecules such as genetic material, antibodies, growth factors and enzymes represent a novel therapeutic alternative for neurological diseases and disorders. In comparison to traditional therapeutics, which are mainly based on small molecular weight drugs that address the symptoms of these disorders, therapeutic biomacromolecules can reduce undesired side effects and target specific pathological pathways, thus paving the way towards personalized medicine. However, these biomacromolecules undergo degradation/denaturation processes in the physiological environment and show poor capacity to cross the blood-brain barrier (BBB). Consequently, they rarely reach the central nervous system (CNS) in their active form. Herein, we critically overview several polymeric nanocarriers that can protect and deliver therapeutic biomacromolecules across the BBB. Polymeric nanocarriers are first categorized based on their architecture (biodegradable solid nanoparticles, nanogels, dendrimers, self-assembled nanoparticles) that ultimately determines their physico-chemical properties and function. The available polymeric formulations are then thoroughly analyzed, placing particular attention on those strategies that ensure the stability of the biomacromolecules during their encapsulation process and promote their passage across the BBB by controlling their physical (e.g., mechanical properties, size, surface charge) and chemical (e.g., surface functional groups, targeting motifs) properties. Accordingly, this review gives a unique perspective on polymeric nanocarriers for the delivery of therapeutic biomacromolecules across the BBB, representing a concise, complete and easy-to-follow guide, which will be of high interest for chemists, material scientists, pharmacologists, and biologists. Besides, it also provides a critical perspective about the limited clinical translation of these systems. STATEMENT OF SIGNIFICANCE: The increasing incidence of central nervous system disorders is a major health concern. The use of therapeutic biomacromolecules has been placed in the spotlight of many investigations. However, reaching therapeutic concentration levels of biomacromolecules in the central nervous system is restricted by the blood-brain barrier and, thus, this represents the main clinical challenge when developing efficient therapies. Herein, we provide a critical discussion about the use of polymeric nanocarriers to deliver therapeutic biomacromolecules into the central nervous system, highlighting potential future directions to overcome the current challenges.
Collapse
Affiliation(s)
- Elena Romero-Ben
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Upashi Goswami
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Jackeline Soto-Cruz
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Amirreza Mansoori-Kermani
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain; Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo PIaggio 34, Pontedera 56025, Italy
| | - Dhiraj Mishra
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Jone Muñoz-Ugartemendia
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain.
| |
Collapse
|
3
|
Ramalho MJ, Andrade S, Loureiro JA, Pereira MC. Could encapsulation of natural compounds in BBB-permeable nanocarriers produce effective Alzheimer's disease treatments? Nanomedicine (Lond) 2025; 20:435-438. [PMID: 39727082 PMCID: PMC11875461 DOI: 10.1080/17435889.2024.2444859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Maria João Ramalho
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Stéphanie Andrade
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Șovrea AS, Boșca AB, Dronca E, Constantin AM, Crintea A, Suflețel R, Ștefan RA, Ștefan PA, Onofrei MM, Tschall C, Crivii CB. Non-Drug and Non-Invasive Therapeutic Options in Alzheimer's Disease. Biomedicines 2025; 13:84. [PMID: 39857667 PMCID: PMC11760896 DOI: 10.3390/biomedicines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood-brain-barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies.
Collapse
Affiliation(s)
- Alina Simona Șovrea
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Adina Bianca Boșca
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Eleonora Dronca
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Anne-Marie Constantin
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Andreea Crintea
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Rada Suflețel
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Roxana Adelina Ștefan
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Paul Andrei Ștefan
- Radiology and Imaging Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Christoph Tschall
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Carmen-Bianca Crivii
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| |
Collapse
|
5
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
6
|
Ebert ET, Schwinghamer KM, Siahaan TJ. Delivery of Neuroregenerative Proteins to the Brain for Treatments of Neurodegenerative Brain Diseases. Life (Basel) 2024; 14:1456. [PMID: 39598254 PMCID: PMC11595909 DOI: 10.3390/life14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Neurodegenerative brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) are difficult to treat. Unfortunately, many therapeutic agents for neurodegenerative disease only halt the progression of these diseases and do not reverse neuronal damage. There is a demand for finding solutions to reverse neuronal damage in the central nervous system (CNS) of patients with neurodegenerative brain diseases. Therefore, the purpose of this review is to discuss the potential for therapeutic agents like specific neurotrophic and growth factors in promoting CNS neuroregeneration in brain diseases. We discuss how BDNF, NGF, IGF-1, and LIF could potentially be used for the treatment of brain diseases. The molecule's different mechanisms of action in stimulating neuroregeneration and methods to analyze their efficacy are described. Methods that can be utilized to deliver these proteins to the brain are also discussed.
Collapse
Affiliation(s)
| | | | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; (E.T.E.); (K.M.S.)
| |
Collapse
|
7
|
Bohley M, Leroux J. Gastrointestinal Permeation Enhancers Beyond Sodium Caprate and SNAC - What is Coming Next? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400843. [PMID: 38884149 PMCID: PMC11434117 DOI: 10.1002/advs.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Indexed: 06/18/2024]
Abstract
Oral peptide delivery is trending again. Among the possible reasons are the recent approvals of two oral peptide formulations, which represent a huge stride in the field. For the first time, gastrointestinal (GI) permeation enhancers (PEs) are leveraged to overcome the main limitation of oral peptide delivery-low permeability through the intestinal epithelium. Despite some success, the application of current PEs, such as salcaprozate sodium (SNAC), sodium caprylate (C8), and sodium caprate (C10), is generally resulting in relatively low oral bioavailabilities (BAs)-even for carefully selected therapeutics. With several hundred peptide-based drugs presently in the pipeline, there is a huge unmet need for more effective PEs. Aiming to provide useful insights for the development of novel PEs, this review summarizes the biological hurdles to oral peptide delivery with special emphasis on the epithelial barrier. It describes the concepts and action modes of PEs and mentions possible new targets. It further states the benchmark that is set by current PEs, while critically assessing and evaluating emerging PEs regarding translatability, safety, and efficacy. Additionally, examples of novel PEs under preclinical and clinical evaluation and future directions are discussed.
Collapse
Affiliation(s)
- Marilena Bohley
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
8
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release 2024; 372:901-913. [PMID: 38971426 DOI: 10.1016/j.jconrel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This review delves into the innovative technology of Blood-Brain Barrier (BBB) opening with low-intensity focused ultrasound in combination with microbubbles (LIFU-MB), a promising therapeutic modality aimed at enhancing drug delivery to the central nervous system (CNS). The BBB's selective permeability, while crucial for neuroprotection, significantly hampers the efficacy of pharmacological treatments for CNS disorders. LIFU-MB emerges as a non-invasive and localized method to transiently increase BBB permeability, facilitating the delivery of therapeutic molecules. Here, we review the procedural stages of LIFU-MB interventions, including planning and preparation, sonication, evaluation, and delivery, highlighting the technological diversity and methodological challenges encountered in current clinical applications. With an emphasis on safety and efficacy, we discuss the crucial aspects of ultrasound delivery, microbubble administration, acoustic feedback monitoring and assessment of BBB permeability. Finally, we explore the critical choices for effective BBB opening with LIFU-MB, focusing on selecting therapeutic agents, optimizing delivery methods, and timing for delivery. Overcoming existing barriers to integrate this technology into clinical practice could potentially revolutionize CNS drug delivery and treatment paradigms in the near future.
Collapse
Affiliation(s)
- Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Physics, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Castillo-Ortiz
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Technologies for Health and Well-being, Polytechnic University of Valencia, Valencia, Spain; Molecular Imaging Technologies Research Institute (I3M), Polytechnic University of Valencia, Valencia, Spain
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Biomedical Engineering, Polytechnic University of Madrid, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain.
| |
Collapse
|
10
|
Andersen IV, Bidesi NSR, Shalgunov V, Jørgensen JT, Gustavsson T, Strømgaard K, Ingemann Jensen AT, Kjær A, Herth MM. Investigation of imaging the somatostatin receptor by opening the blood-brain barrier with melittin - A feasibility study using positron emission tomography and [ 64Cu]Cu-DOTATATE. Nucl Med Biol 2024; 132-133:108905. [PMID: 38555651 DOI: 10.1016/j.nucmedbio.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.
Collapse
Affiliation(s)
- Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Natasha Shalina Rajani Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tobias Gustavsson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Andreas T Ingemann Jensen
- Center for Nanomedicine and Theranostics, DTU Health Technology Technical University of Denmark (DTU) Ørsteds Plads 345C, 2800 Lyngby, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Klimoszek D, Jeleń M, Morak-Młodawska B, Dołowy M. Evaluation of the Lipophilicity of Angularly Condensed Diquino- and Quinonaphthothiazines as Potential Candidates for New Drugs. Molecules 2024; 29:1683. [PMID: 38611961 PMCID: PMC11013424 DOI: 10.3390/molecules29071683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Lipophilicity is one of the most important properties of compounds required to estimate the absorption, distribution, and transport in biological systems, in addition to solubility, stability, and acid-base nature. It is crucial in predicting the ADME profile of bioactive compounds. The study assessed the usefulness of computational and chromatographic methods (thin-layer chromatography in a reversed-phase system, RP-TLC) for estimating the lipophilicity of 21 newly synthesized compounds belonging to diquinothiazines and quinonaphthiazines. In order to obtain reliable values of the relative lipophilicities of diquinothiazines and quinonaphthiazines, the partition coefficients obtained using different algorithms such as AlogPs, AClogP, AlogP, MLOGP, XLOGP2, XLOGP3, logP, and ClogP were compared with the chromatographic RM0 values of all the tested compounds measured by the experimental RP-TLC method (logPTLC). Additionally, logPTLC values were also correlated with other descriptors, as well as the predicted ADME and drug safety profiling parameters. The linear correlations of logPTLC values of the tested compounds with other calculated molecular descriptors such as molar refractivity, as well as ADME parameters (Caco-2 substrates, P-gp inhibitors, CYP2C19, and CYP3A4) generally show poor predictive power. Therefore, in silico ADME profiling can only be helpful at the initial step of designing these new candidates for drugs. The compliance of all discussed diquinothiazines and naphthoquinothiazines with the rules of Lipiński, Veber, and Egan suggests that the tested pentacyclic phenothiazine analogs have a chance to become therapeutic drugs, especially orally active drugs.
Collapse
Affiliation(s)
- Daria Klimoszek
- Faculty of Pharmaceutical Sciences in Sosnowiec, Doctoral School, Medical University of Silesia in Katowice, 40-007 Katowice, Poland;
| | - Małgorzata Jeleń
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska Street 4, 41-200 Sosnowiec, Poland;
| | - Beata Morak-Młodawska
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska Street 4, 41-200 Sosnowiec, Poland;
| | - Małgorzata Dołowy
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
12
|
Buller S, Blouet C. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. Am J Physiol Endocrinol Metab 2024; 326:E472-E480. [PMID: 38381398 PMCID: PMC11193531 DOI: 10.1152/ajpendo.00250.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.
Collapse
Affiliation(s)
- Sophie Buller
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
14
|
Abstract
The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mari Kim
- Cell Biology Department, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
15
|
Virtanen PS, Ortiz KJ, Patel A, Blocher WA, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep 2024; 26:236-249. [PMID: 38329660 DOI: 10.1007/s11912-024-01497-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW To review relevant advances in the past half-decade in the treatment of primary brain tumors via modification of blood-brain barrier (BBB) permeability. RECENT FINDINGS BBB disruption is becoming increasingly common in the treatment of primary brain tumors. Use of mannitol in BBB disruption for targeted delivery of chemotherapeutics via superselective intra-arterial cerebral infusion (SIACI) is the most utilized strategy to modify the BBB. Mannitol is used in conjunction with chemotherapeutics, oligonucleotides, and other active agents. Convection-enhanced delivery has become an attractive option for therapeutic delivery while bypassing the BBB. Other technologic innovations include laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) which have emerged as prime modalities to directly target tumors and cause significant local BBB disruption. In the past 5 years, interest has significantly increased in studying modalities to disrupt the BBB in primary brain tumors to enhance treatment responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Piiamaria S Virtanen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyle J Ortiz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay Patel
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Angela M Richardson
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
17
|
Song G, Plumlee P, Ahn JY, Wong ST, Zhao H. Translational strategies and systems biology insights for blood-brain barrier opening and delivery in brain tumors and Alzheimer's disease. Biomed Pharmacother 2023; 167:115450. [PMID: 37703663 PMCID: PMC10591819 DOI: 10.1016/j.biopha.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in determining the effectiveness of systemic treatments for brain diseases. Over the years, several innovative approaches in BBB opening and drug delivery have been developed and progressed into clinical testing phases, including focused ultrasound (FUS) with circulating microbubbles, mannitol-facilitated delivery of anti-neoplastic drugs, receptor-mediated transcytosis (RMT) by antibody-drug conjugates (ADCs), and viral vectors for gene therapy. We provided a comprehensive review of the most recent clinical applications of these approaches in managing brain tumors and Alzheimer's disease (AD), two major devastating brain diseases. Moreover, the spatial-temporal molecular heterogeneity of the BBB under disease states emphasized the importance of utilizing emerging spatial systems biology approaches to unravel novel targets for intervention within BBB and tailor strategies for enhancing drug delivery to the brain. SEARCH STRATEGY AND SELECTION CRITERIA: Data for this Review were identified by searches of clinicaltrials.gov, MEDLINE, Current Contents, PubMed, and references from relevant articles using the search terms "blood-brain barrier", "CNS drug delivery", "BBB modulation", "clinical trials", "systems biology", "primary or metastatic brain tumors", "Alzheimer's disease". Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in English between 1980 and 2023 were included.
Collapse
Affiliation(s)
- Gefei Song
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA
| | - Pierce Plumlee
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA
| | - Ju Young Ahn
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Tc Wong
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Hong Zhao
- T. T. and W. F. Chao Center for BRAIN and Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston TX 77030, USA.
| |
Collapse
|
18
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Liu N, Ruan J, Li H, Fu J. Nanoparticles loaded with natural medicines for the treatment of Alzheimer's disease. Front Neurosci 2023; 17:1112435. [PMID: 37877008 PMCID: PMC10590901 DOI: 10.3389/fnins.2023.1112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that disrupts cognitive function and severely affects the quality of life. Existing drugs only improve cognitive function and provide temporary relief of symptoms but do not stop or delay disease progression. Recently, natural medicines, especially Chinese herbal medicines, have gained attention in the treatment of AD due to their antioxidant, anti-inflammatory, and neuroprotective effects. However, conventional oral dosage forms lack brain specificity and have side effects that lead to poor patient compliance. Utilizing nanomedicine is a promising approach to improve brain specificity, bioavailability, and patient compliance. This review evaluates recent advances in the treatment of AD with nanoparticles containing various natural medicines. This review highlights that nanoparticles containing natural medicines are a promising strategy for the treatment of AD. It is believed that this technology can be translated into the clinic, thereby providing opportunities for AD patients to participate in social activities.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanjuan Ruan
- Department of Geriatrics, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan Province, China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhua Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
22
|
KALA D, ŠULC V, OLŠEROVÁ A, SVOBODA J, PRYSIAZHNIUK Y, POŠUSTA A, KYNČL M, ŠANDA J, TOMEK A, OTÁHAL J. Evaluation of blood-brain barrier integrity by the analysis of dynamic contrast-enhanced MRI - a comparison of quantitative and semi-quantitative methods. Physiol Res 2022; 71:S259-S275. [PMID: 36647914 PMCID: PMC9906669 DOI: 10.33549/physiolres.934998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a key feature of various brain disorders. To assess its integrity a parametrization of dynamic magnetic resonance imaging (DCE MRI) with a contrast agent (CA) is broadly used. Parametrization can be done quantitatively or semi-quantitatively. Quantitative methods directly describe BBB permeability but exhibit several drawbacks such as high computation demands, reproducibility issues, or low robustness. Semi-quantitative methods are fast to compute, simply mathematically described, and robust, however, they do not describe the status of BBB directly but only as a variation of CA concentration in measured tissue. Our goal was to elucidate differences between five semi-quantitative parameters: maximal intensity (Imax), normalized permeability index (NPI), and difference in DCE values between three timepoints: baseline, 5 min, and 15 min (delta5-0, delta15-0, delta15-5) and two quantitative parameters: transfer constant (Ktrans) and an extravascular fraction (Ve). For the purpose of comparison, we analyzed DCE data of four patients 12-15 days after the stroke with visible CA enhancement. Calculated parameters showed abnormalities spatially corresponding with the ischemic lesion, however, findings in individual parameters morphometrically differed. Ktrans and Ve were highly correlated. Delta5-0 and delta15-0 were prominent in regions with rapid CA enhancement and highly correlated with Ktrans. Abnormalities in delta15-5 and NPI were more homogenous with less variable values, smoother borders, and less detail than Ktrans. Moreover, only delta15-5 and NPI were able to distinguish vessels from extravascular space. Our comparison provides important knowledge for understanding and interpreting parameters derived from DCE MRI by both quantitative and semi-quantitative methods.
Collapse
Affiliation(s)
- David KALA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | - Vlastimil ŠULC
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna OLŠEROVÁ
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan SVOBODA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yeva PRYSIAZHNIUK
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonín POŠUSTA
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin KYNČL
- Department of Radiology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan ŠANDA
- Department of Radiology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Aleš TOMEK
- Department of Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jakub OTÁHAL
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic,Department of Pathophysiology, Second Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
23
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
24
|
Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators Inflamm 2022; 2022:6508046. [PMID: 36267243 PMCID: PMC9578915 DOI: 10.1155/2022/6508046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
There has been a significant amount of interest in the past two decades in the study of the evolution of the gut microbiota, its internal and external impacts on the gut, and risk factors for cerebrovascular disorders such as cerebral ischemic stroke. The network of bidirectional communication between gut microorganisms and their host is known as the microbiota-gut-brain axis (MGBA). There is mounting evidence that maintaining gut microbiota homeostasis can frequently enhance the effectiveness of ischemic stroke treatment by modulating immune, metabolic, and inflammatory responses through MGBA. To effectively monitor and cure ischemic stroke, restoring a healthy microbial ecology in the gut may be a critical therapeutic focus. This review highlights mechanistic insights on the MGBA in disease pathophysiology. This review summarizes the role of MGBA signaling in the development of stroke risk factors such as aging, hypertension, obesity, diabetes, and atherosclerosis, as well as changes in the microbiota in experimental or clinical populations. In addition, this review also examines dietary changes, the administration of probiotics and prebiotics, and fecal microbiota transplantation as treatment options for ischemic stroke as potential health benefits. It will become more apparent how the MGBA affects human health and disease with continuing advancements in this emerging field of biomedical sciences.
Collapse
|
25
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
26
|
McMahon AP, Ichida JK. Repairing the blood-brain barrier. Science 2022; 375:715-716. [PMID: 35175806 DOI: 10.1126/science.abn7921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Engineered Wnt ligands specifically target blood-brain barrier function.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, CA, USA
| |
Collapse
|
27
|
Lin JF, Liu YS, Huang YC, Chi CW, Tsai CC, Tsai TH, Chen YJ. Borneol and Tetrandrine Modulate the Blood-Brain Barrier and Blood-Tumor Barrier to Improve the Therapeutic Efficacy of 5-Fluorouracil in Brain Metastasis. Integr Cancer Ther 2022; 21:15347354221077682. [PMID: 35168384 PMCID: PMC8855435 DOI: 10.1177/15347354221077682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The efficacy of chemotherapeutic drugs for the treatment of brain metastasis may
be compromised by the blood–brain barrier (BBB) and blood–tumor barrier (BTB).
P-glycoprotein (P-gp) is a multidrug resistance protein that potentially limits
the penetration of chemotherapeutics through the BBB and BTB. 5-Fluorouracil
(5-FU) is widely used to treat cancer. Bioactive constituents of medicinal
herbs, such as borneol and tetrandrine, potentially improve drug penetration
through the BBB and BTB. We hypothesized that borneol and tetrandrine might
modulate the BBB and BTB to enhance 5-FU penetration into the brain. To
investigate this, in vitro and in vivo models were developed to explore the
modulatory effects of borneol and tetrandrine on 5-FU penetration through the
BBB and BTB. In the in vitro models, barrier integrity, cell viability, barrier
penetration, P-gp activity, and NF-κB expression were assessed. In the in vivo
brain metastasis models, cancer cells were injected into the internal carotid
artery to evaluate tumor growth. The experimental results demonstrated that
borneol and borneol + tetrandrine reduced BBB integrity. The efflux pump
function of P-gp was partially inhibited by tetrandrine and
borneol + tetrandrine. In the in vivo experiment, borneol + tetrandrine
effectively prolonged survival without compromising body weight. In conclusion,
BBB and BTB integrity was modulated by borneol and borneol + tetrandrine. The
combination of borneol and tetrandrine could be used to improve the
chemotherapeutic control of brain metastasis.
Collapse
Affiliation(s)
- Jui-Feng Lin
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Shuo Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Wen Chi
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Chia Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| |
Collapse
|
28
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|