1
|
Zhang Y, Zhang L, Wu P, Wu S, Qin J, Zhang H, Sun G. pH- and glucose-responsive antioxidant hydrogel promotes diabetic wound healing. BIOMATERIALS ADVANCES 2025; 169:214177. [PMID: 39848120 DOI: 10.1016/j.bioadv.2025.214177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release. Hyaluronic acid (HA) modified with phenylboronic acid (PBA) (HA-PBA) was oxidized to form OHA-PBA, which was then crosslinked with carboxymethyl chitosan (CMCS) and incorporated Proanthocyanidins (PA) to create an OHA-PBA/CMCS/PA (OPCP) hydrogel. The reversible nature of imine and borate groups enabled the responsive release of PA from OPCP hydrogels under acidic and high glucose conditions. The OPCP hydrogel exhibited excellent biocompatibility, suitable mechanical properties, and biodegradability. Both in vitro and in vivo results demonstrated that the OPCP hydrogel effectively reduced reactive oxygen species (ROS), suppressed inflammation, promoted vascularization, accelerated collagen deposition, and facilitated diabetic wound healing. This strategy offers novel insights into microenvironment-responsive scaffolds, highlighting the potential application of this responsive antioxidant hydrogel scaffold for chronic diabetic wound treatment.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Ling Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China; Key Laboratory of Flexible Optoelectronic Materials and Technology, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China.
| | - Shuang Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jianghui Qin
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Guoming Sun
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China
| |
Collapse
|
2
|
Khan F, Mondal B, Bairagi B, Mandal S, Mandal D, Nath D. Fabrication of Chitosan/PEO/Rosmarinic acid based nanofibrous mat for diabetic burn wound healing and its anti-bacterial efficacy in mice. Int J Biol Macromol 2025; 301:140416. [PMID: 39884624 DOI: 10.1016/j.ijbiomac.2025.140416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/30/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers. Chitosan is known for its biocompatibility and anti-bacterial properties; however, the electrospinning of CS requires a co-polymer such as PEO, a synthetic biodegradable polymer. With the addition of a low concentration of RA, known for its antibacterial, antioxidative nature, we enhanced the antibacterial efficacy of the electrospun nanofiber. Electrospinning CS/PEO/RA, we were able to develop a non-toxic scaffold with fibers having an average diameter of 127.035 nm, mimicking the extracellular matrix and exhibiting sustained drug release. Excellent antimicrobial activity was observed against the identified bacterial species. It showed increased wound contraction and reduced scar formation in the diabetic mice model along with rapid repair of the damaged epithelial barrier. It enhanced the production of collagen, elastin, and α-smooth muscle actin (α-SMA). Thus, it justifies itself as a diabetic burn wound dressing at low drug concentration.
Collapse
Affiliation(s)
- Farhin Khan
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, India
| | - Baishakhi Bairagi
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sukanta Mandal
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, India
| | - Debjani Nath
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
3
|
Chen Z, Mo Q, Mo D, Pei X, Liang A, Cai J, Zhou B, Zheng L, Li H, Yin F, Zhao J. A multifunctional photothermal electrospun PLGA/MoS 2@Pd nanofiber membrane for diabetic wound healing. Regen Biomater 2024; 12:rbae143. [PMID: 39850758 PMCID: PMC11754638 DOI: 10.1093/rb/rbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/25/2025] Open
Abstract
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS2@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS2@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair. With excellent biocompatibility and hemostatic ability, this novel PLGA/MoS2@Pd nanofiber membrane can effectively reduce oxidative stress damage and intracellular inflammatory factors expression in fibroblasts by scavenging ROS. Additionally, the PLGA/MoS2@Pd nanofiber membrane exhibited favorable NIR-mediated photothermal antibacterial activity in vitro, with inhibition rates of 97.14% and 97.07% against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), respectively. In a diabetic rat wound infection model, NIR-assisted PLGA/MoS2@Pd nanofiber membrane effectively inhibited bacterial growth in the wound, reduced infection-induced inflammatory response, and promoted tissue epithelialization and collagen deposition, resulting in a wound healing rate of up to 98.5% on Day 14. This study highlighted the construction of a multifunctional nanofiber membrane platform and demonstrated its promising potential as a clinical dressing for diabetic wounds.
Collapse
Affiliation(s)
- Zhengrong Chen
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Quansheng Mo
- Department of Traditional Chinese Medicine, The Ninth People's Hospital of Nanning, Binyang, Guangxi 530409, China
| | - Dandan Mo
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomin Pei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Anru Liang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Guangxi Medical University & The Second Nanning People's Hospital, Nanning 530031, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongmian Li
- Department of Plastic and Reconstructive Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Feiying Yin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Yang J, Zhuang C, Lin Y, Yu Y, Zhou C, Zhang C, Zhu Z, Qian C, Zhou Y, Zheng W, Zhao Y, Jin C, Wu Z. Orientin promotes diabetic wounds healing by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Food Sci Nutr 2024; 12:7461-7480. [PMID: 39479645 PMCID: PMC11521705 DOI: 10.1002/fsn3.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic patients often experience delayed wound healing due to impaired functioning of human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions. This is because HG conditions trigger uncontrolled lipid peroxidation, leading to iron-dependent ferroptosis, which is caused by glucolipotoxicity. However, natural flavonoid compound Orientin (Ori) possesses anti-inflammatory bioactive properties and is a promising treatment for a range of diseases. The current study aimed to investigate the function and mechanism of Ori in HG-mediated ferroptosis. A diabetic wound model was established in mice by intraperitoneal injection of streptozotocin (STZ), and HUVECs were cultured under HG to create an in vitro diabetic environment. The results demonstrated that Ori inhibited HG-mediated ferroptosis, reducing levels of malondialdehyde (MDA), lipid peroxidation, and mitochondrial reactive oxygen species (mtROS), while increasing decreased levels of malondialdehyde, lipid peroxidation, and mitochondrial reactive oxygen species, as well as increased levels of glutathione (GSH). Ori treatment also improved the wound expression of glutathione peroxidase 4 (GPX4) and angiogenesis markers, reversing the delayed wound healing caused by diabetes mellitus (DM). Additional investigations into the mechanism revealed that Ori may stimulate the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 signaling pathway. Silencing Nrf2 in HG-cultured HUVECs negated the beneficial impact mediated by Ori. By stimulating the Nrf2/GPX4 signaling pathway, Ori may expedite diabetic wound healing by decreasing ferroptosis.
Collapse
Affiliation(s)
- Jia‐yi Yang
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- The Third Peoples Hospital of Ouhai DistrictWenzhouZhejiangChina
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yu‐zhe Lin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐tian Yu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The First School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen‐cheng Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao‐yang Zhang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zi‐teng Zhu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Cheng‐jie Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yi‐nan Zhou
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wen‐hao Zheng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Yu Zhao
- Department of GynaecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chen Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| | - Zong‐yi Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouZhejiangChina
| |
Collapse
|
5
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
7
|
de Souza A, Santo GE, Amaral GO, Sousa KSJ, Parisi JR, Achilles RB, Ribeiro DA, Renno ACM. Electrospun skin dressings for diabetic wound treatment: a systematic review. J Diabetes Metab Disord 2024; 23:49-71. [PMID: 38932903 PMCID: PMC11196489 DOI: 10.1007/s40200-023-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/26/2023] [Indexed: 06/28/2024]
Abstract
Abstract Diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia associated with a lack of insulin production or insulin resistance. In diabetic patients, the capacity for healing is generally decreased, leading to chronic wounds. One of the most common treatments for chronic wounds is skin dressings, which serve as protection from infection, reduce pain levels, and stimulate tissue healing. Furthermore, electrospinning is one of the most effective techniques used for manufacturing skin dressings. Objective The purpose of this study was to perform a systematic review of the literature to examine the effects of electrospun skin dressings from different sources in the process of healing skin wounds using in vivo experiments in diabetic rats. Methods The search was carried out according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the Medical Subject Headings (MeSH) descriptors were defined as "wound dressing," "diabetes," "in vivo," and "electrospun." A total of 14 articles were retrieved from PubMed and Scopus databases. Results The results were based mainly on histological analysis and macroscopic evaluation, demonstrating moderate evidence synthesis for all experimental studies, showing a positive effect of electrospun skin dressings for diabetic wound treatment. Conclusion This review confirms the significant benefits of using electrospun skin dressings for skin repair and regeneration. All the inks used were demonstrated to be suitable for dressing manufacturing. Moreover, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Giovanna E. Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Gustavo O. Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Karolyne S. J. Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Julia R. Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glicerio Avenue, Santos, SP 11045002 Brazil
| | - Rodrigo B. Achilles
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Daniel A. Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| | - Ana C. M. Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, Santos, SP 11015020 Brazil
| |
Collapse
|
8
|
Victoria Schulte-Werning L, Singh B, Johannessen M, Einar Engstad R, Mari Holsæter A. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm 2024; 657:124136. [PMID: 38642621 DOI: 10.1016/j.ijpharm.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Increasing prevalence of infected and chronic wounds demands improved therapy options. In this work an electrospun nanofiber dressing with liposomes is suggested, focusing on the dressing's ability to support tissue regeneration and infection control. Chloramphenicol (CAM) was the chosen antibiotic, added to the nanofibers after first embedded in liposomes to maintain a sustained drug release. Nanofibers spun from five different polymer blends were tested, where pectin and polyethylene oxide (PEO) was identified as the most promising polymer blend, showing superior fiber formation and tensile strength. The wire-electrospinning setup (WES) was selected for its pilot-scale features, and water was applied as the only solvent for green electrospinning and to allow direct liposome incorporation. CAM-liposomes were added to Pectin-PEO nanofibers in the next step. Confocal imaging of rhodamine-labelled liposomes indicated intact liposomes in the fibers after electrospinning. This was supported by the observed in vitroCAM-release, showing that Pectin-PEO-nanofibers with CAM-liposomes had a delayed drug release compared to controls. Biological testing confirmed the antimicrobial efficacy of CAM and good biocompatibility of all CAM-nanofibers. The successful fiber formation and green production process with WES gives a promising outlook for industrial upscaling.
Collapse
Affiliation(s)
- Laura Victoria Schulte-Werning
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Bhupender Singh
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Ann Mari Holsæter
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
9
|
Chen S, Li M, Xue C, Zhou X, Wei J, Zheng L, Duan Y, Deng H, Tang F, Xiong W, Xiang B, Zhou M. Validation of Core Ingredients and Molecular Mechanism of Cinobufotalin Injection Against Liver Cancer. Drug Des Devel Ther 2024; 18:1321-1338. [PMID: 38681206 PMCID: PMC11055549 DOI: 10.2147/dddt.s443305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition. Methods Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and in vitro and in vivo experiments were performed to confirm the findings. Results By construction of ingredient networks and integrated analysis, eight core ingredients and ten key targets were finally identified in cinobufotalin injection, and all of the core ingredients are tightly linked with the key targets, and these key targets are highly associated with the cell cycle-related pathways, supporting that both cinobufotalin injection and its core ingredients exert anti-liver cancer roles by blocking cell cycle-related pathways. Moreover, in vitro and in vivo experiments confirmed that either cinobufotalin injection or one of its core ingredients, cinobufagin, significantly inhibited cell proliferation, colony formation, cell cycle progression and xenograft tumor growth, and the key target molecules involved in the cell cycle pathway such as CDK1, CDK4, CCNB1, CHEK1 and CCNE1, exhibit consistent changes in expression after treatment with cinobufotalin injection or cinobufagin. Interestingly, some key targets CDK1, CDK4, PLK1, CHEK1, TTK were predicted to bind with multiple of core ingredients of cinobufotalin injection, and the affinity between one of the critical ingredients cinobufagin and key target CDK1 was further confirmed by SPR assay. Conclusion Cinobufotalin injection was confirmed to includes eight core ingredients, and they play therapeutic effects in liver cancer by blocking cell cycle-related pathways, which provides important insights for the mechanism of cinobufotalin injection antagonizing liver cancer and the development of novel small molecule anti-cancer drugs.
Collapse
MESH Headings
- Bufanolides/pharmacology
- Bufanolides/chemistry
- Bufanolides/administration & dosage
- Humans
- Animals
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Cell Proliferation/drug effects
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Drug Screening Assays, Antitumor
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Mice, Inbred BALB C
- Cell Cycle/drug effects
- Mice, Nude
- Dose-Response Relationship, Drug
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Tumor Cells, Cultured
- Structure-Activity Relationship
- Molecular Structure
- Injections
Collapse
Affiliation(s)
- Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Xiangting Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People’s Republic of China
- Cancer Research Institute, Central South University, Changsha, 410078, People’s Republic of China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, People’s Republic of China
| |
Collapse
|
10
|
Zhou Y, Yang J, Li Y, Shu X, Cai Y, Xu P, Huang W, Yang Z, Li R. Multifunctional nanocomposites mediated novel hydrogel for diabetic wound repair. J Mater Chem B 2024; 12:3292-3306. [PMID: 38502068 DOI: 10.1039/d3tb02283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The regeneration and repair of diabetic wounds, especially those including bacterial infection, have always been difficult and challenging using current treatment. Herein, an effective strategy is reported for constructing glucose-responsive functional hydrogels using nanocomposites as nodes. In fact, tannic acid (TA)-modified ceria nanocomposites (CNPs) and a zinc metal-organic framework (ZIF-8) were employed as nodes. Subsequent crosslinking with 3-acrylamidophenylboronic acid achieved functional nanocomposite-hydrogels (TA@CN gel, TA@ZMG gel) by radical-mediated polymerization. Compared with a simple physically mixed hydrogel system, the mechanical properties of TA@CN gel and TA@ZMG gel are significantly enhanced due to the intervention of the nanocomposite nodes. In addition, this kind of nanocomposite hydrogel can realize the programmed loading of drugs and release of drugs in response to glucose/PH, to coordinate and promote its application in the regeneration and repair of diabetic wounds and infected diabetic wounds. Specifically, TA@CN gel can remove reactive oxygen species and generate oxygen through its various enzymatic activities. At the same time, it can effectively promote neovascularization, thus promoting the regeneration and repair of diabetic wounds. Furthermore, glucose oxidase-loaded TA@ZMG gel exhibits glucose response and pH-regulating functions, triggering programmed metformin (Met) release by degrading the metal-organic framework (MOF) backbone. It also exhibited additional synergistic effects of antibacterial activity, hair regeneration and systemic blood glucose regulation, which make it suitable for the repair of more complex infected diabetic wounds. Overall, this novel nanocomposite-mediated hydrogel holds great potential as a biomaterial for the healing of chronic diabetic wounds, opening up new avenues for further biomedical applications.
Collapse
Affiliation(s)
- Yingjuan Zhou
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Jiaxin Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Yan Li
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, P.R. China
| | - Xin Shu
- College of pharmacy, Chongqing Medical and Pharmaceutical College, China
| | - Yucen Cai
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Ping Xu
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Wenyan Huang
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Zhangyou Yang
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
11
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
O’Meara CH, Nguyen TV, Jafri Z, Boyer M, Shonka DC, Khachigian LM. Personalised Medicine and the Potential Role of Electrospinning for Targeted Immunotherapeutics in Head and Neck Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:6. [PMID: 38202461 PMCID: PMC10780990 DOI: 10.3390/nano14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Advanced head and neck cancer (HNC) is functionally and aesthetically destructive, and despite significant advances in therapy, overall survival is poor, financial toxicity is high, and treatment commonly exacerbates tissue damage. Although response and durability concerns remain, antibody-based immunotherapies have heralded a paradigm shift in systemic treatment. To overcome limitations associated with antibody-based immunotherapies, exploration into de novo and repurposed small molecule immunotherapies is expanding at a rapid rate. Small molecule immunotherapies also have the capacity for chelation to biodegradable, bioadherent, electrospun scaffolds. This article focuses on the novel concept of targeted, sustained release immunotherapies and their potential to improve outcomes in poorly accessible and risk for positive margin HNC cases.
Collapse
Affiliation(s)
- Connor H. O’Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, The Canberra Hospital, Garran, ACT 2605, Australia
- ANU School of Medicine, Australian National University, Canberra, ACT 0200, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (Z.J.)
| | - Michael Boyer
- Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia;
| | - David C. Shonka
- Department of Otolaryngology, Head & Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (Z.J.)
| |
Collapse
|
13
|
Cai F, Wang P, Chen W, Zhao R, Liu Y. The physiological phenomenon and regulation of macrophage polarization in diabetic wound. Mol Biol Rep 2023; 50:9469-9477. [PMID: 37688679 DOI: 10.1007/s11033-023-08782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Macrophages play a crucial role in regulating wound healing, as they undergo a transition from the proinflammatory M1 phenotype to the proliferative M2 phenotype, ultimately contributing to a favorable outcome. However, in hyperglycemic and hyper-reactive oxygen species environments, the polarization of macrophages becomes dysregulated, hindering the transition from the inflammatory to proliferative phase and consequently delaying the wound healing process. Consequently, regulating macrophage polarization is often regarded as a potential target for the treatment of diabetic wounds. The role of macrophages in wound healing and the changes in macrophages in diabetic conditions were discussed in this review. After that, we provide a discussion of recent therapeutic strategies for diabetic wounds that utilize macrophage polarization. Furthermore, this review also provides a comprehensive summary of the efficacious treatment strategies aimed at enhancing diabetic wound healing through the regulation of macrophage polarization. By encompassing a thorough understanding of the fundamental principles and their practical implementation, the advancement of treatment strategies for diabetic wounds can be further facilitated.
Collapse
Affiliation(s)
- Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Wang
- Department of Burns and skin surgery, The First Affiliated Hospital of Air Force Military Medical University, Shanxi, Xi'an, China
| | - Wenjiao Chen
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruomei Zhao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Xiao T, Liu J, Li Y, Cai Y, Xing X, Shao M, Zhang C, Duan D, Liu S, Tan G, Wang L, Wu Z, Gong Z, Zhou L. Microenvironment-responsive Cu-phenolic networks coated nanofibrous dressing with timely macrophage phenotype transition for chronic MRSA infected wound healing. Mater Today Bio 2023; 22:100788. [PMID: 37680584 PMCID: PMC10480781 DOI: 10.1016/j.mtbio.2023.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is a pressing clinical issue that impedes wound healing. Pro-inflammatory M1 macrophages is required to clear bacteria and recruit various cell types during the initial phase of wound healing, but timing of this process is crucial. Herein, a microenvironment-responsive nanofibrous dressing capable of timely macrophage phenotype transition in vivo is constructed by coating copper ions (Cu2+)-polydopamine (PDA) networks on poly (ε-caprolactone) fiber (PCL-fiber) membrane. During the initial post-implantation period, the nanofibrous dressing show pH-sensitive Cu2+ release in the acidic infection microenvironment. The release Cu2+ have a direct killing effect on MRSA, and promote the proinflammatory M1 phenotype of macrophages to enhance the antibacterial macrophage response. Later, PDA to become a reactive oxygen species (ROS) scavenger when in microenvironments with elevated ROS levels, which conferred the dressing with an immunomodulatory activity that convert M1 macrophages into M2 macrophages. In vivo examination in an MRSA infected full-thickness skin wounds of rat model demonstrates that this dressing significantly facilitated infection eradication and wound healing through modulating local inflammatory phenotype. Overall, this study offers a simple and effective approach for timely manipulation of inflammation progression to promote infected wound healing.
Collapse
Affiliation(s)
- Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jiamin Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanxin Li
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu Cai
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xudan Xing
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Ming Shao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Chi Zhang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Dongming Duan
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Liu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zunlei Gong
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| |
Collapse
|
15
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
16
|
Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics 2023; 15:pharmaceutics15041144. [PMID: 37111630 PMCID: PMC10142830 DOI: 10.3390/pharmaceutics15041144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Globally, diabetic mellitus (DM) is a common metabolic disease that effectively inhibits insulin production, destroys pancreatic β cells, and consequently, promotes hyperglycemia. This disease causes complications, including slowed wound healing, risk of infection in wound areas, and development of chronic wounds all of which are significant sources of mortality. With an increasing number of people diagnosed with DM, the current method of wound healing does not meet the needs of patients with diabetes. The lack of antibacterial ability and the inability to sustainably deliver necessary factors to wound areas limit its use. To overcome this, a new method of creating wound dressings for diabetic patients was developed using an electrospinning methodology. The nanofiber membrane mimics the extracellular matrix with its unique structure and functionality, owing to which it can store and deliver active substances that greatly aid in diabetic wound healing. In this review, we discuss several polymers used to create nanofiber membranes and their effectiveness in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21938, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Fu Z, Li D, Lin K, Zhao B, Wang X. Enhancing the osteogenic differentiation of aligned electrospun poly(L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires. Int J Biol Macromol 2023; 226:1079-1087. [PMID: 36436595 DOI: 10.1016/j.ijbiomac.2022.11.224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Bone defects cause serious psychological and economic burden to patients. Artificially bone repairing materials bring hope to the treatment of bone defects. Electrospun technique has attracted great attention since it can fabricate fibers from nano- to micro- scale continuously. Scaffolds fabricated by electrospun can mimic the structure of extracellular matrix which is beneficial to cell adhesion and migration. Researches have showed that bioactive ions (such as silicon and calcium ions) can promote bone regeneration. In addition, physical cues can affect cellular behavior such as cell adhesion and differentiation. In this study, two kinds of calcium silicate - adopted poly (L-lactic acid) (CS-PLLA) electrospun scaffolds with random/aligned structures were prepared by electrospun to promote bone regeneration. The integration of CS nanowires improved the biological property of PLLA electrospun scaffolds. Furthermore, in vitro results indicated that aligned 1 wt% CS adopted PLLA (PCA1) electrospun scaffolds with better physical properties and facilitated cell adhesion, improved alkaline phosphate (ALP) activity and the expression of osteogenic genes (Osteopontin (OPN), Collagen type 1 (Col-1) and Bone morphogenetic protein-2 (BMP-2)) compared with random 1 wt% CS adopted PLLA (PCR1) electrospun scaffolds. In conclusion, the prepared PCA1 electrospun scaffolds might be a potential candidate for bone regeneration in defect areas.
Collapse
Affiliation(s)
- Zeyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China
| | - Dejian Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China; Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China.
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China.
| |
Collapse
|
18
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
19
|
Cao W, Peng S, Yao Y, Xie J, Li S, Tu C, Gao C. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo. Acta Biomater 2022; 152:60-73. [DOI: 10.1016/j.actbio.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
20
|
Chiral Supramolecular Hydrogel Loaded with Dimethyloxalyglycine to Accelerate Chronic Diabetic Wound Healing by Promoting Cell Proliferation and Angiogenesis. Gels 2022; 8:gels8070437. [PMID: 35877522 PMCID: PMC9321917 DOI: 10.3390/gels8070437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic refractory wounds are one of the most serious complications of diabetes, and the effects of common treatments are limited. Chiral hydrogel combined with dimethyloxalyglycine (DMOG) as a dressing is a promising strategy for the treatment of chronic wounds. In this research, we have developed a DMOG-loaded supramolecular chiral amino-acid-derivative hydrogel for wound dressings for full-thickness skin regeneration of chronic wounds. The properties of the materials, the ability of sustained release drugs, and the ability to promote angiogenesis were tested in vitro, and the regeneration rate and repair ability of full-thickness skin were tested in vivo. The chiral hydrogel had the ability to release drugs slowly. It can effectively promote cell migration and angiogenesis in vitro, and promote full-thickness skin regeneration and angiogenesis in vivo. This work offers a new approach for repairing chronic wounds completely through a supramolecular chiral hydrogel loaded with DMOG.
Collapse
|
21
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|