1
|
Argenziano M, Spagnolo R, Cavalli R. What are the future applications of chitosan nanobubbles in drug delivery? Expert Opin Drug Deliv 2025:1-3. [PMID: 39903218 DOI: 10.1080/17425247.2025.2462761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
3
|
Di Cintio F, Argenziano M, Scomparin A, Capolla S, Busato D, Steffè A, Mangogna A, Sblattero D, Cavalli R, Macor P, Dal Bo M, Toffoli G. The anti-glypican 1 AT101 antibody as targeting agent to effectively deliver chitosan nanobubbles to glioblastoma cells. Nanomedicine (Lond) 2025; 20:23-36. [PMID: 39620421 DOI: 10.1080/17435889.2024.2434451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Recently, we developed AT101, an IgM-class mouse monoclonal antibody directed against glypican-1 (GPC1), a proteoglycan that can be considered as useful target for glioblastoma multiforme (GBM) treatment being specifically and highly expressed on GBM cell surface. Here, we proposed the use of AT101 as targeting agent in a drug delivery nanoplatfom to effectively deliver chitosan nanobubbles (NBs) for GBM treatment. METHODS Chitosan NBs were prepared and conjugated with AT101 or left unconjugated as control. RESULTS The ability of AT101 to bind the GPC1 protein was demonstrated by flow cytometry and immunofluorescence analysis in the "GBM-like" GPC1-expressing cell lines U-87 MG and T98G. AT101 was shown to bind GPC1-expressing GBM tumor samples by immunofluorescence. In-vivo experiments in the U-87 MG xenograft model showed that AT101 was able to bind GPC1 on cell surface and accumulate in U-87 MG tumor masses (p = 0.0002 respect to control). Moreover, in-vivo experiments showed that AT101 is able to target GPC1 when conjugated to chitosan NBs, thus increasing their specific deliver to GPC1-expressing cells of U-87 MG tumor, as compared to chitosan NBs not conjugated to AT101 (p = 0.02). CONCLUSIONS AT101 is an useful targeting agent for the development of drug delivery nanoplatforms for GBM treatment.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Aharon Steffè
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
4
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
7
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
8
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
9
|
Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF, Paiva-Santos AC, Neisiany RE, Makvandi P, Iravani S, Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr Polym 2024; 330:121839. [PMID: 38368115 DOI: 10.1016/j.carbpol.2024.121839] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | | | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyedeh Farnaz Ziaei
- Department of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
10
|
Saha S, Sachivkina N, Karamyan A, Novikova E, Chubenko T. Advances in Nrf2 Signaling Pathway by Targeted Nanostructured-Based Drug Delivery Systems. Biomedicines 2024; 12:403. [PMID: 38398005 PMCID: PMC10887079 DOI: 10.3390/biomedicines12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nanotechnology has gained significant interest in various applications, including sensors and therapeutic agents for targeted disease sites. Several pathological consequences, including cancer, Alzheimer's disease, autoimmune diseases, and many others, are mostly driven by inflammation and Nrf2, and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), plays a crucial role in maintaining redox status, the expression of antioxidant genes, and the inflammatory response. Interestingly, tuning the Nrf2/antioxidant response element (ARE) system can affect immune-metabolic mechanisms. Although many phytochemicals and synthetic drugs exhibited potential therapeutic activities, poor aqueous solubility, low bioavailability, poor tissue penetration, and, consequently, poor specific drug targeting, limit their practical use in clinical applications. Also, the therapeutic use of Nrf2 modulators is hampered in clinical applications by the absence of efficient formulation techniques. Therefore, we should explore the engineering of nanotechnology to modulate the inflammatory response via the Nrf2 signaling pathway. This review will initially examine the role of the Nrf2 signaling pathway in inflammation and oxidative stress-related pathologies. Subsequently, we will also review how custom-designed nanoscale materials encapsulating the Nrf2 activators can interact with biological systems and how this interaction can impact the Nrf2 signaling pathway and its potential outcomes, emphasizing inflammation.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Arfenya Karamyan
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Ekaterina Novikova
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Tamara Chubenko
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| |
Collapse
|
11
|
Sotoudeh Bagha P, Kolanthai E, Wei F, Neal CJ, Kumar U, Braun G, Coathup M, Seal S, Razavi M. Ultrasound-Responsive Nanobubbles for Combined siRNA-Cerium Oxide Nanoparticle Delivery to Bone Cells. Pharmaceutics 2023; 15:2393. [PMID: 37896153 PMCID: PMC10609961 DOI: 10.3390/pharmaceutics15102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to present an ultrasound-mediated nanobubble (NB)-based gene delivery system that could potentially be applied in the future to treat bone disorders such as osteoporosis. NBs are sensitive to ultrasound (US) and serve as a controlled-released carrier to deliver a mixture of Cathepsin K (CTSK) siRNA and cerium oxide nanoparticles (CeNPs). This platform aimed to reduce bone resorption via downregulating CTSK expression in osteoclasts and enhance bone formation via the antioxidant and osteogenic properties of CeNPs. CeNPs were synthesized and characterized using transmission electron microscopy and X-ray photoelectron spectroscopy. The mixture of CTSK siRNA and CeNPs was adsorbed to the surface of NBs using a sonication method. The release profiles of CTSK siRNA and CeNPs labeled with a fluorescent tag molecule were measured after low-intensity pulsed ultrasound (LIPUS) stimulation using fluorescent spectroscopy. The maximum release of CTSK siRNA and the CeNPs for 1 mg/mL of NB-(CTSK siRNA + CeNPs) was obtained at 2.5 nM and 1 µg/mL, respectively, 3 days after LIPUS stimulation. Then, Alizarin Red Staining (ARS) was applied to human bone marrow-derived mesenchymal stem cells (hMSC) and tartrate-resistant acid phosphatase (TRAP) staining was applied to human osteoclast precursors (OCP) to evaluate osteogenic promotion and osteoclastogenic inhibition effects. A higher mineralization and a lower number of osteoclasts were quantified for NB-(CTSK siRNA + CeNPs) versus control +RANKL with ARS (p < 0.001) and TRAP-positive staining (p < 0.01). This study provides a method for the delivery of gene silencing siRNA and CeNPs using a US-sensitive NB system that could potentially be used in vivo and in the treatment of bone fractures and disorders such as osteoporosis.
Collapse
Affiliation(s)
- Pedram Sotoudeh Bagha
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Fei Wei
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Gillian Braun
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Melanie Coathup
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Mehdi Razavi
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
12
|
Molinar C, Tannous M, Meloni D, Cavalli R, Scomparin A. Current Status and Trends in Nucleic Acids for Cancer Therapy: A Focus on Polysaccharide-Based Nanomedicines. Macromol Biosci 2023; 23:e2300102. [PMID: 37212473 DOI: 10.1002/mabi.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Indexed: 05/23/2023]
Abstract
The efficacious delivery of therapeutic nucleic acids to cancer still remains an open issue. Through the years, several strategies are developed for the encapsulation of genetic molecules exploiting different materials, such as viral vectors, lipid nanoparticles (LNPs), and polymeric nanoparticles (NPs). Indeed, the rapid approval by regulatory authorities and the wide use of LNPs complexing the mRNA coding for the spark protein for COVID-19 vaccination paved the way for the initiation of several clinical trials exploiting lipid nanoparticles for cancer therapy. Nevertheless, polymers still represent a valuable alternative to lipid-based formulations, due to the low cost and the chemical flexibility that allows for the conjugation of targeting ligands. This review will analyze the status of the ongoing clinical trials for cancer therapy, including vaccination and immunotherapy approaches, exploiting polymeric materials. Among those nanosized carriers, sugar-based backbones are an interesting category. A cyclodextrin-based carrier (CALAA-01) is the first polymeric material to enter a clinical trial complexed with siRNA for cancer therapy, and chitosan is one of the most characterized non-viral vectors able to complex genetic material. Finally, the recent advances in the use of sugar-based polymers (oligo- and polysaccharides) for the complexation of nucleic acids in advanced preclinical stage will be discussed.
Collapse
Affiliation(s)
- Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Maria Tannous
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, Torino, 10125, Italy
| | - Domitilla Meloni
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| |
Collapse
|
13
|
Khodakarami A, Kashani MA, Nazer A, Kheshti AM, Rashidi B, Karpisheh V, Masjedi A, Abolhasani S, Izadi S, Bagherifar R, Hejazian SS, Mohammadi H, Movassaghpour A, Feizi AAH, Hojjat-Farsangi M, Jadidi-Niaragh F. Targeted Silencing of NRF2 by rituximab-conjugated nanoparticles increases the sensitivity of chronic lymphoblastic leukemia cells to Cyclophosphamide. Cell Commun Signal 2023; 21:188. [PMID: 37528446 PMCID: PMC10391779 DOI: 10.1186/s12964-023-01213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefeh Nazer
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Masjedi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafieh Bagherifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - AliAkbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, Cavalli R, Terreno E. Hard-Shelled Glycol Chitosan Nanoparticles for Dual MRI/US Detection of Drug Delivery/Release: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2227. [PMID: 37570545 PMCID: PMC10420971 DOI: 10.3390/nano13152227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel nanoformulation for dual MRI/US in vivo monitoring of drug delivery/release. The nanosystem was made of a perfluoropentane core coated with phospholipids stabilized by glycol chitosan crosslinked with triphosphate ions, and it was co-loaded with the prodrug prednisolone phosphate (PLP) and the structurally similar MRI agent Gd-DTPAMA-CHOL. Importantly, the in vitro release of PLP and Gd-DTPAMA-CHOL from the nanocarrier showed similar profiles, validating the potential impact of the MRI agent as an imaging reporter for the drug release. On the other hand, the nanobubbles were also detectable by US imaging both in vitro and in vivo. Therefore, the temporal evolution of both MRI and US contrast after the administration of the proposed nanosystem could report on the delivery and the release kinetics of the transported drug in a given lesion.
Collapse
Affiliation(s)
- Simona Baroni
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca La Cava
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Marco Soster
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| |
Collapse
|
15
|
Cucci MA, Grattarola M, Monge C, Roetto A, Barrera G, Caputo E, Dianzani C, Pizzimenti S. Nrf2 as a Therapeutic Target in the Resistance to Targeted Therapies in Melanoma. Antioxidants (Basel) 2023; 12:1313. [PMID: 37372043 DOI: 10.3390/antiox12061313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The use of specific inhibitors towards mutant BRAF (BRAFi) and MEK (MEKi) in BRAF-mutated patients has significantly improved progression-free and overall survival of metastatic melanoma patients. Nevertheless, half of the patients still develop resistance within the first year of therapy. Therefore, understanding the mechanisms of BRAFi/MEKi-acquired resistance has become a priority for researchers. Among others, oxidative stress-related mechanisms have emerged as a major force. The aim of this study was to evaluate the contribution of Nrf2, the master regulator of the cytoprotective and antioxidant response, in the BRAFi/MEKi acquired resistance of melanoma. Moreover, we investigated the mechanisms of its activity regulation and the possible cooperation with the oncogene YAP, which is also involved in chemoresistance. Taking advantage of established in vitro melanoma models resistant to BRAFi, MEKi, or dual resistance to BRAFi/MEKi, we demonstrated that Nrf2 was upregulated in melanoma cells resistant to targeted therapy at the post-translational level and that the deubiquitinase DUB3 participated in the control of the Nrf2 protein stability. Furthermore, we found that Nrf2 controlled the expression of YAP. Importantly, the inhibition of Nrf2, directly or through inhibition of DUB3, reverted the resistance to targeted therapies.
Collapse
Affiliation(s)
- Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Chiara Monge
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences-San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
16
|
Capolla S, Argenziano M, Bozzer S, D’Agaro T, Bittolo T, De Leo L, Not T, Busato D, Dal Bo M, Toffoli G, Cavalli R, Gattei V, Bomben R, Macor P. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models. Front Immunol 2023; 14:1200310. [PMID: 37359561 PMCID: PMC10285521 DOI: 10.3389/fimmu.2023.1200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction MicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides. Methods To overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells. Results Positively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects. Discussion Anti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies.
Collapse
Affiliation(s)
- Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Sara Bozzer
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tiziana D’Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Luigina De Leo
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Tarcisio Not
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. ULTRASONICS SONOCHEMISTRY 2023; 94:106346. [PMID: 36870921 PMCID: PMC10040969 DOI: 10.1016/j.ultsonch.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianpeng Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Siping Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xin Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
18
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
19
|
Malakoutikhah Z, Mohajeri Z, Dana N, Haghjooy Javanmard S. The dual role of Nrf2 in melanoma: a systematic review. BMC Mol Cell Biol 2023; 24:5. [PMID: 36747120 PMCID: PMC9900951 DOI: 10.1186/s12860-023-00466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer that originates from the malignant transformation of melanocytes. Although novel treatments have improved patient survival in melanoma, the overall prognosis remains poor. To improve current therapies and patients outcome, it is necessary to identify the influential elements in the development and progression of melanoma.Due to UV exposure and melanin synthesis, the melanocytic lineage seems to have a higher rate of ROS (reactive oxygen species) formation. Melanoma has been linked to an increased oxidative state, and all facets of melanoma pathophysiology rely on redox biology. Several redox-modulating pathways have arisen to resist oxidative stress. One of which, the Nrf2 (nuclear factor erythroid 2-related factor 2), has been recognized as a master regulator of cellular response to oxidative or electrophilic challenges. The activation of Nrf2 signaling causes a wide range of antioxidant and detoxification enzyme genes to be expressed. As a result, this transcription factor has lately received a lot of interest as a possible cancer treatment target.On the other hand, Nrf2 has been found to have a variety of activities in addition to its antioxidant abilities, constant Nrf2 activation in malignant cells may accelerate metastasis and chemoresistance. Hence, based on the cell type and context, Nrf2 has different roles in either preventing or promoting cancer. In this study, we aimed to systematically review all the studies discussing the function of Nrf2 in melanoma and the factors determining its alteration.
Collapse
Affiliation(s)
- Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Mohajeri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Dehariya D, Eswar K, Tarafdar A, Balusamy S, Rengan AK. Recent Advances of Nanobubble-based systems in Cancer Therapeutics: A Review. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
21
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
22
|
Nuclear factor Nrf2 promotes glycosidase OGG1 expression by activating the AKT pathway to enhance leukemia cell resistance to cytarabine. J Biol Chem 2022; 299:102798. [PMID: 36528059 PMCID: PMC9823221 DOI: 10.1016/j.jbc.2022.102798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.
Collapse
|
23
|
Corvino A, Catalano F, Cipolletta Campanile A, Cocco G, Delli Pizzi A, Corvino F, Varelli C, Catalano O. Interventional Ultrasound in Dermatology: A Pictorial Overview Focusing on Cutaneous Melanoma Patients. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:3137-3144. [PMID: 35920315 PMCID: PMC9805223 DOI: 10.1002/jum.16073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 05/26/2023]
Abstract
Cutaneous melanoma incidence is increasing worldwide, representing an aggressive tumor when evolving to the metastatic phase. High-resolution ultrasound (US) is playing a growing role in the assessment of newly diagnosed melanoma cases, in the locoregional staging prior to the sentinel lymph-node biopsy procedure, and in the melanoma patient follow-up. Additionally, US may guide a number of percutaneous procedures in the melanoma patients, encompassing diagnostic and therapeutic modalities. These include fine needle cytology, core biopsy, placement of presurgical guidewires, aspiration of lymphoceles and seromas, and electrochemotherapy.
Collapse
Affiliation(s)
- Antonio Corvino
- Motor Science and Wellness DepartmentUniversity of Naples “Parthenope”NaplesItaly
| | | | | | - Giulio Cocco
- Unit of Ultrasound in Internal Medicine, Department of Medicine and Science of AgingUniversity “G. D'Annunzio”ChietiItaly
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and DentistryUniversity “G. d'Annunzio”ChietiItaly
| | - Fabio Corvino
- Vascular and Interventional Radiology DepartmentCardarelli HospitalNaplesItaly
| | - Carlo Varelli
- Radiology UnitVarelli Diagnostic InstituteNaplesItaly
| | | |
Collapse
|
24
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
25
|
Argenziano M, Occhipinti S, Scomparin A, Angelini C, Novelli F, Soster M, Giovarelli M, Cavalli R. Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Deliv Transl Res 2022; 12:2007-2018. [PMID: 35672651 PMCID: PMC9172608 DOI: 10.1007/s13346-022-01185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Immunotherapy is a valuable approach to cancer treatment as it is able to activate the immune system. However, the curative methods currently in clinical practice, including immune checkpoint inhibitors, present some limitations. Dendritic cell vaccination has been investigated as an immunotherapeutic strategy, and nanotechnology-based delivery systems have emerged as powerful tools for improving immunotherapy and vaccine development. A number of nanodelivery systems have therefore been proposed to promote cancer immunotherapy. This work aims to design a novel immunotherapy nanoplatform for the treatment of HER2 + breast cancer, and specially tailored chitosan-shelled nanobubbles (NBs) have been developed for the delivery of a DNA vaccine. The NBs have been functionalized with anti-CD1a antibodies to target dendritic cells (DCs). The NB formulations possess dimensions of approximately 300 nm and positive surface charge, and also show good physical stability up to 6 months under storage at 4 °C. In vitro characterization has confirmed that these NBs are capable of loading DNA with good encapsulation efficiency (82%). The antiCD1a-functionalized NBs are designed to target DCs, and demonstrated the ability to induce DC activation in both human and mouse cell models, and also elicited a specific immune response that was capable of slowing tumor growth in mice in vivo. These findings are the proof of concept that loading a tumor vaccine into DC-targeted chitosan nanobubbles may become an attractive nanotechnology approach for the future immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Marco Soster
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|