1
|
Valdez-Salas B, Salvador-Carlos J, Valdez-Salas E, Beltrán-Partida E, Castillo-Saenz J, Curiel-Álvarez M, Gonzalez-Mendoza D, Cheng N. Nasal Spray Disinfectant for Respiratory Infections Based on Functionalized Silver Nanoparticles: A Physicochemical and Docking Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:533. [PMID: 40214578 PMCID: PMC11990716 DOI: 10.3390/nano15070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Respiratory diseases have presented a remarkable challenge during modern history, contributing to important pandemics. The scientific community has focused its efforts on developing vaccines and blocking the transmission of viruses through the respiratory tract. In this study, we propose the use of stable silver nanoparticles (AgNPs) functionalized with tannic acid (TA) and sodium citrate (SC) as a nasal spray disinfectant (NSD). The non-ionic ethoxylated surfactant Tween 80 (T80) was added to enhance the wetting effect on nasal and oral tissues following spray application. We analyzed the physicochemical properties of the AgNPs and the NSD, including zeta potential, polarity, morphology, composition, particle size, and distribution. The results indicated spherical AgNPs ranging from 3 to 5 nm, stabilized by TA-SC. The addition of T80 resulted in particles with negative polarity, high stability, and improved coverage area. Furthermore, the colloidal stability was monitored over one year, showing no signs of degradation or precipitation. Interestingly, the interaction between the capped AgNP complex, the spike protein, and ACE2 was studied by molecular docking, indicating a strong and thermodynamically favorable complex interaction. These findings hold promise for the development of potential inhibitors, antagonist receptors, Ag-complex agonists (as observed here), and drug development for viral protection.
Collapse
Affiliation(s)
- Benjamín Valdez-Salas
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Jorge Salvador-Carlos
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Ernesto Valdez-Salas
- Centro Médico Ixchel, Av. Nicolás Bravo 270, Mexicali 21000, Baja California, Mexico;
| | - Ernesto Beltrán-Partida
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Jhonathan Castillo-Saenz
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Mario Curiel-Álvarez
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Carretera a Delta s/n, Ejido Nuevo Leon, Mexicali 21705, Baja California, Mexico;
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore;
| |
Collapse
|
2
|
Lorenz C, Frankenberger R. Novel Oronasal Drainage for Long COVID: Proposed Mechanisms-Case Report. Viruses 2025; 17:210. [PMID: 40006965 PMCID: PMC11861156 DOI: 10.3390/v17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Long COVID, potentially emerging post COVID-19 infection, involves extreme health challenges. Based on current literature in the field, we propose a novel approach to Long COVID treatment based on epipharyngeal abrasive therapy targeting ostia of the oral and nasal mucosa, having been identified for the first time. The presented case report documents the application of innovative oronasal drainage (OND), a novel treatment integrating physiological, biochemical, and fluid mechanical components simultaneously. OND led to remarkable improvements and even remissions of various symptoms, along with enhanced hand blood circulation. While the case suggests potential efficacy in Long COVID therapy, acknowledging inherent limitations is essential and its impact needs further validation through clinical trials.
Collapse
Affiliation(s)
- Claudia Lorenz
- Department of Operative Dentistry, Sanitätszentrum Pfreimd, Schloßbergstr. 1, 92536 Pfreimd, Germany;
| | - Roland Frankenberger
- Department of Operative Dentistry and Endodontics, Dental School, University of Marburg and University Medical Center Giessen and Marburg, 35039 Marburg, Germany
| |
Collapse
|
3
|
Joseph J, Baby HM, Quintero JR, Kenney D, Mebratu YA, Bhatia E, Shah P, Swain K, Lee D, Kaur S, Li XL, Mwangi J, Snapper O, Nair R, Agus E, Ranganathan S, Kage J, Gao J, Luo JN, Yu A, Park D, Douam F, Tesfaigzi Y, Karp JM, Joshi N. Toward a Radically Simple Multi-Modal Nasal Spray for Preventing Respiratory Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406348. [PMID: 39318086 DOI: 10.1002/adma.202406348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nasal sprays for pre-exposure prophylaxis against respiratory infections show limited protection (20-70%), largely due to their single mechanism of action-either neutralizing pathogens or blocking their entry at the nasal lining, and a failure to maximize the capture of respiratory droplets, allowing them to potentially rebound and reach deeper airways. This report introduces the Pathogen Capture and Neutralizing Spray (PCANS), which utilizes a multi-modal approach to enhance efficacy. PCANS coats the nasal cavity, capturing large respiratory droplets from the air, and serving as a physical barrier against a broad spectrum of viruses and bacteria, while rapidly neutralizing them with over 99.99% effectiveness. The formulation consists of excipients identified from the FDA's Inactive Ingredient Database and Generally Recognized as Safe list to maximize efficacy for each step in the multi-modal approach. PCANS demonstrates nasal retention for up to 8 hours in mice. In a severe Influenza A mouse model, a single pre-exposure dose of PCANS leads to a >99.99% reduction in lung viral titer and ensures 100% survival, compared to 0% in the control group. PCANS suppresses pathological manifestations and offers protection for at least 4 hours. This data suggest PCANS as a promising daily-use prophylactic against respiratory infections.
Collapse
Affiliation(s)
- John Joseph
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Helna Mary Baby
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Joselyn Rojas Quintero
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Devin Kenney
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes A Mebratu
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Eshant Bhatia
- Indian Institute of Technology, Mumbai, 400076, India
| | - Purna Shah
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kabir Swain
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Shahdeep Kaur
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang-Ling Li
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John Mwangi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Olivia Snapper
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Remya Nair
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sruthi Ranganathan
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Julian Kage
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony Yu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Dongsung Park
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes Tesfaigzi
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey M Karp
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
5
|
Ivanova N, Ermenlieva N, Simeonova L, Vilhelmova-Ilieva N, Bratoeva K, Stoyanov G, Andonova V. In Situ Gelling Behavior and Biopharmaceutical Characterization of Nano-Silver-Loaded Poloxamer Matrices Designed for Nasal Drug Delivery. Gels 2024; 10:385. [PMID: 38920931 PMCID: PMC11203177 DOI: 10.3390/gels10060385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
A combination of Poloxamer 407 (P407) and hydroxypropyl methylcellulose (HPMC) hydrosols is proposed as an in situ thermo-gelling vehicle for the nasal drug delivery of chlorhexidine-silver nanoparticles conjugates (SN-CX). Optimization of the formulation was carried out by applying varying ratios of P407 and HPMC in the presence and absence of SN-CX so that gelation would occur in the temperature range of the nasal cavity (30-34 °C). Mechanisms for the observed gelation phenomena were suggested based on viscosimetry, texture analysis, and dynamic light scattering. Tests were carried out for sprayability, washout time, in vitro drug release, ex vivo permeation, and antimicrobial activity. When applied separately, HPMC was found to lower the P407 gelation temperature (Tg), whereas SN-CX increased it. However, in the presence of HPMC, SN-CX interfered with the P407 micellar organization in a principally contrasting way while leading to an even further decrease in Tg. SN-CX-loaded nasal formulations composed of P407 16% and HPMC 0.1% demonstrated a desired gelation at 31.9 °C, good sprayability (52.95% coverage of the anterior nasal cavity), mucoadhesion for 70 min under simulated nasal clearance, expedient release and permeation, and preserved anti-infective activity against seasonal Influenza virus and beta-coronavirus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and other pathogens. Our findings suggest that the current development could be considered a potential formulation of a protective nasal spray against respiratory infections.
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Neli Ermenlieva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Lora Simeonova
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 G. Bonchev Str., 1113 Sofia, Bulgaria; (L.S.); (N.V.-I.)
| | - Neli Vilhelmova-Ilieva
- Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 G. Bonchev Str., 1113 Sofia, Bulgaria; (L.S.); (N.V.-I.)
| | - Kameliya Bratoeva
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Georgi Stoyanov
- Clinical Pathology, Complex Oncology Center, 9700 Shumen, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| |
Collapse
|
6
|
Huijghebaert S, Parviz S, Rabago D, Baxter A, Chatterjee U, Khan FR, Fabbris C, Poulas K, Hsu S. Saline nasal irrigation and gargling in COVID-19: a multidisciplinary review of effects on viral load, mucosal dynamics, and patient outcomes. Front Public Health 2023; 11:1161881. [PMID: 37397736 PMCID: PMC10312243 DOI: 10.3389/fpubh.2023.1161881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
With unrelenting SARS-CoV-2 variants, additional COVID-19 mitigation strategies are needed. Oral and nasal saline irrigation (SI) is a traditional approach for respiratory infections/diseases. As a multidisciplinary network with expertise/experience with saline, we conducted a narrative review to examine mechanisms of action and clinical outcomes associated with nasal SI, gargling, spray, or nebulization in COVID-19. SI was found to reduce SARS-CoV-2 nasopharyngeal loads and hasten viral clearance. Other mechanisms may involve inhibition of viral replication, bioaerosol reduction, improved mucociliary clearance, modulation of ENaC, and neutrophil responses. Prophylaxis was documented adjunctive to personal protective equipment. COVID-19 patients experienced significant symptom relief, while overall data suggest lower hospitalization risk. We found no harm and hence recommend SI use, as safe, inexpensive, and easy-to-use hygiene measure, complementary to hand washing or mask-wearing. In view of mainly small studies, large well-controlled or surveillance studies can help to further validate the outcomes and to implement its use.
Collapse
Affiliation(s)
| | - Shehzad Parviz
- Medstar Health, Brooke Grove Rehabilitation Village, Sandy Spring, MD, United States
- Infectious Disease, Adventist Healthcare, White Oak Medical Center, Silver Spring, MD, United States
| | - David Rabago
- Departments of Family and Community Medicine and Public Health Sciences, Penn State College of Medicine, Pennsylvania, PA, United States
| | - Amy Baxter
- Department of Emergency Medicine, Augusta University, Augusta, GA, United States
| | - Uday Chatterjee
- Department of Paediatric Surgery, Park Medical Research and Welfare Society, Kolkata, West Bengal, India
| | - Farhan R. Khan
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | | | - Stephen Hsu
- Department of Oral Biology, Augusta University, Augusta, GA, United States
- Department of Oral Health and Diagnostic Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Li Y, Huang Y, Zhu K, Duan X, Li S, Xu M, Yang C, Liu J, Bäumler H, Yu P, Xie H, Li B, Cao Y, Chen L. Functionalized protein microparticles targeting hACE2 as a novel preventive strategy for SARS-CoV-2 infection. Int J Pharm 2023; 638:122921. [PMID: 37028575 PMCID: PMC10082558 DOI: 10.1016/j.ijpharm.2023.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), resulting in a serious burden on public health and social economy worldwide. SARS-CoV-2 infection is mainly initialized in the nasopharyngeal cavity through the binding of viral spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) receptors which are widely expressed in many human cells. Thus, blockade of the interaction between viral S protein and hACE2 receptor in the primary entry site is a promising prevention strategy for the management of COVID-19. Here we showed protein microparticles (PMPs) decorated with hACE2 could bind and neutralize SARS-CoV-2 S protein-expressing pseudovirus (PSV) and protect host cells from infection in vitro. In the hACE2 transgenic mouse model, administration of intranasal spray with hACE2-decorated PMPs markedly decreased the viral load of SARS-CoV-2 in the lungs though the inflammation was not attenuated significantly. Our results provided evidence for developing functionalized PMPs as a potential strategy for preventing emerging air-borne infectious pathogens, such as SARS-CoV-2 infection.
Collapse
|
9
|
Boecker D, Zhang Z, Breves R, Herth F, Kramer A, Bulitta C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc07. [PMID: 37034111 PMCID: PMC10073986 DOI: 10.3205/dgkh000433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.
Collapse
Affiliation(s)
- Dirk Boecker
- TOTO Consulting LLC, San Jose CA, USA
- *To whom correspondence should be addressed: Dirk Boecker, TOTO Consulting LLC, San Jose CA, USA, E-mail:
| | - Zhentian Zhang
- Institute for Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Felix Herth
- Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Axel Kramer
- Institut of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Bulitta
- Institut für Medizintechnik, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Amberg-Weiden, Germany
| |
Collapse
|
10
|
Hadjichrysanthou C, Beukenhorst AL, Koch CM, Alter G, Goudsmit J, Anderson RM, de Wolf F. Exploring the Role of Antiviral Nasal Sprays in the Control of Emerging Respiratory Infections in the Community. Infect Dis Ther 2022; 11:2287-2296. [PMID: 36309921 PMCID: PMC9618272 DOI: 10.1007/s40121-022-00710-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The COVID-19 pandemic has demonstrated that there is an unmet need for the development of novel prophylactic antiviral treatments to control the outbreak of emerging respiratory virus infections. Passive antibody-based immunisation approaches such as intranasal antibody prophylaxis have the potential to provide immediately accessible universal protection as they act directly at the most common route of viral entry, the upper respiratory tract. The need for such products is very apparent for SARS-CoV-2 at present, given the relatively low effectiveness of vaccines to prevent infection and block virus onward transmission. We explore the benefits and challenges of the use of antibody-based nasal sprays prior and post exposure to the virus. METHODS The classic susceptible-exposed-infectious-removed (SEIR) mathematical model was extended to describe the potential population-level impact of intranasal antibody prophylaxis on controlling the spread of an emerging respiratory infection in the community. RESULTS Intranasal administration of monoclonal antibodies provides only a short-term protection to the mucosal surface. Consequently, sustained intranasal antibody prophylaxis of a substantial proportion of the population would be needed to contain infections. Post-exposure prophylaxis against the development of severe disease would be essential for the overall reduction in hospital admissions. CONCLUSION Antibody-based nasal sprays could provide protection against infection to individuals that are likely to be exposed to the virus. Large-scale administration for a long period of time would be challenging. Intranasal antibody prophylaxis alone cannot prevent community-wide transmission of the virus. It could be used along with other protective measures, such as non-pharmaceutical interventions, to bridge the time required to develop and produce effective vaccines, and complement active immunisation strategies.
Collapse
Affiliation(s)
| | - Anna L. Beukenhorst
- Leyden Laboratories B.V., Leiden, The Netherlands ,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Galit Alter
- Leyden Laboratories B.V., Leiden, The Netherlands ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Jaap Goudsmit
- Leyden Laboratories B.V., Leiden, The Netherlands ,Departments of Epidemiology, Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Roy M. Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|