1
|
Rauf A, Salman S. Physicochemical Properties and Molecular Insights of Favipiravir and Roflumilast Solid Dispersions for COVID-19 Treatment. Pharmaceuticals (Basel) 2025; 18:590. [PMID: 40284024 PMCID: PMC12030739 DOI: 10.3390/ph18040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Fixed-dose combinations (FDCs) offer significant advantages for patients and healthcare systems by improving adherence and reducing pill burden. However, developing multi-drug formulations remains challenging due to complexities in drug compatibility, stability, and dissolution behavior. The COVID-19 pandemic has necessitated innovative therapeutic approaches. This study aims to develop and evaluate an FDC containing FR (an antiviral drug) and RT (a PDE4 inhibitor) for potential COVID-19 treatment. Methods: The proposed dual-layer FDC was formulated to achieve immediate release of RT using Klucel EXF and controlled release of FR using a combination of Klucel HXF and Compritol ATO888. Critical quality attributes, including drug-excipient compatibility, solid-state properties, tablet uniformity, and dissolution kinetics, were assessed. RT and FR quantification methods were developed and validated per international guidelines. Compatibility studies were conducted by combining excipients in fixed ratios with APIs, followed by stability testing. Results: No degradation or adverse interactions were observed between APIs and excipients. RT exhibited rapid dissolution within 30 min, while FR release was effectively controlled through a gel-forming matrix and lipid barrier. Bulk powder and tablet physical parameters met pharmacopeial standards, and content uniformity between layers was maintained. The formulation demonstrated a stable dissolution profile for both drugs, ensuring consistent drug release. Conclusions: The novel FDC of RT and FR exhibits favorable physicochemical properties, a stable dissolution profile, and potential for improved treatment efficacy in COVID-19 patients. By optimizing drug release mechanisms and ensuring formulation stability, this FDC could serve as a pharmaco-economically viable alternative to existing therapies, enhancing patient compliance and treatment outcomes.
Collapse
Affiliation(s)
- Abdul Rauf
- Department of Pharmacy, The University of Lahore, Lahore 54590, Pakistan;
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| |
Collapse
|
2
|
Hu Z, Xiao X, Zhang G, Li Y. Revolutionizing fixed-dose combinations with long-acting microsphere. Eur J Pharm Sci 2025; 207:107032. [PMID: 39914724 DOI: 10.1016/j.ejps.2025.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Combination therapy, involving the concurrent use of multiple medications, has become crucial for managing complex diseases with diverse pathological mechanisms. Fixed-Dose Combinations (FDCs) are formulated to leverage the synergistic effects of multiple drugs, thereby enhancing therapeutic outcomes. However, conventional FDCs typically maintain therapeutic effects for only up to 24 h and require frequent dosing, which often results in patient non-compliance and inconsistent treatment responses, especially in chronic diseases. This highlights the urgent need for long-acting FDCs that can provide sustained drug release over extended periods-weeks, months, or even years-thereby reducing dosing frequency and enhancing patient adherence. Microspheres, with their ability to encapsulate and release multiple medications in predefined patterns, are highly advantageous for developing long-acting FDC drugs. This review emphasizes the increasing demand for long-acting FDC drugs that ensure sustained drug release, reduce dosing frequency, and ultimately improve patient adherence. We also highlight the potential of microsphere technology, which enables precise encapsulation and sustained release of multiple medications, as a promising approach for revolutionizing long-acting FDCs with enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao Xiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Guiyun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Naguy A, Alablani DS, Alamiri B. Psychopharmacology: The 'Combo Pills'-Did it find its way into Practice? PSYCHOPHARMACOLOGY BULLETIN 2025; 55:80-84. [PMID: 39935667 PMCID: PMC11809508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Fixed-dose combinations were, and still, quite in vogue in medical practice but for better or worse, did not gain a foothold in psychiatric prescriptions. Whilst briefing the merits and demerits of these formulations, authors herein provide a list of common psychotropic drug combinations on market, explaining the underneath psychopharmacological rationale.
Collapse
Affiliation(s)
- Ahmed Naguy
- Naguy, MBBch, MSc, MRCPsych (UK), Kuwait Centre for Mental Health (KCMH), Shuwaikh, State of Kuwait
| | | | - Bibi Alamiri
- Alamiri, MD, ABPN, ScD, Kuwait Centre for Mental Health (KCMH), Shuwaikh, State of Kuwait
| |
Collapse
|
4
|
Tran QD, Spooner N, Geoghehan S, Thavarajah SR, Rahman S, Tran NN, Williams PM, Jarquin SM, Kim DH, Davey K, Buell J, Shumbera M, Gittleman M, Clements T, Stoudemire J, Fisk I, Hessel V. Cosmic-Ray Radiation Effects on Ibuprofen Tablet Formulation Inside and Outside of the International Space Station. Adv Healthc Mater 2025; 14:e2402361. [PMID: 39444063 DOI: 10.1002/adhm.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024]
Abstract
In extreme environments people will have different needs for medicine(s), making it crucial to understand how such environments affect drug efficacy. Ibuprofen, commonly used in tablet formulation on Earth, could fail in space despite standard pharmaceutical packaging. We introduce the concept of 'space medicines', where solid-dosage forms protect the pharmaceutical from accelerated degradation in spaceflight. We simulate dose(s) in International Space Station (ISS) through radionuclide and photon experiments, and establish the impact of alpha, beta and gamma rays. We demonstrate that tablet formulation protects from impact of alpha and beta rays; however, gamma rays decompose ibuprofen even when 'masked'. We systematically analyse 19 tablet compositions inside and outside the ISS to determine the effect of compositional changes in the tablet matrix. We confirm that the iron oxide-shielded tablets show minimal degradation (〈10%) inside the ISS, compared to moderate reductions (〉10%) for other formulations, with one exception. The tablets exhibited significantly greater ibuprofen degradation (〉 30-50%) outside ISS, due to harsh conditions. Significantly, we found that flavour have shielding potential by scavenging free radicals. We conclude that ibuprofen efficacy is adversely affected in space, and these effects are expected to worsen on missions to deeper space destinations.
Collapse
Affiliation(s)
- Quy Don Tran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Andy Thomas Centre for Space Resources, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nigel Spooner
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Sean Geoghehan
- Department of Radiation Oncology, Central Adelaide Local Health Network, Adelaide, 5000, Australia
| | - Shanjaye Raj Thavarajah
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shamaun Rahman
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nam Nghiep Tran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Philip Michael Williams
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sandra Martinez Jarquin
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Dong-Hyun Kim
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jeff Buell
- Aegis Aerospace, Inc., Houston, Texas, 77598, USA
| | | | | | | | - Jana Stoudemire
- Space Tango, Lexington, 40505, USA
- Axiom Space, Houston, 77058, USA
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Nottingham, LE12 5RD, United Kingdom
- International Flavour Research Centre, School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Adelaide, South Australia, 5064, Australia
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Andy Thomas Centre for Space Resources, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Loke YH, Jayakrishnan A, Mod Razif MRF, Yee KM, Kee PE, Goh BH, Helal Uddin ABM, Lakshminarayanan V, Liew KB. A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Curr Pharm Des 2025; 31:360-376. [PMID: 39390835 DOI: 10.2174/0113816128338560240923073357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Achuth Jayakrishnan
- Department of Microbiology, Hindusthan College of Arts and Science, Coimbatore 641028, Tamil Nadu, India
| | | | - Kar Ming Yee
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Bey Hing Goh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - A B M Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Vijayakumar Lakshminarayanan
- Department of Pharmaceutical Technology, Hindusthan Institute of Technology, Coimbatore 641032, Tamil Nadu, India
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
6
|
Karthick V, Zahir AA, Amalraj S, Rahuman AA, Anbarasan K, Santhoshkumar T. Sustained release of nano-encapsulated glimepiride drug with chitosan nanoparticles: A novel approach to control type 2 diabetes in streptozotocin-induced Wistar albino rats. Int J Biol Macromol 2025; 287:138496. [PMID: 39647738 DOI: 10.1016/j.ijbiomac.2024.138496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The objective of the present study was to encapsulate the effective antidiabetic glimepiride (GLM) drug with biodegradable chitosan nanoparticles (CS NPs) in order to reduce the risk of side effects, regulate and improve alternatives to therapy for people with type 2 Diabetes mellitus. The characterizations of the encapsulated EGLM-CS NPs were published in a previous paper. In continuation of the past study, here we report the in vitro and in vivo activities of EGLM-CS NPs in streptozotocin-induced diabetes Wistar albino rats orally treated for 28 days. Based on our results, the in vitro 3 T3-L1 cell lines observed that the highest concentration of 500 μg/mL exhibited 91.48 % cell viability after 24 h of treatment. The in vivo results of the EGLM-CS NPs treated rats group showed gradual control of the blood glucose level at 90 and 120 min compared to other groups because the drug showed a sustained release mechanism. A significant difference was observed in serum lipid profiles between diabetic treated and control rats. It is believed that the CS NPs served as a carrier system for the GLM drug, protected it from degradation, and enhanced its solubility as well as bioavailability. After 28 days of treatment, all the animal groups organs (pancreas, liver, and kidney) were dissected for histopathological analysis. The EGLM-CS NPs treated group displayed regeneration cells of the islets of Langerhans in the pancreas and normal cellular size with hyperplasia. The therapeutic potential was observed by the liver and kidney from rats reveals few tubule necrosis, improved bioavailability as compared to pure GLM drug treated rats. Hence, our formulated NPs are safe, no toxic effect on the vital organs, which will be helpful to improve the lives of diabetic patients and contribute to the overall health of the individuals.
Collapse
Affiliation(s)
- Venkatesan Karthick
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Abdul Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India.
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi 683104, Kerala, India
| | - Abdul Abdul Rahuman
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Karunanithi Anbarasan
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Thirunavukkarasu Santhoshkumar
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| |
Collapse
|
7
|
Khan B, Choi HI, Ryu JS, Noh HY, Shah FA, Khan N, Ansari MM, Zeb A, Kim JK. Core-shell tablets designed for modified and sequential release of ibuprofen and rabeprazole. Int J Pharm 2024; 666:124839. [PMID: 39419364 DOI: 10.1016/j.ijpharm.2024.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
In this study, core-shell tablets comprising an ibuprofen (IBU) enteric-coated core for modified release and a rabeprazole (RAB) shell for immediate release were developed using wet granulation method. The primary aim was to produce a sequential release of RAB and IBU with pharmacokinetic profiles comparable to those of the respective single tablets, thereby reducing the potential for IBU-associated gastrointestinal (GI) side effects. The composition of the IBU/RAB core-shell tablets was finalized on a comparative basis by evaluating various trial formulations. IBU/RAB core-shell tablets (400/20 mg) were assessed for physicochemical attributes, storage stability, and in vivo pharmacokinetics in beagle dogs. IBU/RAB core-shell tablets showed immediate RAB release (99.5 % in 1 h at pH 1.2) and delayed IBU release (3.4 % and 88 % in the acid and buffer stages, respectively). IBU/RAB core-shell tablets produced either comparable or improved plasma concentrations in dogs (Cmax; 1163.3 vs. 1160.0 ng/mL for RAB and 27,370 vs. 24,170 ng/mL for IBU) compared to those of the respective single tablets. The IBU/RAB core-shell tablets also demonstrated long-term and accelerated storage stability. In conclusion, the core-shell design could be a promising strategy for the co-administration and sequential release of IBU and RAB to relieve inflammatory conditions and reduce GI complications.
Collapse
Affiliation(s)
- Babar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jeong-Su Ryu
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Alam Zeb
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea.
| |
Collapse
|
8
|
Parkes A, Ziaee A, O'Reilly E. Evaluating experimental, knowledge-based and computational cocrystal screening methods to advance drug-drug cocrystal fixed-dose combination development. Eur J Pharm Sci 2024; 203:106931. [PMID: 39389169 DOI: 10.1016/j.ejps.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Fixed-dose combinations (FDCs) offer significant advantages to patients and the pharmaceutical industry alike through improved dissolution profiles, synergistic effects and extended patent lifetimes. Identifying whether two active pharmaceutical ingredients have the potential to form a drug-drug cocrystal (DDC) or interact is an essential step in determining the most suitable type of FDC to formulate. The lack of coherent strategies to determine if two active pharmaceutical ingredients that can be co-administered can form a cocrystal, has significantly impacted DDC commercialisation. This review aims to accelerate the development of FDCs and DDCs by evaluating existing experimental, knowledge-based and computational cocrystal screening methods; the background of their development, their application in screening for cocrystals and DDCs, and their limitations are discussed. The evaluation provided in this review will act as a guide for selecting suitable screening methods to accelerate FDC development.
Collapse
Affiliation(s)
- Alice Parkes
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Emmet O'Reilly
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
9
|
Jaros A, Rybakowski F, Cielecka-Piontek J, Paczkowska-Walendowska M, Czerny B, Kamińki A, Wafaie Mahmoud Elsorady R, Bienert A. Challenges and Opportunities in Managing Geriatric Depression: The Role of Personalized Medicine and Age-Appropriate Therapeutic Approaches. Pharmaceutics 2024; 16:1397. [PMID: 39598521 PMCID: PMC11597233 DOI: 10.3390/pharmaceutics16111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The global aging population has experienced rapid growth in recent decades, leading to an increased prevalence of psychiatric disorders, particularly depression, among older adults. Depression in the geriatric population is often compounded by chronic physical conditions and various psychosocial factors, significantly impacting their quality of life. The main question raised in this review is as follows: how can personalized medicine and age-appropriate therapeutic approaches improve the management of geriatric depression? This paper explores the epidemiology of geriatric depression, highlighting the influence of gender, race, and socioeconomic status on its prevalence. The classification and diagnosis of geriatric depressive disorders, based on ICD-11 and DSM-5 criteria, reveal the complexity of managing these conditions in older adults. Personalized medicine (PM) emerges as a promising approach, focusing on tailoring treatments to the individual's genetic, clinical, and environmental characteristics. However, the application of PM in this demographic faces challenges, particularly in the context of pharmaceutical forms. The need for age-appropriate drug delivery systems is critical, given the prevalence of polypharmacy and issues such as dysphagia among the older patients. This study emphasizes the importance of developing patient-centric formulations to enhance the effectiveness of personalized therapy in geriatric patients.
Collapse
Affiliation(s)
- Agnieszka Jaros
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Filip Rybakowski
- Head of Adult Psychiatry Clinic, Poznan University of Medical Sciences, 60-810 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (J.C.-P.); (M.P.-W.)
- Institute of Natural Fibers and Medicinal Plants National Research Institute, ul. Wojska Polskiego 71 b, 60-630 Poznan, Poland;
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland; (J.C.-P.); (M.P.-W.)
| | - Bogusław Czerny
- Institute of Natural Fibers and Medicinal Plants National Research Institute, ul. Wojska Polskiego 71 b, 60-630 Poznan, Poland;
- Departament of General Pharmacology and Pharmacoeconomics, Promeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Adam Kamińki
- Department of Orthopedics nad Traumatology, Independent Public Clinical Hospital No. 1, Promeranian Medical University in Szczecin, Unii Lubleskiej 1, 71-252 Szczecin, Poland;
| | - Rasha Wafaie Mahmoud Elsorady
- Head of Clinical Pharmacy Departments at Alexandria University Hospitals, Alexandria University, Alexandria 21523, Egypt;
| | - Agnieszka Bienert
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| |
Collapse
|
10
|
Setia A, Challa RR, Vallamkonda B, Vaishali, Viswanadh MK, Muthu MS. Clinical Implications of Proton Pump Inhibitors and Vonoprazan Micro/Nano Drug Delivery Systems for Gastric Acid-Related Disorders and Imaging. Nanotheranostics 2024; 8:535-560. [PMID: 39507107 PMCID: PMC11539181 DOI: 10.7150/ntno.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Excessive stomach acid or bacterial infection are the root causes of gastric acid-related disorders, such as peptic ulcer disease and gastroesophageal reflux disease. Proton pump inhibitors including lansoprazole, omeprazole, esomeprazole, rabeprazole, etc. are medications used to treat gastric acid-related diseases. One of the most effective drugs for treating gastroesophageal reflux disease is vonoprazan, owing to its ability to strongly inhibit gastric acid. Proton pump inhibitors and vonoprazan work in distinct ways to prevent the production of stomach acid. Vonoprazan inhibits acid secretion by blocking the potassium-competitive acid blocker receptor, whereas proton pump inhibitors function by irreversibly blocking the proton pump in the parietal cells of the stomach. Delayed release tablets, delayed release capsules, minitablets, pellets, bilayer, floating, mucoadhesive tablets and nanoparticles, are some of the methods used in the development of micro/nano formulations with proton pump inhibitors and vonoprazan. Diagnosis and therapy of gastric acid-related illnesses, particularly those treated with drugs such as vonoprazan and proton pump inhibitors, rely heavily on imaging modalities such as CT scans, X-rays, endoscopy, fluorescence and HRM imaging. This review provides a comprehensive update on various micro/nanoformulations of proton pump inhibitors and vonoprazan. Moreover, we provide an outlook on clinical imaging of proton pump inhibitors and vonoprazan formulation for gastric acid related diseases. We have limited our discussion to case studies and clinical trials on proton pump inhibitors and vonoprazan for gastric acid related disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN's Foundation for Science, Technology & Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
11
|
Lakshmaiah Narayana J, Mechesso AF, Rather IIG, Zarena D, Luo J, Xie J, Wang G. Origami of KR-12 Designed Antimicrobial Peptides and Their Potential Applications. Antibiotics (Basel) 2024; 13:816. [PMID: 39334990 PMCID: PMC11429261 DOI: 10.3390/antibiotics13090816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This review describes the discovery, structure, activity, engineered constructs, and applications of KR-12, the smallest antibacterial peptide of human cathelicidin LL-37, the production of which can be induced under sunlight or by vitamin D. It is a moonlighting peptide that shows both antimicrobial and immune-regulatory effects. Compared to LL-37, KR-12 is extremely appealing due to its small size, lack of toxicity, and narrow-spectrum antimicrobial activity. Consequently, various KR-12 peptides have been engineered to tune peptide activity and stability via amino acid substitution, end capping, hybridization, conjugation, sidechain stapling, and backbone macrocyclization. We also mention recently discovered peptides KR-8 and RIK-10 that are shorter than KR-12. Nano-formulation provides an avenue to targeted delivery, controlled release, and increased bioavailability. In addition, KR-12 has been covalently immobilized on biomaterials/medical implants to prevent biofilm formation. These constructs with enhanced potency and stability are demonstrated to eradicate drug-resistant pathogens, disrupt preformed biofilms, neutralize endotoxins, and regulate host immune responses. Also highlighted are the safety and efficacy of these peptides in various topical and systemic animal models. Finaly, we summarize the achievements and discuss future developments of KR-12 peptides as cosmetic preservatives, novel antibiotics, anti-inflammatory peptides, and microbiota-restoring agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore 560078, India
| | - Abraham Fikru Mechesso
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imran Ibni Gani Rather
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - D Zarena
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- College of Engineering, Jawaharlal Nehru Technological University, Anantapur 515002, India
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Sen S, Ganta B, Rachel VN, Gogikar SK, Singh V, Sonti R, Dikundwar AG. Mapping Advantages and Challenges in Analytical Development for Fixed Dose Combination Products, a Review. J Pharm Sci 2024; 113:2028-2043. [PMID: 38697403 DOI: 10.1016/j.xphs.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Formulations containing more than one active ingredient are increasingly gaining popularity due to advantages with regard to patient convenience as well as reduced cost of production, packaging, and transportation. Such fixed-dose combinations (FDCs) demand for enhanced analytical methodologies and tools to efficiently achieve quality control of these complex products as compared to the conventional products containing only one active constituent. Highly efficient analytical methods can measure multiple constituents at once, improving their quality control. This review article discusses the challenges in the development of such methods due to the similarities or differences in the chemical identity of the participating drug molecules in an FDC. The latest developments in multiple analyte determination using various analytical techniques (HPLC, LC-MS, NMR, IR, powder XRD and DSC) are discussed, with a focus on special considerations in each case. The article discusses challenges with sample preparation of complex FDC products, and the use of Chemometrics and Quality by Design to develop efficient analytical methods. Lastly, an equation-based approach is proposed and demonstrated to arrive at a parameter referred to as "percentage efficiency gain" that would be useful in directly accessing the relevance and commercial benefits of a simultaneous method vis-a-vis separate methods for individual components.
Collapse
Affiliation(s)
- Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Brundharika Ganta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - V Nina Rachel
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shiva Kumar Gogikar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vartika Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India.
| |
Collapse
|
13
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
14
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
15
|
Dechsri K, Suwanchawalit C, Patrojanasophon P, Opanasopit P, Pengnam S, Charoenying T, Taesotikul T. Photodynamic Antibacterial Therapy of Gallic Acid-Derived Carbon-Based Nanoparticles (GACNPs): Synthesis, Characterization, and Hydrogel Formulation. Pharmaceutics 2024; 16:254. [PMID: 38399308 PMCID: PMC10891664 DOI: 10.3390/pharmaceutics16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon-based nanoparticles (CNPs) have gained recognition because of their good biocompatibility, easy preparation, and excellent phototherapy properties. In biomedicine applications, CNPs are widely applied as photodynamic agents for antibacterial purposes. Photodynamic therapy has been considered a candidate for antibacterial agents because of its noninvasiveness and minimal side effects, especially in the improvement in antibacterial activity against multidrug-resistant bacteria, compared with conventional antibiotic medicines. Here, we developed CNPs from an active polyhydroxy phenolic compound, namely, gallic acid, which has abundant hydroxyl groups that can yield photodynamic effects. Gallic acid CNPs (GACNPs) were rapidly fabricated via a microwave-assisted technique at 200 °C for 20 min. GACNPs revealed notable antibacterial properties against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The minimum inhibitory concentrations of GACNPs in S. aureus and E. coli were equal at approximately 0.29 mg/mL and considerably lower than those in gallic acid solution. Furthermore, the GACNP-loaded hydrogel patches demonstrated an attractive photodynamic effect against S. aureus, and it was superior to that of Ag hydrofiber®, a commercial material. Therefore, the photodynamic properties of GACNPs can be potentially used in the development of antibacterial hydrogels for wound healing applications.
Collapse
Affiliation(s)
- Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Cheewita Suwanchawalit
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Theerada Taesotikul
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
16
|
Wilkins CA, Hamman H, Hamman JH, Steenekamp JH. Fixed-Dose Combination Formulations in Solid Oral Drug Therapy: Advantages, Limitations, and Design Features. Pharmaceutics 2024; 16:178. [PMID: 38399239 PMCID: PMC10892518 DOI: 10.3390/pharmaceutics16020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Whilst monotherapy is traditionally the preferred treatment starting point for chronic conditions such as hypertension and diabetes, other diseases require the use of multiple drugs (polytherapy) from the onset of treatment (e.g., human immunodeficiency virus acquired immunodeficiency syndrome, tuberculosis, and malaria). Successful treatment of these chronic conditions is sometimes hampered by patient non-adherence to polytherapy. The options available for polytherapy are either the sequential addition of individual drug products to deliver an effective multi-drug regimen or the use of a single fixed-dose combination (FDC) therapy product. This article intends to critically review the use of FDC drug therapy and provide an insight into FDC products which are already commercially available. Shortcomings of FDC formulations are discussed from multiple perspectives and research gaps are identified. Moreover, an overview of fundamental formulation considerations is provided to aid formulation scientists in the design and development of new FDC products.
Collapse
Affiliation(s)
| | | | | | - Jan H. Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.A.W.); (H.H.); (J.H.H.)
| |
Collapse
|
17
|
Kotha AA, Ahmad SU, Dewan I, Bhuiyan MA, Rahman FI, Naina Mohamed I, Reza MS. Metformin Hydrochloride Loaded Mucoadhesive Microspheres and Nanoparticles for Anti-Hyperglycemic and Anticancer Effects Using Factorial Experimental Design. Drug Des Devel Ther 2023; 17:3661-3684. [PMID: 38084128 PMCID: PMC10710808 DOI: 10.2147/dddt.s432790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Background Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.
Collapse
Affiliation(s)
- Amina Alam Kotha
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shihab Uddin Ahmad
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Irin Dewan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, School of Medicine, University of Asia Pacific, Dhaka, 1215, Bangladesh
| | - Fahad Imtiaz Rahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Md Selim Reza
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
18
|
Attia L, Chen L, Doyle PS. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301667. [PMID: 37507108 PMCID: PMC11469203 DOI: 10.1002/adhm.202301667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.
Collapse
Affiliation(s)
- Lucas Attia
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Liang‐Hsun Chen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Campus for Research Excellence and Technological EnterpriseSingapore138602Singapore
| |
Collapse
|
19
|
Cruz-Santos MM, Antunes FAF, de Arruda GL, Shibukawa VP, Prado CA, Ortiz-Silos N, Castro-Alonso MJ, Marcelino PRF, Santos JC. Production and applications of pullulan from lignocellulosic biomass: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2023:129460. [PMID: 37423546 DOI: 10.1016/j.biortech.2023.129460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Pullulan is an exopolysaccharide produced by Aureobasidium pullulans, with interesting characteristics which lead to its application in industries such as pharmaceuticals, cosmetics, food, and others. To reduce production costs for industrial applications, cheaper raw materials such as lignocellulosic biomass can be utilized as a carbon and nutrient source for the microbial process. In this study, a comprehensive and critical review was conducted, encompassing the pullulan production process and the key influential variables. The main properties of the biopolymer were presented, and different applications were discussed. Subsequently, the utilization of lignocellulosics for pullulan production within the framework of a biorefinery concept was explored, considering the main published works that deal with materials such as sugarcane bagasse, rice husk, corn straw, and corn cob. Next, the main challenges and future prospects in this research area were highlighted, indicating the key strategies to favor the industrial production of pullulan from lignocellulosic biomasses.
Collapse
Affiliation(s)
- Mónica María Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | | | - Gabriel Leda de Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Vinicius Pereira Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Carina Aline Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Nayeli Ortiz-Silos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - María José Castro-Alonso
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | | | - Júlio César Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| |
Collapse
|
20
|
Simão J, Chaudhary SA, Ribeiro AJ. Implementation of Quality by Design (QbD) for development of bilayer tablets. Eur J Pharm Sci 2023; 184:106412. [PMID: 36828037 DOI: 10.1016/j.ejps.2023.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Bilayer tablets offer various drug release profiles for individual drugs incorporated in each layer of a bilayer tablet, which is rarely achievable by conventional tablets. These tablets also help avoid physicochemical incompatibilities between drugs and excipients. Successful manufacturing of such more complex dosage forms depends upon screening of material attributes of API and excipients as well as optimization of processing parameters of individual unit operations of the manufacturing process that must be strictly monitored and controlled to obtain an acceptable drug product quality and performance in order to achieve safety and efficacy per regulatory requirements. Optimizing formulation attributes and manufacturing processes during critical stages, such as blending, granulation, pre-compression, and main compression, can help avoid problems such as weight variation, segregation, and delamination of individual layers, which are frequently faced during the production of bilayer tablets. The main objective of this review is to establish the basis for the implementation of Quality by Design (QbD) system principles for the design and development of bilayer tablets, encompassing the preliminary and systematic risk assessment of critical material attributes (CMAs) and critical process parameters (CPPs) with respect to in-process and finished product critical quality attributes (CQAs). Moreover, the applicability of the QbD methodology based on its purpose is discussed and complemented with examples of bilayer tablet technology.
Collapse
Affiliation(s)
- J Simão
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - S A Chaudhary
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal; i3S, IBMC, Rua Alfredo Allen, Porto, Portugal.
| |
Collapse
|
21
|
Screening of Fenofibrate-Simvastatin Solid Dispersions in the Development of Fixed-Dose Formulations for the Treatment of Lipid Disorders. Pharmaceutics 2023; 15:pharmaceutics15020603. [PMID: 36839925 PMCID: PMC9962408 DOI: 10.3390/pharmaceutics15020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The combination of statins and fibrates in the treatment of lipid abnormalities effectively regulates individual lipid fraction levels. In this study, the screening and assessment of the physicochemical properties of simvastatin-fenofibrate solid dispersions were performed. Fenofibrate and simvastatin were processed using the kneading method in different weight ratios, and the resulting solid dispersions were assessed using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, as well as dissolution tests. The obtained results confirmed the formation of a simple eutectic phase diagram, with a eutectic point containing 79 wt% fenofibrate and 21 wt% simvastatin, lack of chemical interactions between the ingredients, and simvastatin impact on improving fenofibrate dissolution profile, due to the formation of crystalline solid dispersions by the kneading method.
Collapse
|
22
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
23
|
The Role of Titanium Dioxide (E171) and the Requirements for Replacement Materials in Oral Solid Dosage Forms: An IQ Consortium Working Group Review. J Pharm Sci 2022; 111:2943-2954. [PMID: 35973604 DOI: 10.1016/j.xphs.2022.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Titanium dioxide (in the form of E171) is a ubiquitous excipient in tablets and capsules for oral use. In the coating of a tablet or in the shell of a capsule the material disperses visible and UV light so that the contents are protected from the effects of light, and the patient or caregiver cannot see the contents within. It facilitates elegant methods of identification for oral solid dosage forms, thus aiding in the battle against counterfeit products. Titanium dioxide ensures homogeneity of appearance from batch to batch fostering patient confidence. The ability of commercial titanium dioxide to disperse light is a function of the natural properties of the anatase polymorph of titanium dioxide, and the manufacturing processes used to produce the material utilized in pharmaceuticals. In some jurisdictions E171 is being considered for removal from pharmaceutical products, as a consequence of it being delisted as an approved colorant for foods. At the time of writing, in the view of the authors, no system or material which could address both current and future toxicological concerns of Regulators and the functional needs of the pharmaceutical industry and patients has been identified. This takes into account the assessment of materials such as calcium carbonate, talc, isomalt, starch and calcium phosphates. In this paper an IQ Consortium team outlines the properties of titanium dioxide and criteria to which new replacement materials should be held.
Collapse
|
24
|
3D-Powder-Bed-Printed Pharmaceutical Drug Product Tablets for Use in Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14112320. [PMID: 36365136 PMCID: PMC9699453 DOI: 10.3390/pharmaceutics14112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Printing of phase 1 and 2a clinical trial formulations represents an interesting industrial application of powder bed printing. Formulations for clinical trials are challenging because they should enable flexible changes in the strength of the dosage form by varying the active pharmaceutical ingredient (API) percentage and tablet mass. The aim of this study was to investigate how powder bed 3D printing can be used for development of flexible platforms for clinical trials, suitable for both hydrophilic and hydrophobic APIs, using only conventional tableting excipients. A series of pre-formulation and formulation studies were performed to develop two platform formulations for clinical trials using acetaminophen and diclofenac sodium as model compounds and lactose and starch as excipients. The results showed that the type of starch used as the formulation binder must be optimized based on the type of API. Moreover, powder blend flow and liquid penetration ability proved to be critical material attributes (CMAs) that need to be controlled, particularly at high drug loading. Optimization of these CMAs was performed by selecting the appropriate particle size of the API or by addition of silica. A critical process parameter that had to be controlled for production of tablets of good quality was the quantity of the printing ink. After optimization of both the formulation and process parameters, two platform formulations, that is, one for each API, were successfully developed. Within each platform, drug loading from 5 up to 50% w/w and tablet mass from 50 to 500 mg were achieved. All 3D-printed tablets could be produced at tensile strength above 0.2 MPa, and most tablets could enable immediate release (i.e., >80% w/w within 30 min).
Collapse
|
25
|
Kim HC, Yoon DY, Lee S, Jang IJ, Hong JH, Kim J. Comparative pharmacokinetics between two tablets of tramadol 37.5 mg/acetaminophen 325 mg and one tablet of tramadol 75 mg/acetaminophen 650 mg for extended-release fixed-dose combination. Transl Clin Pharmacol 2022; 30:112-119. [PMID: 35800670 PMCID: PMC9253448 DOI: 10.12793/tcp.2022.30.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
An extended-release (ER) fixed-dose combination (FDC) of tramadol 37.5 mg/acetaminophen 325 mg was developed due to the demand for varying dosages. This study aimed to evaluate the pharmacokinetics (PKs) for two tablets of the new developed tramadol 37.5 mg/acetaminophen 325 mg ER FDC (DW-0920, Wontran Semi ER®) as test formulation compared to one tablet of the tramadol 75 mg/acetaminophen 650 mg ER FDC (DW-0919, Wontran ER®) as reference formulation. A randomized, open-label, 2-way crossover study was conducted in 30 healthy subjects. Subjects were orally administered one of 2 formulations followed by an alternate formulation with a 7-day washout period. Blood samples were collected up to 36 hours post-dose. Plasma concentrations of tramadol and acetaminophen were determined using a validated high-performance liquid chromatography with tandem mass spectrometric method. The geometric mean ratios (GMRs) and their 90% confidence intervals (90% CIs) of test formulation to reference formulation were calculated for the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from zero to the last measurable time point (AUClast). The PK profiles of 2 formulations were comparable. The GMRs (90% CI) of Cmax and AUClast for tramadol were 1.086 (1.047–1.127) and 1.008 (0.975–1.042), respectively. The corresponding values for acetaminophen were 0.956 (0.897–1.019) and 0.986 (0.961–1.011), respectively. All the values were within the bioequivalence range of 0.80–1.25. Two tablets of DW-0920 were comparable to one tablet of DW-0919. The DW-0920 may be used for optimal pharmacotherapy for pain control with a lower dose.
Collapse
Affiliation(s)
- Hyun Chul Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Deok Yong Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Jang Hee Hong
- Clinial Trials Center, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - JaeWoo Kim
- H Plus Yangji Hospital, Seoul 08779, Korea
| |
Collapse
|