1
|
Nawaz A, Taj MB, Tasleem M, Ahmad Z, Ihsan A. Study of factors affecting cellulose derivatives composite in anticancer drug delivery: A comprehensive review. Int J Biol Macromol 2025; 310:143220. [PMID: 40250680 DOI: 10.1016/j.ijbiomac.2025.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The targeted distribution of therapeutic molecules in cancer cells poses several challenges for biomedical applications. Drug delivery systems (DDS) are primarily designed to target cancer cells effectively to achieve maximum therapeutic effects. Cellulose is a well-known organic molecule owing to its biodegradability, biocompatibility, low toxicity, prolonged stability, and superior loading characteristics. However, cellulose composites have faced numerous drawbacks, such as higher molecular size, non-covalent interactions, poor mechanical strength, and limited water solubility. In contrast, cellulose derivatization has enhanced drug loading and release efficiency, improved mechanical strength, and mitigated drug solubility issues. This review summarized the recent advancement in cellulose-based composites such as DDS for cancer cell treatment and discussed responsive factors. The pH, temperature, magnetic nanoparticles, solubility, porosity, mechanical strength, nanoparticle size, increased time of drug release, crosslinking efficiency, etc., are major responsive assays that influence the therapeutic potential of anticancer drugs. Furthermore, overviewed the cellulose nanoformulations in sustained anticancer drug release and successfully illustrated the synthesizing methodologies as well as challenges in efficient DDS applications. Moreover, a brief overview of the interdisciplinary industrial uses of cellulose composites, including paper, textiles, and nanotechnology, is presented. Finally, cellulose-based composites provide a novel way of producing excellent DDS with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Aamir Nawaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tasleem
- Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Zia Ahmad
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aaysha Ihsan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Jacob S, Kather FS, Boddu SHS, Rao R, Nair AB. Vesicular Carriers for Phytochemical Delivery: A Comprehensive Review of Techniques and Applications. Pharmaceutics 2025; 17:464. [PMID: 40284459 PMCID: PMC12030741 DOI: 10.3390/pharmaceutics17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Natural substances, especially those derived from plants, exhibit a diverse range of therapeutic benefits, such as antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. Nevertheless, their use in clinical settings is frequently impeded by inadequate solubility, limited bioavailability, and instability. Nanovesicular carriers, such as liposomes, niosomes, ethosomes, transferosomes, transethosomes, and cubosomes, have emerged as innovative phytochemical delivery systems to address these limitations. This review highlights recent developments in vesicular nanocarriers for phytochemical delivery, emphasizing preparation techniques, composition, therapeutic applications, and the future potential of these systems. Phytosomes, along with their key advantages and various preparation techniques, are extensively described. Various in vitro and in vivo characterization techniques utilized for evaluating these nanovesicular carriers are summarized. Completed clinical trials and patents granted for nanovesicles encapsulating phytochemicals designed for systemic delivery are tabulated. Phytochemical delivery via vesicular carriers faces challenges such as low stability, limited active loading, scalability issues, and high production costs. Additionally, immune clearance and regulatory hurdles hinder clinical application, requiring improved carrier design and formulation techniques.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Saraf I, Kushwah V, Werner B, Zangger K, Paudel A. Quantification of Hydrogen Peroxide in PVP and PVPVA Using 1H qNMR Spectroscopy. Polymers (Basel) 2025; 17:739. [PMID: 40292579 PMCID: PMC11945108 DOI: 10.3390/polym17060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/01/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE Peroxides in pharmaceutical products and excipients pose risks by oxidizing drug molecules, leading to potential toxicity and reduced efficacy. Accurate peroxide quantification is essential to ensure product safety and potency. This study explores the use of quantitative proton nuclear magnetic resonance (1H qNMR) spectroscopy as a sensitive and specific method for quantifying peroxide levels in pharmaceutical excipients. METHODS 1H qNMR spectroscopy was employed to measure peroxide levels down to 0.1 ppm in excipients, focusing on poly(vinylpyrrolidone) (PVP) and polyvinylpyrrolidone/vinyl acetate (PVPVA). Different grades and vendors were analyzed, and the impact of various manufacturing processes on hydrogen peroxide content was examined. RESULTS Peroxide levels varied among different grades of PVP and PVPVA, as well as between vendors. Furthermore, manufacturing processes influenced the hydrogen peroxide content in selected excipients. These variations highlight the importance of controlling peroxide levels in raw materials and during production. CONCLUSIONS 1H qNMR spectroscopy is a valuable tool for accurately quantifying peroxide levels in pharmaceutical excipients. The study emphasizes the need for regular monitoring of peroxide content to ensure the stability, quality, and safety of excipients and drug products. Accurate peroxide measurement can prevent oxidative degradation, preserving both the safety and efficacy of pharmaceutical formulations.
Collapse
Affiliation(s)
- Isha Saraf
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria;
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria;
| | - Bernd Werner
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria; (B.W.); (K.Z.)
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria; (B.W.); (K.Z.)
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria;
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
4
|
Kovačić J, Amidžić Klarić D, Turk N, Krznarić Ž, Riordan E, Mornar A. The Stability-Indicating Ultra High-Performance Liquid Chromatography with Diode Array Detector and Tandem Mass Spectrometry Method Applied for the Forced Degradation Study of Ritlecitinib: An Appraisal of Green and Blue Metrics. Pharmaceuticals (Basel) 2025; 18:124. [PMID: 39861185 PMCID: PMC11768339 DOI: 10.3390/ph18010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Janus kinase inhibitors open new horizons for small-molecule drugs in treating inflammatory bowel disease, with ritlecitinib demonstrating significant efficacy in clinical trials for ulcerative colitis and Crohn's disease. Ritlecitinib, a second-generation JAK3 inhibitor, is a novel therapeutic agent for alopecia areata and other autoimmune conditions. METHODS A new stability-indicating UHPLC-DAD-MS/MS method was developed, validated, and applied for a forced degradation study of ritlecitinib under ICH guidelines. RESULTS The method demonstrated high specificity, sensitivity (LOD: 0.04 µg/mL; LOQ: 0.14 µg/mL), precision (RSD ≤ 0.15%), and accuracy (99.9-100.3%). Forced degradation studies under acidic, basic, oxidative, thermal, and photolytic conditions revealed four novel degradation products. Basic degradation followed second-order kinetics, while oxidative degradation followed zero-order kinetics. CONCLUSIONS The validated method reliably characterized ritlecitinib's stability and degradation products, providing essential data for optimizing formulation, determining proper storage conditions, anticipating drug-excipient interactions, and ensuring quality control. The eco-friendliness and applicability of the developed forced degradation procedure were evaluated using various green and blue metric tools. Incorporating green analytical principles underscores its potential for sustainable pharmaceutical analysis.
Collapse
Affiliation(s)
- Jelena Kovačić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (D.A.K.)
| | - Daniela Amidžić Klarić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (D.A.K.)
| | - Nikša Turk
- Department of Gastroenterology, University Hospital Centre, 10000 Zagreb, Croatia; (N.T.); (Ž.K.)
| | - Željko Krznarić
- Department of Gastroenterology, University Hospital Centre, 10000 Zagreb, Croatia; (N.T.); (Ž.K.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Emma Riordan
- School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland;
| | - Ana Mornar
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (D.A.K.)
| |
Collapse
|
5
|
Shulga NA, Gegechkori VI, Gorpinchenko NV, Smirnov VV, Dementyev SP, Ramenskaya GV. Development of Ketoprofen Impurity A (1-(3-Benzoylphenyl)ethanone) as a Certified Reference Material for Pharmaceutical Quality Control. Pharmaceuticals (Basel) 2025; 18:59. [PMID: 39861122 PMCID: PMC11768145 DOI: 10.3390/ph18010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Reference materials are essential for ensuring the accuracy and traceability of measurements in the quality control of medicinal products. This study explores new principles for the preparation of impure materials of active pharmaceutical substances, focusing on 1-(3-benzoylphenyl)ethanone ketoprofen impurity A (European Pharmacopoeia) as the reference material. Methods: The reference material was synthesised from commercially available acetanilide and benzoyl chloride. The obtained product was purified using preparative chromatography and characterised by infrared spectroscopy (IR), 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry. The structure was verified using primary research methods to confirm its identity as the target product. Results: The characterisation confirmed the structure and purity of 1-(3-benzoylphenyl)ethanone, achieving a purity of 99.86%, meeting regulatory documentation requirements. The synthesised product was demonstrated to be identical to the target compound and suitable for use as a reference material. Conclusions: The developed method provides a robust approach for the preparation and characterisation of 1-(3-benzoylphenyl)ethanone, enabling its use as a certified reference material in the quality control of medicinal products. This approach ensures compliance with regulatory standards and enhances the reliability of pharmaceutical quality assurance practices.
Collapse
Affiliation(s)
| | - Vladimir I. Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
6
|
Ahmady A, Anuar NK, Ariffin SA, Abu Samah NH. Mucoadhesive Enhancement of Gelatine by Tannic Acid Crosslinking for Buccal Application. Biopolymers 2025; 116:e23646. [PMID: 39720867 DOI: 10.1002/bip.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024]
Abstract
This study aims to evaluate the impact of formulation parameters on tannic acid-crosslinked gelatine (GelTA) films, intended as a mucoadhesive matrix for extended buccal drug delivery. GelTA films were prepared using the solvent evaporation technique and screened based on their mucoadhesive and dissolution characteristics. The formulation variables included the source of gelatine (bovine and fish), tannic acid concentration, pH of the film-forming solutions, and the type and concentration of plasticisers. Subsequently, selected films underwent further characterisation (e.g., crosslinking density, stability) to elucidate their features as a drug delivery matrix. GelTA films exhibited a significantly improved dissolution time compared to the non-crosslinked film (BG-GLY20), while maintaining a substantial water uptake capacity conducive to a matrix system with extended action. The bovine GelTA film containing 5% w/w tannic acid and 20% w/w glycerine, prepared at pH 7 (BG-GLY20-7), exhibited a 1.6-fold increase in mucoadhesivity and an extended dissolution time of up to 6 h compared to BG-GLY20 (control), along with superior antioxidant and antimicrobial properties. However, stability studies indicate the need for an oxygen-free environment for film storage. In conclusion, GelTA films show promise as a buccal film matrix, offering extended dissolution times, substantial water uptake, and enhanced adhesive strength.
Collapse
Affiliation(s)
- Amina Ahmady
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Kabul University, Kabul, Afghanistan
| | - Nor Khaizan Anuar
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Siti Alwani Ariffin
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Nor Hayati Abu Samah
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| |
Collapse
|
7
|
Iyer J, Barbosa M, Pinto JF, Paudel A. Implications of crystal disorder on the solid-state stability of olanzapine. J Pharm Sci 2025; 114:599-616. [PMID: 39490657 DOI: 10.1016/j.xphs.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mechanical perturbations of drug during solid pharmaceutical processing like milling can often generate crystal disorder posing serious implications to drug's stability. While physical changes like amorphization, recrystallization, polymorphism of the disordered drugs are extensively studied and reported in the literature, the propensities and inter-dependencies of recrystallization and degradation of disordered drugs have seldom received deep attention. Previous investigations from our lab have explored some of these interplays, aiming to develop predictive stability models. As a follow-up, the implication of crystal disorder on the oxidative instability of Olanzapine (OLA) during accelerated storage is investigated in this work. Cryo-milling OLA at varied time intervals generated different extents of crystal disorder. The milled samples were characterized using calorimetry and infrared (IR) spectroscopy to examine the physical state, while their degradation was evaluated using ultra-performance liquid chromatographic methods. An X-ray amorphous OLA sample was generated by melt-cooling, and used as an amorphous reference. The crystallinity of the cryo-milled samples was quantified using a partial least square regression model based on ATR-FTIR spectroscopic data. The cryo-milled samples were exposed to different accelerated stability conditions along with crystalline (unmilled) and quench cooled (amorphous) samples, serving as controls. At periodic intervals, samples were removed from the stability storage, and analyzed using ATR-FTIR and UPLC methods to quantify the crystallinity- and degradation extents. A positive relation was witnessed between the initial degree of crystallinity and degradation kinetics of the disordered OLA samples during stability storage indicating a strong dependency of degradation on the disorder contents for such disordered solids. The results obtained in this study can potentially explain consequences of inter-batch variations of drugs during stability storage, in addition to enabling de-risking strategies towards eliminating solid drug instabilities in product development.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | - Matilde Barbosa
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, P-1649-003, Lisboa, Portugal
| | - João F Pinto
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, P-1649-003, Lisboa, Portugal
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, 8010 Graz, Austria.
| |
Collapse
|
8
|
Khan A, Shah AA, Allehabi SO, Ahmed F, Alsulami A, Azam A. Enhanced degradation of Ciprofloxacin (CIP) antibiotic and methylene blue (MB) dye using ZnO/GO nanocomposites under solar irradiation. Sci Rep 2024; 14:30696. [PMID: 39730373 DOI: 10.1038/s41598-024-78636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP). Rietveld refined X-ray diffraction (RXRD), Fourier-transform infrared (FTIR), and transmission electron microscopy (TEM) confirmed the formation of ZnO nanorods and GOZ nanocomposite. The possible defect states and oxygen vacancies were confirmed using the emission spectra that played a significant role in the photocatalytic activity. The values of the optical bandgap for GOZ-7 (7% GO) and GOZ-10 (10% GO) were found to be 2.8 eV and 2.7 eV using Tauc plot, respectively, showing a red shift as a result of increasing the concentration of GO. The photocatalytic efficiency of GOZ-7, GOZ-10 were evaluated under direct sunlight for degradation of MB dye and CIP antibiotic in an aqueous solution. The highest photocatalytic activity was observed by GOZ-10. The scavenging study confirmed that the photocatalysis occurred due to the generation of reactive oxygen species (ROS), especially by hydroxyl radical (OH.). The cost-effective GOZ-10 nanocomposite emerges as a promising candidate for the rapid photocatalytic degradation of both cationic dyes and antibiotics, demonstrating its potential in environmental remediation applications.
Collapse
Affiliation(s)
- Afroz Khan
- Department of Physics , Aligarh Muslim University , Aligarh, UP-202002, India
- Department of Biomechatronics Engineering, National Taiwan University, Taipei-10617, Taiwan
| | - Aadil Abass Shah
- Department of Applied Physics, Zakir Husain College of Engineering and Technology Aligarh Muslim University, Aligarh, UP-202002, India
| | - Saleh O Allehabi
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Faheem Ahmed
- Department of Applied Sciences and Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, India.
| | - Abdullah Alsulami
- Department of Physics College of Science and Arts at ArRass, Qassim University, 51921 ArRass, Buraydah, Saudi Arabia
| | - Ameer Azam
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
- Department of Applied Physics, Zakir Husain College of Engineering and Technology Aligarh Muslim University, Aligarh, UP-202002, India.
| |
Collapse
|
9
|
Klarić D, Soldin Ž, Vincze A, Szolláth R, Balogh GT, Jug M, Galić N. Biopharmaceutical Characterization and Stability of Nabumetone-Cyclodextrins Complexes Prepared by Grinding. Pharmaceutics 2024; 16:1493. [PMID: 39771473 PMCID: PMC11679744 DOI: 10.3390/pharmaceutics16121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Nabumetone (NAB) is a poorly soluble nonsteroidal anti-inflammatory prodrug (BCS class II drug) whose solubility is significantly improved by complexation with cyclodextrins (CDs). Methods: The solid complexes, in a 1:1 molar ratio, were prepared by mechanochemical activation by grinding, using β-cyclodextrin (β-CD) and its derivatives, hydroxypropyl- and sulfobutylether-β-cyclodextrin (HP-β-CD and SBE-β-CD). The complexation was confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier-transformed infrared spectroscopy (ATR-FTIR). Obtained products were further characterized regarding their solubility, in vitro dissolution, permeability and chemical stability. Results: Co-grinding with HP-β-CD and SBE-β-CD yielded products that showed in vitro dissolution profiles in hydrochloric acid medium (pH 1.2) that were substantially different from that of pure NAB, yielding dissolution efficiency enhancements of 34.86 ± 1.64 and 58.30 ± 0.28 times, respectively, for the optimized products. Their in vitro dissolution and gastrointestinal permeability were also studied in a low-volume environment at pH 6.8, corresponding to the intestinal environment. Both β-CD derivatives increased NAB dissolution rate and NAB mass transport across the biomimetic membrane. The effect of β-CD derivatives on NAB chemical stability was studied under the stress conditions by the developed and validated UHPLC-DAD-HRMS method. In acidic conditions, pure and complexed NAB was prone to hydrolytic degradation, yielding one degradation product-pharmacologically inactive NAB metabolite. However, under the oxidative conditions at elevated temperatures, 10 NAB degradation products were identified from co-ground samples. All systems were stable during photo- and long-term stability studies. Conclusions: NAB complexes with HP-β-CD and SBE-β-CD are promising candidates for pharmaceutical product development.
Collapse
Affiliation(s)
- David Klarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| | - Željka Soldin
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| | - Anna Vincze
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - Rita Szolláth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9., H-1092 Budapest, Hungary; (A.V.); (R.S.); (G.T.B.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői u. 26. H-1092 Budapest, Hungary
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia; (D.K.); (Ž.S.)
| |
Collapse
|
10
|
Clemen R, Dethloff W, Berner J, Schulan P, Martinet A, Weltmann KD, von Woedtke T, Grune T, Wende K, Bekeschus S. Insulin oxidation and oxidative modifications alter glucose uptake, cell metabolism, and inflammatory secretion profiles. Redox Biol 2024; 77:103372. [PMID: 39378614 PMCID: PMC11492613 DOI: 10.1016/j.redox.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Insulin participates in glucose homeostasis in the body and regulates glucose, protein, and lipid metabolism. Chronic hyperglycemia triggers oxidative stress and the generation of reactive oxygen species (ROS), leading to oxidized insulin variants. Oxidative protein modifications can cause functional changes or altered immunogenicity as known from the context of autoimmune disorders. However, studies on the biological function of native and oxidized insulin on glucose homeostasis and cellular function are lacking. Native insulin showed heterogenous effects on metabolic activity, proliferation, glucose carrier transporter (GLUT) 4, and insulin receptor (INSR) expression, as well as glucose uptake in cell lines of five different human tissues. Diverse ROS compositions produced by different gas plasma approaches enabled the investigations of variously modified insulin (oxIns) with individual oxidative post-translational modification (oxPTM) patterns as identified using high-resolution mass spectrometric analysis. Specific oxIns variants promoted cellular metabolism and proliferation in several cell lines investigated, and nitrogen plasma emission lines could be linked to insulin nitration and elevated glucose uptake. In addition, insulin oxidation modified blood glucose levels in the chicken embryos (in ovo), underlining the importance of assessing protein oxidation and function in health and disease.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Wiebke Dethloff
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Julia Berner
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Paul Schulan
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Alice Martinet
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Klaus Dieter Weltmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Tilman Grune
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785, Berlin, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, 18057, Rostock, Germany.
| |
Collapse
|
11
|
Modhave D, Vrielynck S, Roeleveld K. Assessing Drug Product Shelf Life Using the Accelerated Stability Assessment Program: A Case Study of a GLPG4399 Capsule Formulation. Pharmaceutics 2024; 16:1400. [PMID: 39598524 PMCID: PMC11597223 DOI: 10.3390/pharmaceutics16111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Objective: To evaluate and project the shelf life of GLPG4399, an early-phase clinical drug formulation by applying the Accelerated Stability Assessment Program (ASAP) approach. Methods: Forced degradation conditions were implemented to identify the stability-limiting degradation product. The drug and its degradation products were separated using a validated liquid chromatography method. Then, the selected clinical capsule formulation was placed in a glass vial and exposed to accelerated short-term conditions of combinations of high- and low-level heat and humidity in an open state for 5 weeks. The liquid chromatography results were evaluated using the ASAP, which is based on the moisture-modified Arrhenius principle. The resulting data were fitted using a suitable diffusion kinetics method. Results: The developed model was applied to predict the shelf life of the drug product when using clinically appropriate primary packaging (high-density polyethylene container). The derived stability parameters of the moisture-modified Arrhenius equation were the Arrhenius collision frequency, activation energy, and humidity sensitivity constant. The goodness of fit parameters R2 (>0.95) and goodness of prediction Q2 (>0.80) parameters for the selected model were acceptable. The results of the accelerated, short-term stability study were verified against real-time, long-term 12-month data. Conclusions: We demonstrated the application of the ASAP approach to evaluate the shelf life of a GLPG4399 solid capsule formulation. The studied ASAP approach can be extended to evaluate the stability and shelf-life estimations of other early-phase clinical formulations.
Collapse
Affiliation(s)
- Dattatray Modhave
- CMC Analytical, Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Sara Vrielynck
- CMC Analytical, Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Kevin Roeleveld
- Analytical, AnaBioTec NV, Noorwegenstraat 4, 9940 Evergem, Belgium
| |
Collapse
|
12
|
Farhadi K, Rajabi E, Varpaei HA, Iranzadasl M, Khodaparast S, Salehi M. Thymol and carvacrol against Klebsiella: anti-bacterial, anti-biofilm, and synergistic activities-a systematic review. Front Pharmacol 2024; 15:1487083. [PMID: 39512827 PMCID: PMC11540684 DOI: 10.3389/fphar.2024.1487083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Klebsiella poses a significant global threat due to its high antibiotic resistance rate. In recent years, researchers have been seeking alternative antimicrobial agents, leading to the introduction of natural compounds such as monoterpenes, specifically thymol and carvacrol. This review aims to illustrate the potential antimicrobial, anti-biofilm, and synergistic traits of thymol and carvacrol in combat against Klebsiella. Methods Searching PubMed, Scopus, and Web of Science, we reviewed available evidence on the antibacterial effects of thymol, carvacrol, or combined with other compounds against Klebsiella until May 2024. Reference checking was performed after the inclusion of studies. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration (FIC), and anti-biofilm activity were gathered, and the MBC/MIC ratio was calculated to assess the bactericidal efficacy. Results We retrieved 38 articles out of 2,652 studies screened. The gathered data assessed the anti-microbial activity of thymol, carvacrol, and both compounds in 17, 10, and 11 studies, respectively. The mean (± standard deviation) non-weighted MIC was 475.46 μg/mL (±509.95) out of 60 MIC for thymol and 279.26 μg/mL (±434.38) out of 68 MIC for carvacrol. Thymol and carvacrol showed anti-biofilm activities in the forms of disruption, inhibition, and mass reduction of biofilms. The MBC/MIC ratio was lower than 4 in 45 out of 47 cases, showing high bactericidal efficacy. FIC values were gathered for 68 combinations of thymol and carvacrol with other compounds, and they were mostly synergistic or additive. Conclusion Thymol and carvacrol alone or in combination with other compounds, specifically known antibiotics, show great antimicrobial activity.
Collapse
Affiliation(s)
- Kousha Farhadi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Erta Rajabi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hesam Aldin Varpaei
- College of Nursing, Michigan State University, East Lansing, MI, United States
| | - Maryam Iranzadasl
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Sepideh Khodaparast
- Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
13
|
Jeong JS, Ha ES, Park H, Lee SK, Kang HT, Kim MS. Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast. Pharmaceuticals (Basel) 2024; 17:1415. [PMID: 39598327 PMCID: PMC11597827 DOI: 10.3390/ph17111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lifitegrast is an effective treatment for dry eye disease, reducing inflammation and improving the ocular surface condition. Owing to its high sensitivity to oxidation and hydrolysis, formulation studies are required to maintain the physicochemical stability of lifitegrast. This study aimed to overcome the instability of lifitegrast by developing a more stable eyedrop formulation by using citric acid and tromethamine to prevent the degradation of lifitegrast. METHODS Based on the Design of Experiment (DoE) approach, formulations were prepared at various concentrations of two stabilizers, citric acid and tromethamine. The stabilizers were carefully controlled to reduce the generation of degradation products. The eyedrops were stored under accelerated test conditions, and parameters such as appearance, pH, drug content, and impurities were evaluated. RESULTS The results showed that all critical quality attributes (CQAs) including appearance, pH, drug content, and impurities were maintained at stable levels under accelerated conditions, meeting established criteria. In addition, it was suggested that citric acid provided protection against oxidative stress, while tromethamine prevented hydrolysis caused by pH fluctuations. CONCLUSIONS Consequently, it was concluded that the developed lifitegrast-containing eyedrop formulation exhibited improved physicochemical stability, validated through statistical analyses. These findings contribute to the development of stable eyedrops and provide a foundation for commercial production and clinical applications.
Collapse
Affiliation(s)
- Ji-Su Jeong
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea;
| | - Seon-Kwang Lee
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Hui-Taek Kang
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; (J.-S.J.); (E.-S.H.); (S.-K.L.); (H.-T.K.)
| |
Collapse
|
14
|
Su D, Wang X, Liu X, Miao J, Zhang Z, Zhang Y, Zhao L, Yu Y, Leng K, Yu Y. A comprehensive study of the colloidal properties, biocompatibility, and synergistic antioxidant actions of Antarctic krill phospholipids. Food Chem 2024; 451:139469. [PMID: 38703727 DOI: 10.1016/j.foodchem.2024.139469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.
Collapse
Affiliation(s)
- Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xixi Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Zipeng Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266200, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
15
|
Cherniienko A, Lesyk R, Zaprutko L, Pawełczyk A. IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis. J Pharm Anal 2024; 14:100951. [PMID: 39291244 PMCID: PMC11406085 DOI: 10.1016/j.jpha.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 09/19/2024] Open
Abstract
In various industries, particularly in the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy's accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of applications of ex situ and in situ FTIR spectroscopy in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR's potential and develop new applications that improve sustainability in these areas.
Collapse
Affiliation(s)
- Alina Cherniienko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Anna Pawełczyk
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| |
Collapse
|
16
|
Dutta K, Zheng T, Hetrick EM. Comparative understanding of peroxide quantitation assays: a case study with peptide drug product degradation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4755-4764. [PMID: 38953302 DOI: 10.1039/d4ay00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Peroxide-mediated oxidation of drug molecules is a known challenge faced throughout the pharmaceutical development pathway-from early-stage stability studies to manufacturing processes. During the initial development stage, the major source of peroxide is the formulation excipients, whether they are pre-loaded or generated in situ due to slow degradation, and in the late phase, peroxides can be introduced during sanitization processes or generated via cavitation. In essence, a control strategy for peroxide mitigation often becomes a critical quality attribute for successful drug development. To this end, quantitation of peroxide is essential to monitor the peroxide level to ensure product quality and proposed shelf-life. However, methods for reliable and robust quantitation to detect trace levels of peroxide in a complex drug product matrix become increasingly challenging. This article discusses three high-throughput assays based on absorbance, fluorescence and chemiluminescence measurements to detect peroxide at a low level and compares the methods through validation studies in water. Selected methods have also been tested to understand the forced degradation of model peptide drug products with spiked hydrogen peroxide. Peptide degradation profiles and residual peroxide levels are presented to provide an understanding of the suitability of the quantitation methods and their performance.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| | - Tao Zheng
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| | - Evan M Hetrick
- Bioproduct Research & Development, Lilly Technology Center-North, Indianapolis, IN 46221, USA.
| |
Collapse
|
17
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
18
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Afonso Urich JA, Marko V, Boehm K, Werner B, Zangger K, Saraf I, Paudel A, Kushwah V. Accelerative Solid-State Oxidation Behaviour of Amorphous and Partially Crystalline Venetoclax. AAPS PharmSciTech 2024; 25:114. [PMID: 38750299 DOI: 10.1208/s12249-024-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 09/05/2024] Open
Abstract
There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.
Collapse
Affiliation(s)
| | - Viktoria Marko
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Katharina Boehm
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Bernd Werner
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010, Graz, Austria
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria.
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
| |
Collapse
|
20
|
Holmfred E, Alrijjal A, Chamberlain CP, Maher K, Stürup S. Determination of trace elements in ibuprofen drug products using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry. Heliyon 2024; 10:e23566. [PMID: 38205305 PMCID: PMC10776936 DOI: 10.1016/j.heliyon.2023.e23566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Trace elements are found in most drugs as a result of the drug formulation and drug production methods. An inductively coupled plasma-mass spectrometry method for the determination of 24 trace elements (Mg, Ti, V, Cr, Mn, Cu, Fe, Co, Ni, Zn, As, Se, Mo, Ru, Rh, Pd, Ag, Cd, Sb, Ba, Ir, Pt, Au, and Pb) in solid ibuprofen tablets was established in relation to the ICH Q3D(R1) guideline, to evaluate the possibility of linking trace elemental profiles to drug formulation strategies, and to differentiate between drug products based on the trace elemental profiles. Ten European ibuprofen drug products were evaluated (n=3). The sample preparation was performed by microwave-assisted acid digestion using only 10 mg of homogenized sample and 900 μL of a mix of 65% HNO3, 37% HCl, and 30% H2O2. Solid residuals primarily composed of insoluble SiO2 excipients were removed by centrifugation. Only concentrations of Mg, Fe, Ti, Mn, Cr, and Ni were detected above the limits of detection and did not exceed the ICH Q3D(R1) guideline permitted daily exposure limits. The trace elemental profiles were evaluated through principal component analysis. Three principal components describing 96% of the variance were useful in grouping the ibuprofen drug products, and the detected trace elemental remnants could be related to drug formulation and drug production strategies. An in-house quality control material was used in lack of certified reference materials and was in combination with spike recoveries used for method validation. Good spike recoveries (94-119%) were obtained for all measured trace elements except Mg. Mg showed acceptable spike recoveries (75-155%) for mid and high-spike concentrations, but poor recoveries (30-223%) were detected with low spike concentrations in spike matrices containing high amounts of Mg. Overall, the method is suggested applicable for solid drugs containing insoluble SiO2 excipients and drugs comparable to ibuprofen.
Collapse
Affiliation(s)
- Else Holmfred
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
- Department of Earth System Sciences, Stanford University, Stanford, CA, USA
| | - Abdulla Alrijjal
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - C. Page Chamberlain
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Katharine Maher
- Department of Earth System Sciences, Stanford University, Stanford, CA, USA
| | - Stefan Stürup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Modhave D, Barrios B, Iyer J, Paudel A. Influence of Crystal Disorder on the Forced Oxidative Degradation of Vortioxetine HBr. AAPS PharmSciTech 2023; 25:10. [PMID: 38158448 DOI: 10.1208/s12249-023-02721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The present study investigates the impact of the solid-state disorder of vortioxetine hydrobromide (HBr) on oxidative degradation under accelerated conditions. A range of solid-state disorders was generated via cryogenic ball milling. The solid-state properties were evaluated by calorimetry, infrared-, and Raman spectroscopies. While salt disproportionation occurred upon milling, no chemical degradation occurred by milling. The amorphous fraction remained physically intact under ambient storage conditions. Subsequently, samples with representative disordered fractions were mixed with a solid oxidative stressor (PVP-H2O2 complex) and were compressed to compacts. The compacts were exposed to 40°C/75% RH for up to 6 h. The sample was periodically withdrawn and analyzed for the physical transformations and degradation. Two oxidative degradation products (DPs) were found to be formed, for which dissimilar relations to the degree of disorder and kinetics of formation were observed. The degradation rate of the major DP formation obtained by fitting the exponential model to the experimental data was found to increase up to a certain degree of disorder and decrease with a further increase in the disordered fraction. In contrast, the minor DP formation kinetics was found to increase monotonically with the increase in the disorder content. For the similar crystallinity level, the degradation trend (rate and extent) differed between the single-phase disorder generated by milling and physically mixed two-phase systems. Overall, the study demonstrates the importance of evaluating the physical and chemical (in)stabilities of the disordered solid state of a salt form of a drug substance, generated through mechano-activation.
Collapse
Affiliation(s)
- Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Brenda Barrios
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
22
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
23
|
Fallahasghari EZ, Højgaard Lynge M, Espholin Gudnason E, Munkerup K, Mendes AC, Chronakis IS. Carbohydrate Core-Shell Electrosprayed Microcapsules for Enhanced Oxidative Stability of Vitamin A Palmitate. Pharmaceutics 2023; 15:2633. [PMID: 38004611 PMCID: PMC10675355 DOI: 10.3390/pharmaceutics15112633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core-shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core-shell microcapsules consisted of a shell of octenyl succinic anhydride (OSA) modified corn starch, maltose (Hi-Cap), and a core of ethyl cellulose-AP (average diameter of about 3.7 µm). The effect of different compounds (digestion-resistant maltodextrin, soy protein hydrolysate, casein protein hydrolysate, and lecithin) added to the base core-shell matrix formulation on the oxidative stability of AP was investigated. The oxidative stability of AP was evaluated using isothermal and non-isothermal differential scanning calorimetry (DSC), and Raman and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods. The core-shell carbohydrate matrix minimizes the amount of AP present at the microparticle surface, thus protecting AP from oxidation. Furthermore, the most effective oxidation protection was achieved when casein protein hydrolysate was added to the core of the microcapsule due to hydrophobic and hydrogen bond interactions with AP and by the resistant maltodextrin in the shell, which acted as a filler. The utilization of ethanol as a solvent for the dispersion of the core compounds increased the hydrophobicity of the hydrolyzed proteins and contributed to the enhancement of their antioxidant ability. Both the carbohydrate core-shell microcapsule prepared by co-axial electrospray and the addition of oxidation protection compounds enhance the oxidative stability of the encapsulated AP.
Collapse
Affiliation(s)
- Elnaz Z. Fallahasghari
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Marie Højgaard Lynge
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Emma Espholin Gudnason
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | | | - Ana C. Mendes
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| | - Ioannis S. Chronakis
- DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark (E.E.G.)
| |
Collapse
|
24
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
25
|
Shang W, Sun Q, Zhang C, Liu H, Yang Y, Liu Y, Gao W, Shen W, Yin D. Drug in Therapeutic Polymer: Sinomenine-Loaded Oxidation-Responsive Polymeric Nanoparticles for Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47552-47565. [PMID: 37768213 DOI: 10.1021/acsami.3c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that frequently involves cartilage damage and the destruction of the bone structure, ultimately resulting in disability and long-term pain. It is clear that overexpression of reactive oxygen species (ROS) and the complex inflammatory microenvironment are the main causes of RA pathogenesis; thereby, the efficacy of any single-drug treatment is limited. Herein, we formulated a therapeutic hyaluronic acid derivative (PAM-HA) with adsorption capacity to the subchondral bone, a long retention time within inflamed joints, and ROS-scavenging capacity, which was used as a drug carrier for realizing the controlled release of sinomenine (Sin) within arthritic joints. This "drug in therapeutic polymer" design strategy was aimed at realizing antioxidant and anti-inflammatory combination therapy for RA. In vivo experiments suggest that PAM-HA@Sin NPs can be retained in the inflamed joints of rats for a long time compared with commercially available free Sin injections. As expected, therapeutic PAM-HA polymeric carriers can increase joint lubrication and reduce oxidative stress, while the released Sin induces downregulation of proinflammatory factors (TNF-α and IL-1β) and upregulation of anti-inflammatory factors (Arg-1 and IL-10) via the NF-κB pathway. In summary, a ROS-scavenging hyaluronic acid (HA) derivative was developed as the nanocarrier for Sin delivery to simultaneously remodel the oxidative/inflammatory microenvironment in RA, which opens up new horizons for the development of therapeutic polymers and the combined therapeutic strategies.
Collapse
Affiliation(s)
- Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenxu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
- Anhui Provincial Key Laboratory of Research & Chinese Medicine, Hefei 230012, China
| |
Collapse
|
26
|
Khuluza F, Chiumia FK, Nyirongo HM, Kateka C, Hosea RA, Mkwate W. Temperature variations in pharmaceutical storage facilities and knowledge, attitudes, and practices of personnel on proper storage conditions for medicines in southern Malawi. Front Public Health 2023; 11:1209903. [PMID: 37808988 PMCID: PMC10556513 DOI: 10.3389/fpubh.2023.1209903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Objective We assessed the temperature variations in pharmacies and medicine storage areas in southern Malawi and conducted a knowledge, attitude and practices survey for personnel who manage medicine stores in various health facilities. Methods This was a longitudinal study design that used installed Tempmate® thermometers in 27 selected health facilities to record temperatures every 15 min for a period of 9 months. In addition, a questionnaire was used to assess the knowledge, attitude, and practices regarding good pharmaceutical storage. Observations were also made on the storage structures of the facilities and compared with the mean kinetic temperature. Results Storage temperature ranged from 13.8°C to 42°C with mean kinetic temperature (MKT) being 25.3°C (95% CI 24.4-26.2°C). Mean temperature for public facilities was lower (23.8°C) than the faith-based facilities (25.2°C) and private facilities (26.6°C). In terms of level of health care, lower temperatures were recorded in facilities offering tertiary level of care as compared to secondary and primary care facilities, p < 0.001. For the type of storage facilities, storage-in-a-box unit (SIAB) presented lower temperatures than ordinary storage areas (non-SIAB), p < 0.001. Majority of health workers (69%) had good knowledge on proper storage conditions. Air conditioners and thermometers were available in 88.4 and 76.9% of the facilities, respectively. However, few facilities utilized the air conditioners due to electricity problems. About 46.15% of the participants were able to correctly record temperatures (at least twice a day) for the storage facilities, 23.07% did not properly record while 30.77% of the personnel did not keep temperature records at all. Limited storage space was among the challenges that facilities encounter to maintain proper storage conditions. Conclusion Despite having the necessary knowledge on proper storage conditions, the pharmacy personnel failed to adhere to good pharmaceutical storage practices due to resource limitations. There is a need for stakeholder interventions such as increasing budget allocation to address the challenges faced by the health facilities.
Collapse
|
27
|
Annereau M, Vignes M, Denis L, Rieutord A, Legrand FX, Rioblanc F, Paul M, Grill J, Secretan PH, Do B. Molecular Mechanisms Involved in the Chemical Instability of ONC201 and Methods to Counter Its Degradation in Solution. Pharmaceutics 2023; 15:2371. [PMID: 37896134 PMCID: PMC10609984 DOI: 10.3390/pharmaceutics15102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma is one of the most common and aggressive forms of brain tumor, a rare disease for which there is a great need for innovative therapies. ONC201, a new drug substance, has been used in a compassionate treatment program where the choice of dosage form and regimen have yet to be justified. The prior knowledge needed to anticipate ONC201 stability problems has recently been partially addressed, by (i) showing that ONC201 is sensitive to light and oxidation and (ii) identifying the molecular structures of the main degradation products formed. The aim of the work presented here was to improve our understanding of the degradation pathways of ONC201 using data from ab initio calculations and experimental work to supplement the structural information we already published. The C-H bonds located αto the amine of the tetrahydropyridine group and those located alpha to the imine function of the dihydroimidazole group exhibit the lowest bond dissociation energies (BDEs) within the ONC201 molecule. Moreover, these values drop well below 90 kcal.mol-1 when ONC201 is in an excited state (S1; T1). The structures of the photoproducts we had previously identified are consistent with these data, showing that they would have resulted from radical processes following the abstraction of alpha hydrogens. Concerning ONC201's sensitivity to oxidation, the structures of the oxidation products matched the critical points revealed through mapped electrostatic potential (MEP) and average local ionization energy (ALIE). The data obtained from ab initio calculations and experimental work showed that the reactivity of ONC201 to light and oxidation conditions is highly dependent on pH. While an acidic environment (pH < 6) contributes to making ONC201 quantitatively more stable in solution in the face of oxidation and photo-oxidation, it nevertheless seems that certain chemical groups in the molecule are more exposed to nucleophilic attacks, which explains the variation observed in the profile of degradation products formed in the presence of certain antioxidants tested. This information is crucial to better understand the stability results in the presence of antioxidant agents and to determine the right conditions for them to act.
Collapse
Affiliation(s)
- Maxime Annereau
- Université Paris-Saclay, 91400 Orsay, France; (M.A.); (M.V.); (B.D.)
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (L.D.); (A.R.); (F.R.)
| | - Marina Vignes
- Université Paris-Saclay, 91400 Orsay, France; (M.A.); (M.V.); (B.D.)
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (L.D.); (A.R.); (F.R.)
| | - Lucas Denis
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (L.D.); (A.R.); (F.R.)
| | - André Rieutord
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (L.D.); (A.R.); (F.R.)
| | | | - François Rioblanc
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (L.D.); (A.R.); (F.R.)
| | - Muriel Paul
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Creteil, France;
- EpidermE, Université Paris Est Creteil, 94000 Creteil, France
| | - Jacques Grill
- Molecular Predictors and New Targets in Oncology, INSERM, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | | | - Bernard Do
- Université Paris-Saclay, 91400 Orsay, France; (M.A.); (M.V.); (B.D.)
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Creteil, France;
| |
Collapse
|
28
|
Iyer J, Morgan LM, Harrison P, Davis A, Ray A, Mitsche S, Hofer F, Saraf I, Paudel A. Applying Material Science Principles to Chemical Stability: Modelling Solid State Autoxidation in Mifepristone Containing Different Degrees of Crystal Disorder. J Pharm Sci 2023; 112:2463-2482. [PMID: 37031865 DOI: 10.1016/j.xphs.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Ball-milling and harsh manufacturing processes often generate crystal disorder which have practical implications on the physical and chemical stabilities of solid drugs during subsequent storage, transport, and handling. The impact of the physical state of solid drugs, containing different degrees/levels of crystal disorder, on their autoxidative stability under storage has not been widely investigated. This study investigates the impact of differing degrees of crystal disorder on the autoxidation of Mifepristone (MFP) to develop a predictive (semi-empirical) stability model. Crystalline MFP was subjected to different durations of ambient ball milling, and the resulting disorder/ amorphous content was quantified using a partial least square (PLS) regression model based on Raman spectroscopy data. Samples of MFP milled to generate varying levels of disorder were subjected to a range of (accelerated) stability conditions, and periodically sampled to examine their recrystallization and degradation extents. Crystallinity was monitored by Raman spectroscopy, and the degradation was evaluated by liquid chromatography. The analyses of milled samples demonstrated a competition between recrystallization and degradation via autoxidation of MFP, to different extents depending on stability conditions/exposure time. The degradation kinetics were analyzed by accounting for the preceding amorphous content, and fitted with a diffusion model. An extended Arrhenius equation was used to predict the degradation of stored samples under long-term (25°C/60% RH) and accelerated (40°C/75% RH, 50°C/75% RH) stability conditions. This study highlights the utility of such a predictive stability model for identifying the autoxidative instability in non-crystalline/partially crystalline MFP, owing to the degradation of the amorphous phases. This study is particularly useful for identifying drug-product instability by leveraging the concept of material sciences.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Lucy M Morgan
- Pfizer Worldwide Research, Development and Medical, Sandwich, Kent, CT13 9NJ, UK
| | - Pamela Harrison
- Oral Product Development, Pharmaceutical Technology and Development, operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Adrian Davis
- Pfizer Worldwide Research, Development and Medical, Sandwich, Kent, CT13 9NJ, UK
| | - Andrew Ray
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Stefan Mitsche
- FELMI ZFE-Austrian Center for Electron Microscopy and Nanoanalysis Graz University of Technology, Graz 8010, Austria
| | - Ferdinand Hofer
- FELMI ZFE-Austrian Center for Electron Microscopy and Nanoanalysis Graz University of Technology, Graz 8010, Austria
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz 8010, Austria.
| |
Collapse
|
29
|
Pizzimenti S, Bernazzani L, Duce C, Tinè MR, Bonaduce I. A versatile method to fingerprint and compare the oxidative behaviour of lipids beyond their oxidative stability. Sci Rep 2023; 13:8094. [PMID: 37208395 DOI: 10.1038/s41598-023-34599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
In this work we propose the use of isothermal thermogravimetry to evaluate the oxidative stability of a lipid and to evaluate how the glyceride composition affects the entire oxidative process, to quantify the oxidation undertaken by the lipid, and numerically compare the oxidative behaviour of different lipids. The innovative aspect of the present method lies in the acquisition of a prolonged "oxygen uptake" curve (4000-10,000 min) of a lipid under oxygen and in the development of a semi-empirical fitting equation for the experimental data. This provides the induction period (oxidative stability), and allows to evaluate the rate of oxidation, the rate and the magnitude of oxidative degradation, the overall mass loss and the mass of oxygen taken by the lipid upon time. The proposed approach is used to characterize the oxidation of different edible oils with different degrees of unsaturation (linseed oil, sunflower oil, and olive oil) as well as chemically simpler compounds used in the literature to model the autoxidation of vegetable oils and lipids in general: triglycerides (glyceryl trilinolenate, glyceryl trilinoleate and glyceryl trioleate) and methyl esters (methyl linoleate and methyl linolenate). The approach proves very robust and very sensitive to changes in the sample composition.
Collapse
Affiliation(s)
- Silvia Pizzimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Luca Bernazzani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.
| | - Celia Duce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.
- Istituto Nazionale di Ottica (INO) - SS Pisa, CNR area di Pisa, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Maria Rosaria Tinè
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Istituto Nazionale di Ottica (INO) - SS Pisa, CNR area di Pisa, Via Moruzzi 1, 56124, Pisa, Italy
| | - Ilaria Bonaduce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
30
|
Petřík J, Zůza D, Heřt J, Řezanka P, Krejčík L, Hrubcová K, Štěpánek F. Azobisisobutyronitrile loaded on mesoporous silica particles: A new stressor for solid-state oxidative forced degradation studies. J Pharm Biomed Anal 2023; 232:115417. [PMID: 37120974 DOI: 10.1016/j.jpba.2023.115417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
A new approach for testing drug sensitivity to autooxidative degradation in the solid state is demonstrated in this work. A novel solid-state form of stressing agent for autooxidation has been proposed, based on azobisisobutyronitrile loaded into mesoporous silica carrier particles. The new solid-state form of the stressing agent was applied in degradation studies of two active pharmaceutical ingredients: bisoprolol and abiraterone acetate. The effectiveness and predictivity of the method were evaluated by comparing impurity profiles with those obtained by traditional stability testing of commercial tablets containing the investigated APIs. The results obtained by the new solid-state stressor were also compared with those obtained by an existing method for testing peroxide oxidative degradation in the solid state using a complex of polyvinylpyrrolidone with hydrogen peroxide. It was found that the new silica particle-based stressor was able to effectively predict which impurities could be formed by autooxidation in tablets and that this new approach is complementary to methods for testing peroxide oxidative degradation known from the literature.
Collapse
Affiliation(s)
- Jakub Petřík
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - David Zůza
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jakub Heřt
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Pavel Řezanka
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Lukáš Krejčík
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Kateřina Hrubcová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
31
|
Iyer J, Karn A, Brunsteiner M, Ray A, Davis A, Saraf I, Paudel A. Screening Autoxidation Propensities of Drugs in the Solid-State Using PVP and in the Solution State Using N-Methyl Pyrrolidone. Pharmaceutics 2023; 15:pharmaceutics15030848. [PMID: 36986709 PMCID: PMC10058359 DOI: 10.3390/pharmaceutics15030848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative degradation of drugs is one of the major routes of drug substance and drug product instability. Among the diverse routes of oxidation, autoxidation is considered to be challenging to predict and control, potentially due to the multi-step mechanism involving free radicals. C–H bond dissociation energy (C–H BDE) is evidenced to be a calculated descriptor shown to predict drug autoxidation. While computational predictions for the autoxidation propensity of drugs are both swift and possible, no literature to date has highlighted the relationship between the computed C–H BDE and the experimentally-derived autoxidation propensities of solid drugs. The objective of this study is to investigate this missing relationship. The present work is an extension to the previously reported novel autoxidation approach that involves subjecting a physical mixture of pre-milled polyvinyl pyrrolidone (PVP) K-60 and a crystalline drug under high temperature and pressurized oxygen setup. The drug degradation was measured using chromatographic methods. An improved trend between the extent of solid autoxidation and C–H BDE could be observed after normalizing the effective surface area of drugs in the crystalline state, pointing to a positive relationship. Additional studies were conducted by dissolving the drug in N-methyl pyrrolidone (NMP) and exposing the solution under a pressurized oxygen setup at diverse elevated temperatures. Chromatographic results of these samples indicated a similarity in the formed degradation products to the solid-state experiments pointing to the utility of NMP, a PVP monomer surrogate, as a stressing agent for faster and relevant autoxidation screening of drugs in formulations.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | - Anjali Karn
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | | | - Andrew Ray
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Adrian Davis
- Pfizer Worldwide Research and Development, Sandwich, Kent CT13 9NJ, UK
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), 8010 Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-30912
| |
Collapse
|
32
|
Singamsetti JM, Gandham H, Geereddy MKR, Kaliyaperumal M, Doddipalla R, Rumalla CS, Jayanti NM. Isolation and structural characterization of two novel oxidative degradation products of losartan potassium active pharmaceutical ingredient using advanced analytical techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9432. [PMID: 36400748 DOI: 10.1002/rcm.9432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Losartan potassium (losartan) is the most frequently utilized antihypertensive medication in the world. However, partial oxidation of losartan produces toxic by-products that could be harmful to living organisms. Therefore, it is necessary to degrade the losartan and identify the potential toxic oxidative degradation products to minimize their formation during manufacturing, formulation, storage, and packing conditions. METHODS Oxidative degradation experiments of losartan were performed according to ICH guidelines. The degradation products were detected using ultra-high-performance liquid chromatography-mass spectrometry analysis, isolated by using preparative HPLC, and identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopic techniques. RESULTS The degradation products (DP-1, DP-2, and DP-3) were identified as (((2'-(2H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl)methyl)amino)-2-oxoethylpentanoate, 5-(4'-((2 butyl-4-chloro-5-(hydroxymethyl)-1H-imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-yl)-1H tetrazol-1-ol, and 5-(4'-((2-butyl-4-chloro-5-(hydroxymethyl)-1H-imidazol-1 yl)methyl)-[1,1'-biphenyl]-2-yl)-2H-tetrazol-2-ol, respectively. CONCLUSIONS Forced degradation of losartan potassium API under oxidative condition indicates the formation of two major novel oxidative degradation products (DP-2 and DP-3) and one minor known degradation product (DP-1).Preparative HPLC used for the isolation of the resultant DPs and their structures were successfully established using UHPLC-MS, 1H NMR, 13C NMR, HSQC, HMBC, and HRMS spectroscopic techniques.
Collapse
Affiliation(s)
- Jcmknn Murty Singamsetti
- Department of Discovery Analytical R&D, Aragen Life Sciences Pvt. Ltd, IDA Nacharam, Hyderabad, India
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, India
| | - Himabindhu Gandham
- Department of Engineering Chemistry, Andhra University, Visakhapatnam, India
| | | | | | - Raju Doddipalla
- Department of Discovery Analytical R&D, Aragen Life Sciences Pvt. Ltd, IDA Nacharam, Hyderabad, India
| | - Chidananda Swamy Rumalla
- Department of Discovery Analytical R&D, Aragen Life Sciences Pvt. Ltd, IDA Nacharam, Hyderabad, India
| | - Nsrc Murty Jayanti
- Department of Discovery Analytical R&D, Aragen Life Sciences Pvt. Ltd, IDA Nacharam, Hyderabad, India
| |
Collapse
|
33
|
Hsieh CM, Yang TL, Putri AD, Chen CT. Application of Design of Experiments in the Development of Self-Microemulsifying Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:283. [PMID: 37259427 PMCID: PMC9958669 DOI: 10.3390/ph16020283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 08/27/2023] Open
Abstract
Oral delivery has become the route of choice among all other types of drug administrations. However, typical chronic disease drugs are often poorly water-soluble, have low dissolution rates, and undergo first-pass metabolism, ultimately leading to low bioavailability and lack of efficacy. The lipid-based formulation offers tremendous benefits of using versatile excipients and has great compatibility with all types of dosage forms. Self-microemulsifying drug delivery system (SMEDDS) promotes drug self-emulsification in a combination of oil, surfactant, and co-surfactant, thereby facilitating better drug solubility and absorption. The feasible preparation of SMEDDS creates a promising strategy to improve the drawbacks of lipophilic drugs administered orally. Selecting a decent mixing among these components is, therefore, of importance for successful SMEDDS. Quality by Design (QbD) brings a systematic approach to drug development, and it offers promise to significantly improve the manufacturing quality performance of SMEDDS. Furthermore, it could be benefited efficiently by conducting pre-formulation studies integrated with the statistical design of experiment (DoE). In this review, we highlight the recent findings for the development of microemulsions and SMEDDS by using DoE methods to optimize the formulations for drugs in different excipients with controllable ratios. A brief overview of DoE concepts is discussed, along with its technical benefits in improving SMEDDS formulations.
Collapse
Affiliation(s)
- Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ting-Lun Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Athika Darumas Putri
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutical Chemistry, Semarang College of Pharmaceutical Sciences (STIFAR), Semarang City 50192, Indonesia
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
34
|
Adhikari S, Tian J, Rustum AM. Comprehensive study on degradation profile of firocoxib and structural elucidation of its key degradation products. J Pharm Biomed Anal 2023; 224:115192. [PMID: 36463770 DOI: 10.1016/j.jpba.2022.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
Firocoxib is widely used in veterinary medicine as a non-steroidal analgesic and anti-inflammatory drug substance. Herein, a comprehensive study on the degradation profile of firocoxib was performed through force degradation studies to understand its degradation profile and characterize its major degradation products (DPs). Firocoxib drug substance was subjected to acidic, alkaline, oxidation (H2O2, KMnO4, and K2Cr2O7), thermal (solid and solution state), and photolytic (solid and solution state) stress degradation, as recommended in the ICH guidelines. Firocoxib and its major DPs were adequately separated by investigational HPLC method, which utilized a HALO C18 (100 × 2.1 mm, 2.0 µm) column. Mobile phase-A for the HPLC method is composed of 0.1% formic acid in water and mobile phase-B acetonitrile. A total of six major DPs were observed for firocoxib drug substance under these stress degradation conditions. Structural elucidation of the DPs performed using liquid chromatography-high resolution mass spectrometry and comparison of their fragmentation profile with that of the parent compound. For further structural confirmation of two major DPs, DP-2 and DP-6 were isolated and purified from the stressed samples using a preparative HPLC and analyzed by comprehensive nuclear magnetic resonance (NMR) spectroscopy studies. Most probable mechanistic pathways for the formation of DPs of firocoxib under various stress degradation conditions were postulated to understand its degradation profile. Based on the results from forced degradation, firocoxib was found to be quite stable under basic and thermal conditions, and somewhat unstable under acidic, oxidative, and photolytic conditions. The results of this study should facilitate quality monitoring and establish a stability profile of firocoxib drug substance and drug products. These results may also assist in the design and development of new formulations made with firocoxib drug substance with desired shelf life.
Collapse
Affiliation(s)
- Sarju Adhikari
- Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA
| | - Jingzhi Tian
- Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA.
| | - Abu M Rustum
- Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA
| |
Collapse
|
35
|
Pinto JT, Rajkovaca M, Paudel A. The Impact of the Water Evaporation Rate and Saccharide Excipients on the Oxidative Degradation of Polysorbates During Oven Drying and Spray Drying. J Pharm Sci 2023; 112:36-39. [PMID: 36334810 DOI: 10.1016/j.xphs.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
In recent years, many fast drying techniques such as spray-drying are being explored as alternatives to biopharmaceutical freeze-drying. Thus, it is essential to understand how the processability of commonly used excipients will be affected when these new techniques are employed. This study reports a series of observations outlining how the thermally-induced oxidative degradation of polysorbates (PS) evolves in liquid to solid transitions, such as those expected in spray-drying. Firstly, the impact of different evaporation rates on the oxidative degradation of aqueous solutions of two different PS types namely, PS20 and PS80, were screened via evaporative solvent casting. The latter revealed that the evaporation rate could critically impact the rate-limiting steps of PS thermal oxidation. In addition, the potential of saccharides as excipients to mitigate the thermal oxidation of PS80 under slow and fast evaporation conditions was investigated. Five different saccharide excipients were screened, i.e., trehalose dihydrate, maltodextrin, hydroxypropyl-β-cyclodextrin, and Dextran 40. Under slow evaporation conditions, only trehalose dihydrate seemed to be beneficial in avoiding the thermal oxidation of PS80. For fast evaporation conditions, hydroxypropyl-β-cyclodextrin prevented the oxidative degradation of PS80. This implies that distinct strategies to mitigate PS oxidative degradation might be necessary depending on the drying process and rates.
Collapse
Affiliation(s)
- Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Manuel Rajkovaca
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, 8010, Graz, Austria.
| |
Collapse
|
36
|
Brito de Oliveira Moreira O, Vinícius de Faria L, Matos RC, Enes KB, Costa Couri MR, de Oliveira MAL. Determination of hydroquinone and benzoquinone in pharmaceutical formulations: critical considerations on quantitative analysis of easily oxidized compounds. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4784-4794. [PMID: 36377694 DOI: 10.1039/d2ay01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydroquinone is a skin-lightening agent used as an active ingredient in topical dermatological formulations prescribed for treating cutaneous diseases caused by hyperpigmentation. Despite being widely used, some toxicological aspects have been associated with these products, mainly due to overdosage and long-term use combined with the easy oxidation of hydroquinone. In this work, an investigative study has been done to gather enough data for selecting a quantitative analytical method for quality control purposes that considers the ease of oxidation not only within the product but also during the experimental procedures. After studying the influence of pH, reversibility, sampling, and standard solution preparation on the redox reaction between hydroquinone and benzoquinone by using spectroscopic, electrophoretic, and electroanalytical measurements, a reliable, fast, and selective chronoamperometric method was achieved. The optimized method was used for the analysis of samples, previously diluted in Britton-Robinson (BR) buffer (pH 5.5) and methanol (1 : 9, v/v), by applying a potential fixed at 0.4 V. A glassy-carbon working electrode, lab-made Ag/AgCl(sat) and platinum wire as a reference electrode and auxiliary electrodes, respectively, and BR buffer (pH 5.5) as supporting electrolyte were the additional experimental conditions used. Analytical performance parameters were verified to confirm the applicability of the new method (LOD 4.22 μmol L-1 and LOQ 14.1 μmol L-1; recovery mean value of 100% with 0.22% RSD). A gel topical formulation containing 4% (w/w) hydroquinone was analyzed through the developed method for determination of dosage and oxidation traces, and a content of 3.53 ± 0.095% (w/w) was found with no indications of degradation.
Collapse
Affiliation(s)
| | - Lucas Vinícius de Faria
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Renato Camargo Matos
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Karine Braga Enes
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Mara Rúbia Costa Couri
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| | - Marcone Augusto Leal de Oliveira
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
37
|
Photoexcited Nitroarenes for the Oxidative Cleavage of Alkenes. Nature 2022; 610:81-86. [PMID: 35998666 DOI: 10.1038/s41586-022-05211-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
The oxidative cleavage of alkenes is an integral process that converts feedstock materials into high-value synthetic intermediates1,2,3. The most viable method to achieve this in one chemical step is with ozone4,5,6,7, which however poses technical and safety challenges owing to the explosive nature of ozonolysis products8,9. Herein, we disclose an alternative approach to achieve oxidative cleavage of alkenes using nitroarenes and purple light irradiation. We demonstrate that photoexcited nitroarenes are effective ozone surrogates that undergo facile radical [3+2] cycloaddition with alkenes. The resulting "N-doped" ozonides are safe to handle and lead to the corresponding carbonyl products under mild hydrolytic conditions. These features have enabled the controlled cleavage of all types of alkenes in the presence of a broad array of commonly used organic functionalities. Furthermore, by harnessing electronic, steric, and mediated polar effects, the structural and functional diversity of nitroarenes has provided a modular platform to obtain site-selectivity in substrates containing more than one alkene.
Collapse
|