1
|
Khamkar PP, Wagh KS, Nangare SN, Mali SS, Patil GS. Development of mesalamine loaded-fenugreek gum decorated pectin microspheres for colonic drug delivery: Ex-vivo and in-vitro characterizations. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:514-528. [PMID: 39617337 DOI: 10.1016/j.pharma.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Mesalamine (MES) is a preferred therapeutic agent for managing various colon disorders, including inflammatory bowel diseases (IBD). However, conventional oral dosage forms of MES face significant limitations, which reduce their effectiveness in managing these conditions. To overcome these challenges, advanced dosage forms of MES are essential. Fenugreek gum (FG), a natural polysaccharide with non-toxicity, ease of synthesis, biodegradability, and biocompatibility, was selected as a key component for developing a novel delivery system. Calcium ion crosslinked MES-incorporated FG-decorated pectin microspheres (FG@MES/PM) were successfully designed for colon-specific drug delivery using an ionotropic gelation technique. The microspheres exhibited favorable physicochemical characteristics, including a particle size of 586nm, a polydispersity index of 0.348, an entrapment efficiency of 85.20±1.02%, and a drug content of 98.52±0.96%. Ex vivo mucoadhesion tests demonstrated strong mucoadhesive properties, highlighting the potential of FG@MES/PM to adhere effectively to the colonic mucosa. In vitro drug release studies showed a modified release profile, with 99.02±1.80% MES released over 24h. Release kinetics analysis confirmed that FG@MES/PM followed the Higuchi matrix model (R2=0.9867), indicating diffusion-controlled release. The drug release mechanism was characterized as anomalous (non-Fickian) transport, with a release exponent (n) of 0.563. Overall, FG@MES/PM demonstrated promising potential for colon-specific drug delivery, offering sustained release and enhanced mucoadhesion. This study underscores the utility of FG for developing advanced drug delivery systems targeting the colon. Future research should explore the broader application of FG and similar natural polysaccharides in designing efficient and biocompatible colon-targeted formulations to improve therapeutic outcomes for IBD and related conditions.
Collapse
Affiliation(s)
- Pruthvi P Khamkar
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India
| | - Kalpeshkumar S Wagh
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India
| | - Sopan N Nangare
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth, 415539 Karad, Maharashtra, India
| | - Sachin S Mali
- Department of Pharmaceutics, Ashokrao Mane College of Pharmacy, Peth Vadgaon, 416112 Maharashtra, India
| | - Gaurav S Patil
- Department of Pharmaceutics, KVPS's, Institute of Pharmaceutical Education, 425428 Boradi, Maharashtra, India.
| |
Collapse
|
2
|
Laffleur F, Millotti G, Lagast J. An overview of oral bioavailability enhancement through self-emulsifying drug delivery systems. Expert Opin Drug Deliv 2025; 22:659-671. [PMID: 40078056 DOI: 10.1080/17425247.2025.2479759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The pharmaceutical technologists face a lot of challenges and limitations when designing novel drug delivery systems such as low oral bioavailability of many drugs, primarily due to poor solubility, slow dissolution rates, limited permeability through gastrointestinal mucosa, and rapid degradation within the body. AREAS COVERED The biopharmaceutical classification (BCS) classification represents a map in drug delivery research. Numerous active ingredients are characterized by low bioavailability due to poor water solubility, especially active ingredients of BCS class II and IV. Self-emulsifying drug delivery systems (SEDDS) could act as game changer in order to overcome the challenges and limitations of poor bioavailability. In this review, timelines representing the launch of self-emulsifying drug delivery systems, their introduction to the pharmaceutical platform and their benefits will be discussed in detail. EXPERT OPINION The development of multifunctional systems capable of combining controlled release, targeted delivery, and diagnostic capabilities is a promising avenue. As the technology matures, self-microemulsifying drug delivery systems and self-nanoemulsifying drug delivery systems are likely to become a standard approach for delivering BCS class II and IV drugs, transforming the pharmaceutical landscape.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Jennifer Lagast
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Roy H, Maddiboyina B, Nandi S, Srungarapati S, Nayak BS, Gade NJ, Anjana TLNS, Vinayasri KM, Gummadi A, Haseena S. Enhanced rivastigmine delivery through nanoemulsion and pyridoxine supplementation: An in-vivo study on Alzheimer's disease intervention. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102810. [PMID: 40024487 DOI: 10.1016/j.nano.2025.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025]
Abstract
Nanoemulsions are nanostructured material and stabilized colloidal in nature evolved as a highly desirable mechanism for the delivery of drugs. Our objective of the study deals with a successful Rivastigmine (RSG) loaded nanoemulsion which can effectively progress the treatment of AD patients. We developed nanoemulsion containing RSG by combining pyridoxine, an essential vitamin supplement for central nervous system development, with linseed oil, which functioned as the lipophilic phase in the nanoemulsion formulation. The optimal formulation having globular size of 202.3 nm was further evaluated by various analytical techniques, including zeta potential analysis, ATR, DSC, and XRD study. The study utilized the Morris Water Maze (MWM) model to assess the cognitive abilities of Long-Evans rats. The current investigation establishes that the utilization of RSG nanoemulsion incorporating blend of linseed oil and pyridoxine which reduced travel distance in animal mode and can be successfully contribute to therapeutic advancements in patients with AD.
Collapse
Affiliation(s)
- Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India.
| | - Balaji Maddiboyina
- Scientific Writing Services, Medical and Scientific Communications CoE, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hyderabad, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research, Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University, Kashipur, India
| | - Swati Srungarapati
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Bhabani Shankar Nayak
- KIIT School of Pharmacy, KIMS, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Nirmala Jyothi Gade
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | | | - Kammula Mounika Vinayasri
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Asha Gummadi
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| | - Shaik Haseena
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, India
| |
Collapse
|
4
|
Jindal A, Kumar Sharma P, Kumar A. Self-nanoemulsifying drug delivery system (SNEDDS) as nano-carrier framework for permeability modulating approaches of BCS class III drug. J Drug Target 2025:1-21. [PMID: 40013328 DOI: 10.1080/1061186x.2025.2469751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
The purpose of this review is to focus on the Self-Nanoemulsifying Drug Delivery System (SNEDDS) as an effective nanocarrier framework for permeability modulating approaches (PMA) of BCS class-III drugs and its challenges. Present review updates the recent trends in the SNEDDS research where it was employed as a cargo carrier for PMA and challenges. Patient compliance, ease of administration and non-invasiveness mode are non-trivial aspects in the oral administration of drugs. However, low aqueous solubility and impaired permeability are two prominent challenges resulting poor absorption of a drug. SNEDDS emerged as a dual nano-carrier system to enable nanodispersion of PMA via e.g. ion-pairing, phospholipid-complex, surfactant-drug interaction, loading of non-ionizable, free drug bases etc. These PMAs are embedded within the lipid phase of SNEDDS to produce nanosizing, enhancing nano-dispersibility via micellization/solubilization mechanism owing to its ternary components. Review highlights different PMAs employed in bioavailability enhancement of BCS class-III. It covers excipients employed in SNEDDS-loaded PMA, strategies for the hydrophobic transformation of water-soluble drugs for BCS class-III drugs. SNEDDS as a nano-cargo system for PMAs significantly modifies the bioavailability of BCS class-III drugs. SNEDDS is an isotropic-mixture of oil, surfactant:co-surfactant offers multipoint access to PMA loading and produces nano-dispersion in aqueous-medium.
Collapse
Affiliation(s)
- Amulya Jindal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pankaj Kumar Sharma
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh, India
| | - Anoop Kumar
- Department of Pharmacy, Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Sherif AY, Abbas Ibrahim M. Self-Nanoemulsifying Drug Delivery System Combined with a Polymeric Amorphous System of Glibenclamide for Enhanced Drug Dissolution and Stability. ACS OMEGA 2024; 9:43165-43174. [PMID: 39464452 PMCID: PMC11500158 DOI: 10.1021/acsomega.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been widely applied to improve the dissolution and bioavailability of hydrophobic medications like glibenclamide (GB). However, the acid liability of GB limits its loading in SNEDDS formulation owing to the expected drug degradation. The present study investigated the ability of a polymeric amorphous system (PAS) to amorphize raw GB and facilitate its integration within dispersed SNEDDS. Liquid-SNEDDS (L-SNEDDS), solid-SNEDDS (S-SNEDDS), and combined systems (SNEDDS + PAS) were prepared for this purpose. The physicochemical properties of the prepared formulations were examined using a zeta-sizer, SEM, DSC, PXRD, and dissolution apparatus. In addition, GB integrity within formulations following incubation in a stability chamber was also investigated. The prepared formulations were able to be dispersed within the nanosize range. SEM, DSC, and PXRD showed that freeze-drying (FD) was superior to the microwave (MW) method in GB amorphization. Even though L-SNEDDS and S-SNEDDS were able to increase the dissolution efficiency (DE) of GB, drug degradation was observed. However, PAS prepared using FD was able to increase the DE of GB from 2.5% to 84.2% and protect the drug from chemical degradation. The present study revealed that a combined system (SNEDDS + PAS) is a promising approach to enhance the stability of acid-labile drugs and facilitate the integration of amorphous drugs within a dispersed SNEDDS formulation.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Ongtanasup T, Tawanwongsri W, Manaspon C, Srisang S, Eawsakul K. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, In vitro studies and phase 1 clinical trials. Int J Biol Macromol 2024; 277:134334. [PMID: 39094890 DOI: 10.1016/j.ijbiomac.2024.134334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwan Srisang
- Energy Engineering Division, Department of Engineering, King Mongkut's Institute of Technology Lad-krabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
7
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
8
|
Morakul B, Teeranachaideekul V, Limwikrant W, Junyaprasert VB. Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery. Sci Rep 2024; 14:8851. [PMID: 38632321 PMCID: PMC11024192 DOI: 10.1038/s41598-024-59617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been used to improve the oral bioavailability of various drugs. In the current study, apigenin was developed as SNEDDS to solve its dissolution problem and enhance oral bioavailability and antioxidant potential. SNEDDS were prepared by mixing Gelucire 44/14, Tween 80, and PEG 400 under controlled conditions. The droplet of diluted SNEDDS demonstrated a spherical shape with a size of less than 100 nm and a neutral charge. The very fast self-emulsification was obtained within 32 s, and the transmittance values exceeded 99%. The highest drug loading was 90.10 ± 0.24% of the initial load with the highest %encapsulation efficiency of 84.20 ± 0.03%. FT-IR and DSC spectra showed no interaction between components. The dissolution in buffer pH 1.2, 4.5, and 6.8 showed significantly higher dissolved apigenin than the apigenin coarse powder. The dissolution profiles were fitted to the Korsmeyer-Peppas kinetics. The cellular antioxidant activities in Caco-2 cells were approximately 52.25-54.64% compared to no treatment and were higher than the apigenin coarse powder (12.70%). Our work highlights the potential of SNEDDS to enhance the dissolution and permeability of apigenin and promote antioxidant efficacy, which has a strong chance of being developed as a bioactive compound for nutraceuticals.
Collapse
Affiliation(s)
- Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Waree Limwikrant
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
9
|
Aziz A, Zaman M, Khan MA, Jamshaid T, Butt MH, Hameed H, Rahman MS, Shoaib QUA. Preparation and Evaluation of a Self-Emulsifying Drug Delivery System for Improving the Solubility and Permeability of Ticagrelor. ACS OMEGA 2024; 9:10522-10538. [PMID: 38463337 PMCID: PMC10918814 DOI: 10.1021/acsomega.3c08700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
Ticagrelor (TCG) is a BCS class IV antiplatelet drug used to prevent platelet aggregation in patients with acute coronary syndrome, having poor solubility and permeability. The goal of this study was to develop a self-nanoemulsifying drug delivery system (SNEDDS) of TCG to improve its solubility and permeability. The excipients were selected based on the maximum solubility of TCG and observed by UV spectrophotometer. Different combinations of oil, surfactant, and co-surfactant (1:1, 2:1, and 3:1) were used to prepare TCG-SNEDDS formulations, and pseudo-ternary phase diagrams were plotted. The nanoemulsion region was observed. Clove oil (10-20%), Tween-80 (45-70%), and PEG-400 (20-45%) were used as an oil, surfactant, and co-surfactant, respectively. The selected formulations (F1, F2, F3, F4, F5, and F6) were analyzed for ζ potential, polydispersity index (PDI), ζ size, self-emulsification test, cloud point determination, thermodynamic studies, entrapment efficiency, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), in vitro dissolution, ex vivo permeation, and pharmacodynamic study. The TCG-SNEDDS formulations exhibited ζ potential from -9.92 to -6.23 mV, a ζ average of 11.85-260.4 nm, and good PDI. The in vitro drug release in phosphate buffer pH 6.8 from selected TCG-SNEDDS F4 was about 98.45%, and F6 was about 97.86%, displaying improved dissolution of TCG in 0.1 N HCl and phosphate buffer pH 6.8, in comparison to 28.05% of pure TCG suspension after 12 h. While the in vitro drug release in 0.1 N HCl from F4 was about 62.03%, F6 was about 73.57%, which is higher than 10.35% of the pure TCG suspension. In ex vivo permeability studies, F4 also exhibited an improved apparent permeability of 2.7 × 10-6versus 0.6708 × 10-6 cm2/s of pure drug suspension. The pharmacodynamic study in rabbits demonstrated enhanced antiplatelet activity from TCG-SNEDDS F4 compared to that from pure TCG suspension. These outcomes imply that the TCG-SNEDDS may serve as an effective means of enhancing TCG's antiplatelet activity by improving the solubility and permeability of TCG.
Collapse
Affiliation(s)
- Anam Aziz
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Talha Jamshaid
- Faculty
of Pharmacy and Alternative Medicine, The
Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Hammad Butt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Huma Hameed
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | | | | |
Collapse
|
10
|
Elhoseny SM, Saleh NM, Meshali MM. Self-Nanoemulsion Intrigues the Gold Phytopharmaceutical Chrysin: In Vitro Assessment and Intrinsic Analgesic Effect. AAPS PharmSciTech 2024; 25:54. [PMID: 38443653 DOI: 10.1208/s12249-024-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/10/2024] [Indexed: 03/07/2024] Open
Abstract
Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.
Collapse
Affiliation(s)
- Samar Mohamed Elhoseny
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
11
|
Jvus C, Kothuri N, Singh S, Verma S, Shafi H, Reddy DVS, Kedar A, Rana R, Mishra K, Sharma D, Chourasia MK. A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:14. [PMID: 38191830 DOI: 10.1208/s12249-023-02725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Vemurafenib (VMF) is a practically insoluble (< 0.1 μg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Chakradhar Jvus
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasham Shafi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - D V Siva Reddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Deepak Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
12
|
Sherif AY, Shahba AAW. Development of a Multifunctional Oral Dosage Form via Integration of Solid Dispersion Technology with a Black Seed Oil-Based Self-Nanoemulsifying Drug Delivery System. Biomedicines 2023; 11:2733. [PMID: 37893108 PMCID: PMC10604588 DOI: 10.3390/biomedicines11102733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Lansoprazole (LZP) is used to treat acid-related gastrointestinal disorders; however, its low aqueous solubility limits its oral absorption. Black seed oil (BSO) has gastroprotective effects, making it a promising addition to gastric treatment regimens. The present study aims to develop a stable multifunctional formulation integrating solid dispersion (SD) technology with a bioactive self-nanoemulsifying drug delivery system (SNEDDS) based on BSO to synergistically enhance LZP delivery and therapeutic effects. The LZP-loaded SNEDDS was prepared using BSO, Transcutol P, and Kolliphor EL. SDs were produced by microwave irradiation and lyophilization using different polymers. The formulations were characterized by particle apparent hydrodynamic radius analysis, zeta potential, SEM, DSC, PXRD, and in vitro dissolution testing. Their chemical and physical stability under accelerated conditions was also examined. Physicochemical characterization revealed that the dispersed systems were in the nanosize range (<500 nm). DSC and PXRD studies revealed that lyophilization more potently disrupted LZP crystallinity versus microwave heating. The SNEDDS effectively solubilized LZP but degraded completely within 1 day. Lyophilized SDs with Pluronic F-127 demonstrated the highest LZP dissolution efficiency (3.5-fold vs. drug) and maintained chemical stability (>97%) for 1 month. SDs combined with the SNEDDS had variable effects suggesting that the synergistic benefits were dependent on the formulation and preparation method. Lyophilized LZP-Pluronic F127 SD enabled effective and stable LZP delivery alongside the bioactive effects of the BSO-based SNEDDS. This multifunctional system is a promising candidate with the potential for optimized gastrointestinal delivery of LZP and bioactive components.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
- Kayyali Research Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Abdul-Wahhab Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 1145, Saudi Arabia;
| |
Collapse
|
13
|
Hussain L, Rana S, Abbas G, Alshammari A, Alasmari AF, Alharbi M, Zahid MT, Irfan M. Pharmacological Potential of Hippophae rhamnoides L. Nano-Emulsion for Management of Polycystic Ovarian Syndrome in Animals' Model: In Vitro and In Vivo Studies. ACS OMEGA 2023; 8:32977-32989. [PMID: 37720770 PMCID: PMC10500670 DOI: 10.1021/acsomega.3c04720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
The most common female endocrinopathy, polycystic ovarian syndrome (PCOS), generally affects women of childbearing age. Hippophae rhamnoides L. has been traditionally used to improve menstrual cyclicity. Gas chromatography by flame ionization detection analysis showed that it contained various phytoconstituents such as omega-3 fatty acid, phytosterols, palmitic acid, oleic acid, and linoleic acid. H. rhamnoides L. (HR) nano-emulsion was also formulated. HR and its encapsulated nano-emulsion (HRNE) were evaluated for the treatment of PCOS. Thirty-five healthy female adult albino rats were acquired and divided into seven groups (n = 5). Letrozole (1 mg/kg) was used for 5 weeks to induce the disease. To confirm disease (PCOS) induction, the animals were weighed weekly and their vaginal smears were analyzed daily under a microscope. After PCOS induction, animals were treated with metformin, HR, and HRNE with two different doses (0.5/kg and 1 g/kg, p.o.) for 5 weeks. At the end of the treatment, animals were euthanized, and blood was collected for hormonal assessment, lipid profiling, and liver functioning test assessment. Both the ovaries were preserved for histopathology and liver for the purpose of assessment of antioxidant potential. The results revealed that HR and HRNE at both doses improved the hormonal imbalance; follicle-stimulating hormone, estrogen, and progesterone levels are increased, while luteinizing hormone surge and testosterone level are controlled. Insulin sensitivity is improved. Ovarian histopathology showed that normal ovarian echotexture is restored with corpus luteum and mature and developing follicles. HR and HRNE also improved the lipid profile and decreased lipid peroxidation (MDA) with improved antioxidant markers (SOD, CAT, and GSH). Results were statistically analyzed by one-way analysis of variance and were considered significant only if p < 0.05. In conclusion, it can be postulated that H. rhamnoides L. proved effective in the management of PCOS and its nano-emulsion effects were statistically more significant, which might be due to better bioavailability.
Collapse
Affiliation(s)
- Liaqat Hussain
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Saba Rana
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Ghulam Abbas
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Abdulrahman Alshammari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Toseef Zahid
- College
of Pharmaceutical Sciences, China Pharmaceutical
University, Nanjing 210009, China
| | - Muhammad Irfan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38040, Pakistan
- College
of Pharmacy, Freie Universitaet Berlin, Berlin 14195, Germany
| |
Collapse
|
14
|
Asad M, Rasul A, Abbas G, Shah MA, Nazir I. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLoS One 2023; 18:e0286668. [PMID: 37294790 PMCID: PMC10256195 DOI: 10.1371/journal.pone.0286668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/11/2023] Open
Abstract
Biopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability. HIPs of TOB were formulated using anionic surfactants sodium docusate (DOC) and sodium dodecanoate (DOD). The efficiency of HIPs was estimated by measuring the concentration of formed complexes in water, zeta potential determination and log P value evaluation. Solubility studies of HIPs of TOB with DOC were accomplished to screen the suitable excipients for SEDDS development. Consequently, HIPs of TOB with DOC were loaded into SEDDS and assessed the log DSEDDS/release medium and dissociation of these complexes at different intestinal pH over time. Moreover, cytotoxic potential of HIPs of TOB and HIPs loaded SEDDS formulations was evaluated. HIPs of TOB with DOC exhibited the maximum precipitation efficiency at a stoichiometric ratio of 1:5. Log P of HIPs of TOB improved up to 1500-fold compared to free TOB. Zeta potential of TOB was shifted from positive to negative during hydrophobic ion pairing (HIP). HIPs of TOB with DOC was loaded at a concentration of 1% (w/v) into SEDDS formulations. Log DSEDDS/release medium of loaded complexes in to oily droplets was above 2 and dissociated up to 20% at various pH within 4 h. Finding of this study suggested that improvement of the lipophilic character of BCS class-III drugs followed by incorporation into oily droplets can be deliberated as a promising tool to enhance the permeation across biological membranes.
Collapse
Affiliation(s)
- Muhammad Asad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan
| |
Collapse
|
15
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
16
|
Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals (Basel) 2023; 16:ph16010099. [PMID: 36678595 PMCID: PMC9861023 DOI: 10.3390/ph16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The objective of the present study was to develop a gentiopicroside-phospholipid complex (GTP-PC) and its self-nanoemulsion drug delivery system (GTP-PC-SNEDDS) to increase the oral bioavailability of gentiopicroside (GTP). The factors affecting the formation of GTP-PC were studied with the complexation efficiency and dissociation rate. The properties of the complex were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), dissolution, etc. Then, GTP-PC was loaded into SNEDDS by investigating the effects of weight ratios of GTP-PC to blank SNEDDS, preparation technology, dilution media, and dilution multi, based on the screening results of oils, surfactants, and cosurfactants. In rats, GTP, GTP-PC, and GTP-PC-SNEDDS were orally administered at different times, and GTP concentrations were determined using RP-HPLC. The optimal GTP-PC was prepared with tetrahydrofuran as the reaction solvent, GTP:phospholipid = 1:2, and stirring for 4 h. The optimal prescription for GTP-PC-SNEDDS was as follows: Maisin 35-1:Miglycol = 30%, Labrasol:Cremophor EL = 1:4 = 40%, Transcutol P = 30%; Maisin 35-1:Miglycol = 12, and the ratio of GTP-PC to blank was 1:10-then the mixture was stirred at 37 °C for 1 d and then placed for 2 d to form stable GTP-PC-SNEDDS. After oral administration of GTP, GTP-PC and GTP-PC-SNEDDS, and mean plasma GTP concentration-time curves were all in accordance with the single-compartment model. The Cmax, AUC0-∞, and Fr of the three formulations were significantly higher than that of GTP, demonstrating that GTP was metabolized rapidly, and its higher bioavailability could be achieved by the formation of GTP-PC and GTP-PC-SNEDDS. Among the three formations, the bioavailability of GTP-PC-SNEDDS was highest, with approximately 2.6-fold and 1.3-fold of Fr value, compared with GTP-PC (suspension) and GTP-PC (oil solution), respectively. Compared with GTP, GTP-PC and GTP-PC-SNEDDS enhanced the bioavailability of GTP significantly. In the future, this study could serve as a reference for clinical trials using GTP-PC and GTP-PC-SNEDDS.
Collapse
|
17
|
Kharouba M, El-Kamel A, Mehanna R, Thabet E, Heikal L. Pitavastatin-loaded bilosomes for oral treatment of hepatocellular carcinoma: a repurposing approach. Drug Deliv 2022; 29:2925-2944. [PMID: 36081339 PMCID: PMC9467608 DOI: 10.1080/10717544.2022.2120925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Albeit its established efficacy as an anti-hyperlipidemic agent, pitavastatin (PIT) has been shown to have other various therapeutic effects. One of these effects is the anti-cancer activity against hepatocellular carcinoma (HCC). This effect has been evaluated in this study for the first time via its oral delivery loaded in bilosomes both in vitro in hepatocellular carcinoma (HCC) cell line; HepG2 and in vivo in an Ehrlich ascites carcinoma (EAC) model. Moreover, the impact of surface modification of bilosomes with lactoferrin (LF) as an active targeting ligand for HCC was investigated. Bilosomes were prepared by thin-film hydration and different molar phospholipid to bile salt ratios were used to optimize the bilosomal formulation. The molar phospholipid to bile salt ratio was adjusted to 4:1 at pH 7.4. LF-coated bilosomes possessed a particle size, PDI, entrapment efficiency, and zeta potential of 112.28 nm ± 6.35, 0.229 ± 0.06, 90.56% ± 3.22, and -7.86 mV ± 1.13, respectively. LF-coated bilosomes also increased permeation of PIT when tested on Caco-2 cells by 3.1-folds (compared to uncoated ones or free PIT solution). It also improved the cytotoxicity of HepG2 spheroids 44-folds more than PIT-free solution. RT-PCR analysis showed that LF-coated PIT-loaded bilosomes caused an improvement (2-fold increase) in the apoptotic potential of PIT mediated by caspase-3. In conclusion, the optimized LF-coated PIT-loaded bilosomes were cytotoxic to HCC with improved hepatocytes permeation and cellular uptake. Thus, the proposed formula could be a promising treatment for HCC.
Collapse
Affiliation(s)
- Maged Kharouba
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Ghataty DS, Amer RI, Wasfi R, Shamma RN. Novel linezolid loaded bio-composite films as dressings for effective wound healing: experimental design, development, optimization, and antimicrobial activity. Drug Deliv 2022; 29:3168-3185. [PMID: 36184799 PMCID: PMC9543119 DOI: 10.1080/10717544.2022.2127974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Biphasic release bio-composite films of the low water-soluble drug, linezolid (LNZ), were formulated using the solvent casting technique. Different polymers and plasticizers (gelatin, Tween 80, polyethylene glycol 400, and glycerol) were assessed for the preparation of bio-composite films. An I-optimal design was applied for the optimization and to study the impact of polymer concentration (X1), plasticizer concentration (X2), polymer type (X3), and plasticizer type (X4) on different LNZ-loaded bio-composite films. The film thickness, moisture content, mechanical properties, swelling index, and percentage of drug release at fixed times opted as dependent variables. Results demonstrated a significant effect of all independent variables on the drug release from the prepared bio-composite films. The plasticizer concentration significantly increased the thickness, moisture content, elongation at break, swelling index, and in vitro drug release and significantly reduced the tensile strength. The optimized LNZ-loaded bio-composite film comprised of 15% Tween 80 and 30% PEG 400 was highly swellable, elastic, acceptable tensile properties, safe, maintained a moist environment, and indicated great antimicrobial activity against both Staphylococcus aureus (ATCC® 25922) and methicillin-resistant Staphylococcus aureus (MRSA), which are common wound infectious bacteria. The present study concludes that the optimized LNZ-loaded bio-composite film was successfully designed with fast drug release kinetics and it could be regarded as a promising novel antimicrobial wound dressing formulation.
Collapse
Affiliation(s)
- Dina Saeed Ghataty
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reham Ibrahim Amer
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt,Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Reham Wasfi
- Department of Microbiology and Immunology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Rehab Nabil Shamma
| |
Collapse
|
19
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
20
|
Pamukçu A, Erdoğan N, Şen Karaman D. Polyethylenimine-grafted mesoporous silica nanocarriers markedly enhance the bactericidal effect of curcumin against Staphylococcus aureus biofilm. J Biomed Mater Res B Appl Biomater 2022; 110:2506-2520. [PMID: 35735075 PMCID: PMC9541607 DOI: 10.1002/jbm.b.35108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
The recalcitrant nature of biofilms makes biofilm-associated infections difficult to treat in modern medicine. Biofilms have a high vulnerability to antibiotics and a limited repertoire of antibiotics could act on matured biofilms. This issue has resulted in a gradual paradigm shift in drug discovery and therapy, with anti-biofilm compounds being sought alongside new drug carriers. A potential solution to biofilm-associated infections is to employ antibiofilm treatments, which can attack biofilms from many fronts. Nanocarriers are promising in this regard because they can be entrapped within biofilm matrix, target biofilm matrix, and provide local drug delivery to inhibit biofilm formation. In this study, curcumin as an herbal extract was loaded onto hyperbranched polyethylenimine-grafted mesoporous silica nanoparticles (F-MSN-PEI/Cur) and antibiofilm investigations were performed. The F-MSN-PEI/Cur design has the potential to repurpose curcumin as an antibiofilm agent by increasing its solubility and lowering the required doses for the destruction of matured biofilms as well as suppressing biofilm development. Using imaging and spectroscopic techniques, we assessed the interaction of F-MSN-PEI/Cur with Staphylococcus aureus bacterial cells and determined the impact of F-MSN-PEI/Cur on eradicating matured biofilms and suppressing biofilm development. The F-MSN-PEI/Cur design is highly cytocompatible, as observed by the cytotoxicity screening investigations on L929 mouse fibroblast cell line. Our findings show that F-MSN-PEI/Cur design reduces the bacterial cell viability, inhibits biofilm formation, and induces biofilm eradication, which is attributed to F-MSN-PEI/Cur design having the potential to repurpose the antibiofilm activity of curcumin-herbal extract.
Collapse
Affiliation(s)
- Ayşenur Pamukçu
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Nursu Erdoğan
- Department of Biomedical Technologies, Graduate School of Natural and Applied SciencesIzmir Katip Çelebi UniversityIzmirTurkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureIzmir Katip Çelebi UniversityIzmirTurkey
- Pharmaceutical Sciences Laboratory, Faculty of Science and EngineeringÅbo Akademi UniversityFinland
| |
Collapse
|
21
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
22
|
Al-Qahtani SD, Bin-Melaih HH, Atiya EM, Fahmy UA, Binmahfouz LS, Neamatallah T, Al-Abbasi FA, Abdel-Naim AB. Self-Nanoemulsifying Drug Delivery System of 2-Methoxyestradiol Exhibits Enhanced Anti-Proliferative and Pro-Apoptotic Activities in MCF-7 Breast Cancer Cells. Life (Basel) 2022; 12:life12091369. [PMID: 36143405 PMCID: PMC9503162 DOI: 10.3390/life12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: 2-Methoxyestradiol (2ME) is a metabolite of estrogens and possesses promising anti-proliferative and cytotoxic activities. However, it suffers unfavorable pharmacokinetic characteristics such as absorption after oral administration. The aim of this study was to prepare an optimized 2ME self-nanoemulsifying drug delivery system (2ME-SNEDDS) and evaluate its cytotoxicity and pro-apoptotic activities in MCF-7 breast cancer cells. (2) Methods: For optimization of the 2ME-SNEDDS, a three-component system was used in the D-optimal mixture experimental study. MCF-7 cells were incubated with the 2ME-SNEDDS and subjected to an assessment of growth inhibition, cell cycle progression, annexin V staining, caspase-3 concentration, Bax, Bcl-2, and cyclin D1 mRNA expression, and reactive oxygen species (ROS) generation. (3) Results: The optimized formula had a globule size of 94.97 ± 4.35 nm. Zeta potential was found to be −3.4 ± 1.2 mV with a polydispersity index (PDI) of 0.34. In addition, 96.3 ± 4.3% of 2ME was released from the 2ME-SNEDDS within 24 h using the activated analysis bag technique. Moreover, the prepared 2ME-SNEDDS exhibited a significant enhancement of the anti-proliferative activity against MCF-7 cells in comparison to raw 2ME. This was associated with cyclin D1 expression down-regulation and the accumulation of cells in the G0/G1 and G2/M phases. The pro-apoptotic activities of the 2ME-SNEDDS were confirmed by annexin V staining, which indicated enhanced early and late cell death. This accompanied modulation of the mRNA expression of Bax and Bcl-2 in favor of apoptosis. The 2ME-SNEDDS significantly enhanced cleaved caspase-3 concentration in comparison to raw 2ME. In addition, the 2ME-SNEDDS significantly increased the generation of ROS in MCF-7 cells. (4) Conclusions: The 2ME-SNEDDS exhibits enhanced cytotoxicity and pro-apoptotic activity in MCF-7 cells. This is mediated by, at least partially, ROS generation.
Collapse
Affiliation(s)
- Salwa D. Al-Qahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hawazen H. Bin-Melaih
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman M. Atiya
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
23
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
24
|
Abushal AS, Aleanizy FS, Alqahtani FY, Shakeel F, Iqbal M, Haq N, Alsarra IA. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of Apremilast: In Vitro Evaluation and Pharmacokinetics Studies. Molecules 2022; 27:3085. [PMID: 35630561 PMCID: PMC9145325 DOI: 10.3390/molecules27103085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20-33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR's solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (-13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.
Collapse
Affiliation(s)
- Ahad S. Abushal
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Fulwah Y. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (F.S.A.); (F.Y.A.); (F.S.); (N.H.)
| |
Collapse
|
25
|
Kusuma SAF, Subroto T, Parwati I, Rukayadi Y, Fadhlillah M, Pardede RM, Berlian AV, Sabila G. Improving of pelB-Secreted MPT64 protein released by Escherichia coli BL21 (DE3) using Triton X-100 and Tween-80. J Adv Pharm Technol Res 2022; 13:171-176. [PMID: 35935695 PMCID: PMC9355052 DOI: 10.4103/japtr.japtr_25_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
pelB has been known as a successful signal peptide to translocate the protein target extracellularly in the Escherichia coli system. However, in our previous study, the yield of MPT64 protein extracellular recovery was still low and plenty of this protein was remain trapped in cytoplasm and periplasm. Recently, nonionic surfactants were efficiently reported to secrete recombinant protein extracellularly. Nonetheless, it must be clarified whether the surfactant supplementation can improve the yield of MPT64 extracellular protein significantly without giving impact on the structure of isolated MPT64 protein and can minimized the cell lysis effect. MPT64 protein secretion was carried out by comparing the effects of surfactants Tween 80 and Triton × 100 at various concentrations. Triton × 100 was able to increase the extracellular MPT64 protein gain up to 3 times higher than Tween 80 and it was in line with the greater level ratio of cell leakage of Triton × 100 compared to that of Tween 80. Similarly, the viable cell of the cultures decreased dramatically. However, both surfactants did not interfere the structure of MPT64 protein. In conclusion, Triton × 100 can be chosen as the supporting surfactant to assist the act of peptide signal in improving the resulting of MPT64 extracellular protein.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia,Address for correspondence: Dr. Sri Agung Fitri Kusuma, Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Indonesia. E-mail:
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, West Java, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medical, Padjadjaran University, Bandung, West Java,Department of Clinical Pathology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Sedang, Malaysia
| | - Muhammad Fadhlillah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University,Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, West Java, Indonesia
| | - Ruth Michellee Pardede
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| | - Alif Virisy Berlian
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| | - Gina Sabila
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|