1
|
Zhang C, Wang Y, Cui X, Zhang Q, Cong H, Liu J, Ren J, Tang J. Emodin nanocrystals enhanced mucus penetration and ameliorated bleomycin-induced pulmonary fibrosis by pulmonary delivery. J Drug Target 2025:1-11. [PMID: 40266897 DOI: 10.1080/1061186x.2025.2497369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial disease characterised by extracellular matrix deposition and destruction of lung tissue structure. Emodin (Emo) is a natural active compound with anti-inflammatory and antioxidant properties. The initiation of PF is prevented by reducing oxidative stress-induced damage to alveolar epithelial cells." to meet the word count requirement. However, Emo is featured low water solubility, a rapid metabolic rate and low oral bioavailability, which limit its application in the treatment of PF. Therefore, this study formulated emodin as nanocrystals (Emo-NCs) and delivered Emo directly to the lesion site via pulmonary delivery to enhance drug efficacy. The Emo-NCs exhibited a square crystal structure with particle sizes suitable for pulmonary absorption and an appropriate polydispersity index. They released 99.38% over 48 h and significantly improved permeability efficiency in simulated pulmonary mucus. The ability of Emo-NCs to inhibit abnormal fibroblast proliferation and oxidative damage was significantly enhanced compared with Emo. In contrast to the BLM group, the inflammatory cells in the lung tissue sections of the Emo-NCs group were significantly reduced, the alveolar structure was largely restored, and no evident collagen fibre deposition was observed. In summary, Emo-NCs could serve as a viable delivery system for site-specific treatment of PF.
Collapse
Affiliation(s)
- Chenghao Zhang
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yihua Wang
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinran Cui
- School of Pharmacy, Harbin Medical University, Harbin, China
- Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Qing Zhang
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Huijing Cong
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxin Liu
- School of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinmei Ren
- Qingpu Branch of Zhongshan Hospital, Affiliated to Fudan University, Shanghai, China
| | - Jingling Tang
- School of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Casula L, Craparo EF, Lai E, Scialabba C, Valenti D, Schlich M, Sinico C, Cavallaro G, Lai F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals (Basel) 2024; 17:1708. [PMID: 39770549 PMCID: PMC11676507 DOI: 10.3390/ph17121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder. METHODS A curcumin nanosuspension was produced by wet-ball media milling and thoroughly characterized. Spray drying was then used to produce mannitol microparticles incorporating curcumin nanocrystals. In vitro release/dissolution tests were carried out in simulated lung fluids, and the aerosolization properties were evaluated using a Next-Generation Impactor (NGI, Apparatus E Ph. Eu.). RESULTS The incorporation of curcumin nanocrystals into mannitol-based microparticles influenced their morphological properties, such as geometric diameters, and flowability. Despite these changes, nebulization studies confirmed optimal MMAD values (<5 µm), while multi-step dissolution/release studies evidenced the influence of mannitol. CONCLUSIONS The developed curcumin nanocrystals-loaded mannitol microparticles show promise as an inhalable treatment for respiratory diseases, combining effective aerodynamic properties with controlled drug release.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Emanuela Fabiola Craparo
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Eleonora Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Donatella Valenti
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (E.F.C.); (C.S.); (G.C.)
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy; (L.C.); (E.L.); (D.V.); (M.S.); (C.S.)
| |
Collapse
|
3
|
Peng J, Wang Q, Sun R, Zhang K, Chen Y, Gong Z. Phospholipids of inhaled liposomes determine the in vivo fate and therapeutic effects of salvianolic acid B on idiopathic pulmonary fibrosis. J Control Release 2024; 371:1-15. [PMID: 38761856 DOI: 10.1016/j.jconrel.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/18/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Since phospholipids have an important effect on the size, surface potential and hardness of liposomes that decide their in vivo fate after inhalation, this research has systematically evaluated the effect of phospholipids on pulmonary drug delivery by liposomes. In this study, liposomes composed of neutral saturated/unsaturated phospholipids, anionic and cationic phospholipids were constructed to investigate how surface potential and the degree of saturation of fatty acid chains determined their mucus and epithelium permeability both in vitro and in vivo. Our results clearly indicated that liposomes composed of saturated neutral and anionic phospholipids possessed high stability and permeability, compared to that of liposomes composed of unsaturated phospholipids and cationic phospholipids. Furthermore, both in vivo imaging of fluorescence-labeled liposomes and biodistribution of salvianolic acid B (SAB) that encapsulated in liposomes were performed to estimate the effect of phospholipids on the lung exposure and retention of inhaled liposomes. Finally, inhaled SAB-loaded liposomes exhibited enhanced therapeutic effects in a bleomycin-induced idiopathic pulmonary fibrosis mice model via inhibition of inflammation and regulation on coagulation-fibrinolytic system. Such findings will be beneficial to the development of inhalable lipid-based nanodrug delivery systems for the treatment of respiratory diseases where inhalation is the preferred route of administration.
Collapse
Affiliation(s)
- Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Qin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 561113, China.
| |
Collapse
|
4
|
Peng J, Zhang X, Zhang K, Wang Q, Sun R, Chen Y, Chen Y, Gong Z. Polysaccharides screening for pulmonary mucus penetration by molecular dynamics simulation and in vitro verification. Int J Biol Macromol 2024; 265:130839. [PMID: 38490391 DOI: 10.1016/j.ijbiomac.2024.130839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Mucus penetration is one of the physiologic barriers of inhalation and nanocarriers can effectively facilitate the permeation of drugs. The interactions between the nanocarriers and mucin are crucial for penetration across the mucus layer on the respiratory tract. In this study, we proposed a molecular dynamics (MD) simulation method for the screening of polysaccharides that acted as the surface modification materials for inhalable nano-preparations to facilitate mucus penetration. MD revealed all-atom interactions between the monomers of polysaccharides, including dextran (DEX)/hyaluronic acid (HA)/carboxymethyl chitosan (CMCS) and the human mucin protein MUC5AC (hMUC5AC). The obtained data showed that DEX formed stronger non-covalent bonds with hMUC5AC compared to HA and CMCS, which suggested that HA and CMCS had better mucus permeability than DEX. For the in vitro verification, HA/CMCS-coated liposomes and DEX/PEG-inserted liposomes were prepared. The results of mucin interactions and mucus penetration studies confirmed that HA and CMCS possessed the weakest interactions with mucin and facilitated the mucus penetration, which was in consistent with the data from MD simulation. This work may shed light on the MD simulation-based screening of surface modification materials for inhalable nano-preparations to facilitate mucus penetration.
Collapse
Affiliation(s)
- Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xiaobo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ke Zhang
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China; Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
5
|
Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, Li S, Zhao M. Recent developments in the use of nanocrystals to improve bioavailability of APIs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1958. [PMID: 38629192 DOI: 10.1002/wnan.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yidan Ding
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Tongyi Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jianing Fang
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiexin Song
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Haobo Dong
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiarui Liu
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Sijin Li
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
Xie J, Huang Q, Xie H, Liu J, Tian S, Cao R, Yang M, Lin J, Han L, Zhang D. Hyaluronic acid/inulin-based nanocrystals with an optimized ratio of indigo and indirubin for combined ulcerative colitis therapy via immune and intestinal flora regulation. Int J Biol Macromol 2023; 252:126502. [PMID: 37625742 DOI: 10.1016/j.ijbiomac.2023.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Indigo (IND) and indirubin (INB) have demonstrated a synergistic effect in treating ulcerative colitis at a ratio of 7.5:1. However, the colon mucus layer, a critical physiological barrier against external threats, is also a biological barrier, limiting the potential for effective drug delivery to the lamina propria for regulating inflammatory cells. Inspired by the potential of Hyaluronic acid (HA), to enhance cellular uptake by inflammatory cells, and Pluronic® F127 (F127), known for overcoming the mucus barrier, this study innovatively developed INB/IND nanosuspensions by co-modifying with F127 and HA. Moreover, inulin serves a dual purpose as a spray protective agent and a regulator of intestinal flora. Therefore, it was incorporated into INB/IND nanosuspensions for subsequent spray drying, resulting in the preparation of INB/IND nanocrystals (INB/IND-NC). The mucus penetration of INB/IND-NC was 24.30 times that of the control group. Besides, INB/IND-NC exhibited enhanced cellular uptake properties proximately twice that of Raw INB/IND. Importantly, INB/IND-NC exhibited improved therapeutic efficacy in DSS-induced mice by regulating the expression of cytokines, regulating immune responses via downregulating the expression of macrophages, neutrophils, and dendritic cells and maintaining intestinal flora homeostasis. Our study provides a new perspective for applying natural products for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Huang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huijuan Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun Liu
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shimin Tian
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Cao
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Li Han
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
8
|
Guo M, Peng T, Wu C, Pan X, Huang Z. Engineering Ferroptosis Inhibitors as Inhalable Nanomedicines for the Highly Efficient Treatment of Idiopathic Pulmonary Fibrosis. Bioengineering (Basel) 2023; 10:727. [PMID: 37370658 PMCID: PMC10295167 DOI: 10.3390/bioengineering10060727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) refers to chronic progressive fibrotic interstitial pneumonia. It is called a "tumor-like disease" and cannot be cured using existing clinical drugs. Therefore, new treatment options are urgently needed. Studies have proven that ferroptosis is closely related to the development of IPF, and ferroptosis inhibitors can slow down the occurrence of IPF by chelating iron or reducing lipid peroxidation. For example, the ferroptosis inhibitor deferoxamine (DFO) was used to treat a mouse model of pulmonary fibrosis, and DFO successfully reversed the IPF phenotype and increased the survival rate of mice from 50% to 90%. Given this, we perceive that the treatment of IPF by delivering ferroptosis inhibitors is a promising option. However, the delivery of ferroptosis inhibitors faces two bottlenecks: low solubility and targeting. For one thing, we consider preparing ferroptosis inhibitors into nanomedicines to improve solubility. For another thing, we propose to deliver nanomedicines through pulmonary drug-delivery system (PDDS) to improve targeting. Compared with oral or injection administration, PDDS can achieve better delivery and accumulation in the lung, while reducing the systemic exposure of the drug, and is an efficient and safe drug-delivery method. In this paper, three possible nanomedicines for PDDS and the preparation methods thereof are proposed to deliver ferroptosis inhibitors for the treatment of IPF. Proper administration devices and challenges in future applications are also discussed. In general, this perspective proposes a promising strategy for the treatment of IPF based on inhalable nanomedicines carrying ferroptosis inhibitors, which can inspire new ideas in the field of drug development and therapy of IPF.
Collapse
Affiliation(s)
- Mengqin Guo
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (M.G.); (C.W.)
| |
Collapse
|
9
|
Zhou W, Li B, Min R, Zhang Z, Huang G, Chen Y, Shen B, Zheng Q, Yue P. Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to enhance permeation and intestinal absorption. Biomater Sci 2023; 11:1013-1030. [PMID: 36545798 DOI: 10.1039/d2bm01404a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple gastrointestinal barriers (mucus clearance and epithelium barrier) are the main challenges in the oral administration of nanocarriers. To achieve efficient mucus penetration and epithelial absorption, a novel strategy based on mesoporous silica nanoparticles with dendritic superstructure, hydrophilicity, and nearly neutral-charged modification was designed. The mPEG covalently grafted dendritic mesoporous silica nanoparticles (mPEG-DMSNs) had a particle size of about 200 nm and a loading capacity of up to 50% andrographolide (AG) as a nanocrystal cluster in the mesoporous structure. This dual strategy of combining with the surface topography structure and hydrophilic modification maintained a high mucus permeability and showed an increase in cell absorption. The mPEG-DMSN formulation also exhibited effective transepithelial transport and intestinal tract distribution. The pharmacokinetics study demonstrated that compared with other AG formulations, the andrographolide nanocrystals-loaded mPEG-DMSN (AG@mPEG-DMSN) exhibited much higher bioavailability. Also, AG@mPEG-DMSN could significantly improve the in vitro and in vivo anti-inflammatory efficacy of AG. In summary, mPEG-DMSN offers an interesting strategy to overcome the mucus clearance and epithelium barriers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Biao Li
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Rongting Min
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Zengzhu Zhang
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Guiting Huang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Baode Shen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Qin Zheng
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang 330004, China.
| |
Collapse
|