1
|
Story BD, Park S, Roszak K, Shim J, Motta M, Ferneding M, Rudeen KM, Blandino A, Ardon M, Le S, Teixeira LBC, Yiu G, Mieler WF, Thomasy SM, Kang-Mieler JJ. Safety and biocompatibility of a novel biodegradable aflibercept-drug delivery system in rhesus macaques. Drug Deliv 2025; 32:2460671. [PMID: 40038090 PMCID: PMC11884103 DOI: 10.1080/10717544.2025.2460671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/01/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
A clinical need exists for more effective intravitreal (IVT) drug delivery systems (DDS). This study tested the hypothesis that a novel biodegradable, injectable microsphere-hydrogel drug delivery system loaded with aflibercept (aflibercept-DDS) would exhibit long-term safety and biocompatibility in a non-human primate (NHP) model. We generated aflibercept-loaded poly (lactic-co-glycolic acid) microparticles with a modified double emulsion technique then embedded them into a biodegradable, thermo-responsive poly (ethylene glycol)-co-(L-lactic-acid) diacrylate/N-isopropylacrylamide hydrogel. Aflibercept-DDS (50 µL, 15 µg) was injected into the right eye of 23 healthy rhesus macaques. A complete ophthalmic examination, intraocular pressure (IOP), corneal pachymetry, specular microscopy, A-scan biometry, streak retinoscopy, spectral-domain optical coherence tomography (SD-OCT), fluorescein angiography (FA), and electroretinography (ERG) were performed monthly. Globes from 7 NHPs were histologically examined. Aflibercept-DDS was visualized in the vitreous up to 9 months post-IVT injection, slightly impeding fundoscopy in 4 of 23 eyes; no other consistent abnormalities were appreciated during ophthalmic examination. The IOP and total retinal thickness remained normal in all animals over all timepoints. Central corneal thickness, endothelial cell density, axial globe length, and refractive error did not significantly differ from baseline. Scotopic mixed rod-cone implicit times and amplitudes along with photopic cone response implicit times and amplitudes did not significantly differ from control values. No retinal or choroidal vascular abnormalities were detected with FA and normal retinal architecture was preserved using SD-OCT. Intravitreal injection of a biodegradable aflibercept-DDS was safe and well tolerated in NHPs up to 24 months.
Collapse
Affiliation(s)
- Brett D. Story
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Karolina Roszak
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Jaeho Shim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Monica Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Michelle Ferneding
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Kayla M. Rudeen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Local Delivery Translational Sciences, AbbVie, North Chicago, IL, USA
| | - Andrew Blandino
- Department of Statistics, University of California, Davis, CA, USA
| | - Monica Ardon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Sophie Le
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - William F. Mieler
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois, Chicago, IL, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | | |
Collapse
|
2
|
Aghajanpour S, Amiriara H, Ebrahimnejad P, Slavcev RA. Advancing ocular gene therapy: a machine learning approach to enhance delivery, uptake and gene expression. Drug Discov Today 2025; 30:104359. [PMID: 40228736 DOI: 10.1016/j.drudis.2025.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Ocular gene therapy offers a promising approach for treating various eye diseases, centered on the process of transfection, including delivery, cellular uptake and gene expression. This study addresses anatomical and physiological barriers, such as the eyelids, tear film, conjunctiva, cornea, sclera, choroid and retina, affecting therapeutic success. A three-step machine-learning approach is proposed. The first step predicts gene delivery efficacy by integrating molecular characteristics of the ocular gene therapy product, ocular barrier properties and patient demographics. The second step predicts cellular uptake rates, analyzing product penetration and cellular interactions. The final step forecasts gene expression levels, considering factors like nucleic acid type and endosomal escape. An artificial neural network model is recommended to capture complex, nonlinear relationships, enhancing our understanding of therapeutic and biological interactions.
Collapse
Affiliation(s)
- Sareh Aghajanpour
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Amiriara
- Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Mazandaran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Centre for Eye and Vision Research, Unit 901-903, Building 17W, Hong Kong Science Park, Pak Shek Kok, Shatin, Hong Kong; School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| | - Roderick A Slavcev
- Centre for Eye and Vision Research, Unit 901-903, Building 17W, Hong Kong Science Park, Pak Shek Kok, Shatin, Hong Kong; School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON M5G 0B7, Canada.
| |
Collapse
|
3
|
Vasudevan A, Jozić A, Curtis AG, Bodi E, Ryals RC, Sahay G. Lipid nanoparticle-mediated intracameral mRNA delivery facilitates gene expression and editing in the anterior chamber of the eye. J Control Release 2025; 379:1022-1028. [PMID: 39875072 DOI: 10.1016/j.jconrel.2025.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Lipid nanoparticles (LNPs) have shown great potential in the field of gene therapy for retinal diseases. To expand on this application, we investigated LNP-mediated mRNA delivery to the anterior chamber of the eye via the intracameral (IC) route of administration. Here, we show that IC injections of LNPs facilitated protein expression and gene editing in the trabecular meshwork (TM). Administration of Cre-mRNA LNPs to Ai9 mice resulted in robust tdTomato expression in the angle and corneal endothelium. In C57BL/6 mice, mCherry-mRNA LNPs demonstrated localized protein expression in the TM, which peaked at 72 h and subsequently declined over 120 h. Additionally, LNPs encapsulating Cas9 mRNA with sgAi9 enabled in vivo gene editing in Ai9 mice, with up to 14.3 % editing efficiency. This induced tdTomato expression in the iridocorneal angle, validating the potential of LNPs for gene editing applications. Importantly, no ocular toxicity was observed, indicating the safety of the IC LNP administration. Our findings highlight the use of LNPs for targeted gene therapy and editing, paving the path for the treatment of diseases such as glaucoma in the anterior eye.
Collapse
Affiliation(s)
- Aishwarya Vasudevan
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Allison G Curtis
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emily Bodi
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
4
|
Kulkarni NS, Josowitz A, James R, Liu Y, Rayaprolu B, Sagdullaev B, Bhalla AS, Shameem M. Latest trends & strategies in ocular drug delivery. Methods 2025; 235:100-117. [PMID: 39952571 DOI: 10.1016/j.ymeth.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Ocular drug delivery is one of the most challenging routes of administration, and this may be attributed to the complex interplay of ocular barriers and clearance mechanisms that restrict therapeutic payload residence. Most of the currently approved products that ameliorate ocular disease conditions are topical, i.e., delivering therapeutics to the outside anterior segment of the eye. This site of administration works well for certain conditions such as local infections but due to the presence of numerous ocular barriers, the permeation of therapeutics to the posterior segment of the eye is limited. Conditions such as age-related macular degeneration and diabetic retinopathy that contribute to an extreme deterioration of vision acuity require therapeutic interventions at the posterior segment of the eye. This necessitates development of intraocular delivery systems such as intravitreal injections, implants, and specialized devices that deliver therapeutics to the posterior segment of the eye. Frequent dosing regimens and high concentration formulations have been strategized and developed to achieve desired therapeutic outcomes by overcoming some of the challenges of drug clearance and efficacy. Correspondingly, development of suitable delivery platforms such as biodegradable and non-biodegradable implants, nano delivery systems, and implantable devices have been explored. This article provides an overview of the current trends in the development of suitable formulations & delivery systems for ocular drug delivery with an emphasis on late-stage clinical and approved product. Moreover, this work aims to summarize current challenges and highlights exciting pre-clinical developments, and future opportunities in cell and gene therapies that may be explored for effective ocular therapeutic outcomes.
Collapse
Affiliation(s)
- Nishant S Kulkarni
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | - Alexander Josowitz
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | - Roshan James
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Yang Liu
- Ophthalmology Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Bindhu Rayaprolu
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Botir Sagdullaev
- Ophthalmology Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Amardeep S Bhalla
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
5
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
6
|
Luís MA, Goes MAD, Santos FM, Mesquita J, Tavares-Ratado P, Tomaz CT. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025; 17:104. [PMID: 39861752 PMCID: PMC11768343 DOI: 10.3390/pharmaceutics17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Monogenic disorders are a group of human diseases caused by mutations in single genes. While some disease-altering treatments offer relief and slow the progression of certain conditions, the majority of monogenic disorders still lack effective therapies. In recent years, gene therapy has appeared as a promising approach for addressing genetic disorders. However, despite advancements in gene manipulation tools and delivery systems, several challenges remain unresolved, including inefficient delivery, lack of sustained expression, immunogenicity, toxicity, capacity limitations, genomic integration risks, and limited tissue specificity. This review provides an overview of the plasmid-based gene therapy techniques and delivery methods currently employed for monogenic diseases, highlighting the challenges they face and exploring potential strategies to overcome these barriers.
Collapse
Affiliation(s)
- Marco A. Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marcelo A. D. Goes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Av. Reyes Católicos, 28040 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paulo Tavares-Ratado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratory of Clinical Pathology, Sousa Martins Hospital, Unidade Local de Saúde (ULS) da Guarda, Av. Rainha D. Amélia, 6300-749 Guarda, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
9
|
Shastri DH. Delivery of therapeutic proteins to ocular tissues: Barriers, approaches, regulatory considerations and future perspectives. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:261-277. [PMID: 40122648 DOI: 10.1016/bs.pmbts.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The administration of therapeutic proteins directly to the eye is a major breakthrough in the treatment of several eye conditions. This chapter highlights the crucial significance of ocular therapies because of the widespread occurrence of vision-threatening disorders and the distinct difficulties presented by the eye's architecture and physiological limitations. Therapeutic proteins, known for their exceptional specificity and effectiveness, provide hopeful answers. However, they encounter various obstacles in their ocular distributions like tear film, corneal epithelium, and blood-retinal barrier etc. Formulation techniques and drug delivery technologies, such as nanotechnology, hydrogels, microneedles, liposomes, dendrimers, and polymeric nanoparticles are improving the stability, bioavailability, and targeted administration of proteins. Notwithstanding this progress, obstacles such as protein stability, immunogenicity, and patient compliance endure. Methods to address these challenges include improving permeability, formulating sustained release systems, applying non-invasive delivery techniques, and implementing tailored delivery strategies. Furthermore, it is essential to effectively navigate through regulatory routes, comprehensively grasp market factors, and successfully secure intellectual property to achieve successful commercialization of these new methods.
Collapse
Affiliation(s)
- Divyesh Harshadkumar Shastri
- Department of Pharmaceutics and Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalay Kelavani Mandal, Gandhinagar, Gujarat, India.
| |
Collapse
|
10
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
11
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
12
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
13
|
Carvalho C, Lemos L, Antas P, Seabra MC. Gene therapy for inherited retinal diseases: exploiting new tools in genome editing and nanotechnology. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1270561. [PMID: 38983081 PMCID: PMC11182192 DOI: 10.3389/fopht.2023.1270561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 07/11/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a diverse group of genetic disorders that lead to progressive visual impairment and blindness. Over the years, considerable strides have been made in understanding the underlying molecular mechanisms of IRDs, laying the foundation for novel therapeutic interventions. Gene therapy has emerged as a compelling approach for treating IRDs, with notable advancements achieved through targeted gene augmentation. However, several setbacks and limitations persist, hindering the widespread clinical success of gene therapy for IRDs. One promising avenue of research is the development of new genome editing tools. Cutting-edge technologies such as CRISPR-Cas9 nucleases, base editing and prime editing provide unprecedented precision and efficiency in targeted gene manipulation, offering the potential to overcome existing challenges in gene therapy for IRDs. Furthermore, traditional gene therapy encounters a significant challenge due to immune responses to viral vectors, which remain crucial obstacles in achieving long-lasting therapeutic effects. Nanotechnology has emerged as a valuable ally in the quest to optimize gene therapy outcomes for ocular diseases. Nanoparticles engineered with nanoscale precision offer improved gene delivery to specific retinal cells, allowing for enhanced targeting and reduced immunogenicity. In this review, we discuss recent advancements in gene therapy for IRDs and explore the setbacks that have been encountered in clinical trials. We highlight the technological advances in genome editing for the treatment of IRDs and how integrating nanotechnology into gene delivery strategies could enhance the safety and efficacy of gene therapy, ultimately offering hope for patients with IRDs and potentially paving the way for similar advancements in other ocular disorders.
Collapse
Affiliation(s)
- Cláudia Carvalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luísa Lemos
- Champalimaud Research, Champalimaud Foundation, Lisboa, Portugal
| | - Pedro Antas
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisboa, Portugal
| |
Collapse
|
14
|
Kramer RH. Suppressing Retinal Remodeling to Mitigate Vision Loss in Photoreceptor Degenerative Disorders. Annu Rev Vis Sci 2023; 9:131-153. [PMID: 37713276 DOI: 10.1146/annurev-vision-112122-020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Rod and cone photoreceptors degenerate in retinitis pigmentosa and age-related macular degeneration, robbing the visual system of light-triggered signals necessary for sight. However, changes in the retina do not stop with the photoreceptors. A stereotypical set of morphological and physiological changes, known as remodeling, occur in downstream retinal neurons. Some aspects of remodeling are homeostatic, with structural or functional changes compensating for partial loss of visual inputs. However, other aspects are nonhomeostatic, corrupting retinal information processing to obscure vision mediated naturally by surviving photoreceptors or artificially by vision-restoration technologies. In this review, I consider the mechanism of remodeling and its consequences for residual and restored visual function; discuss the role of retinoic acid, a critical molecular trigger of detrimental remodeling; and discuss strategies for suppressing retinoic acid biosynthesis or signaling as therapeutic possibilities for mitigating vision loss.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, USA;
| |
Collapse
|
15
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
16
|
Chapa González C, Martínez Saráoz JV, Roacho Pérez JA, Olivas Armendáriz I. Lipid nanoparticles for gene therapy in ocular diseases. Daru 2023; 31:75-82. [PMID: 36790734 PMCID: PMC10238339 DOI: 10.1007/s40199-023-00455-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVES Lipid nanoparticles, as a nucleic acid delivery system, have been used as an alternative to treat ocular diseases, since they can cross the ocular barrier and efficiently transfecting nucleic acids to various cells of the eye. The size influences the transfection of genes, biological distribution, diffusion, and cellular uptake. It is therefore important to establish a relationship between size, formulation, and encapsulation percentage. EVIDENCE ACQUISITION In this review, we used a search strategy to compare studies of nanomedicine systems aimed at eye diseases where the size of the nanoparticles and the efficiency of encapsulation of genetic material are reported based on the criteria of Preferred Reporting Items for Systematic Reviews (PRISMA ScR 2020 guidelines). RESULTS Out of the initial 5932, 169 studies met the inclusion criteria and were included to form the basis of the analysis. Nanoparticles reported are composed mainly of PEG-modified lipids, cholesterol, and cationic lipids, that in combination with messenger or interference RNA, allow the formulation of a nanoparticle with an encapsulation efficiency greater than 95%. The diseases treated mainly focus on conditions related to the retina and cornea. Certain characteristics of nanoparticles increase encapsulation efficiency, such as the size of the nanoparticle and the charge of the outer layer of the nanoparticle. CONCLUSION It is still unknown what characteristics lipid nanoparticles should have to successfully treat human eye illnesses. The in vitro and in vivo investigations covered in this review, however, present encouraging results. To improve encapsulation effectiveness and disease gene silencing, nanoparticle formulation is essential. The most stable nanoparticles are those made mostly of cationic lipids, PEG lipids, and cholesterol, which also effectively encapsulate RNA. The encapsulation efficiency is not only influenced by size, but also by other factors such as methods of preparation.
Collapse
Affiliation(s)
- Christian Chapa González
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico.
| | - Jessica Victoria Martínez Saráoz
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Centro de Investigación en Materiales Avanzados, 66600, Apodaca, Nuevo León, Mexico
| | - Jorge Alberto Roacho Pérez
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, 64460, Monterrey, Nuevo León, Mexico
| | - Imelda Olivas Armendáriz
- Departamento de Física y Matemáticas de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
| |
Collapse
|
17
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
19
|
Khan SU, Khan MU, Khan MI, Kalsoom F, Zahra A. Current Landscape and Emerging Opportunities of Gene Therapy with Non-viral Episomal Vectors. Curr Gene Ther 2023; 23:135-147. [PMID: 36200188 DOI: 10.2174/1566523222666221004100858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027,People's Republic of China
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Fadia Kalsoom
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Aqeela Zahra
- Department of Family and Community Medicine. College of Medicine, University of Ha'il, Ha'il 81451, Saudi Arabia
| |
Collapse
|
20
|
Lee D, Kwak G, Johnson TV, Suk JS. Formulation and Evaluation of Polymer-Based Nanoparticles for Intravitreal Gene-Delivery Applications. Curr Protoc 2022; 2:e607. [PMID: 36469609 PMCID: PMC9731353 DOI: 10.1002/cpz1.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of the first-ever retinal gene therapy product, involving subretinal administration of a virus-based gene delivery platform, has garnered hope that this state-of-the-art therapeutic modality may benefit a broad spectrum of patients with diverse retinal disorders. On the other hand, clinical studies have revealed limitations of the applied delivery strategy that may restrict its universal use. To this end, intravitreal administration of synthetic gene-delivery platforms, such as polymer-based nanoparticles (PNPs), has emerged as an attractive alternative to the current mainstay. To achieve success, however, it is imperative that synthetic platforms overcome key biological barriers in human eyes encountered following intravitreal administration, including the vitreous gel and inner limiting membrane (ILM). Here, we introduce a series of experiments, from the fabrication of PNPs to a comprehensive evaluation in relevant experimental models, to determine whether PNPs overcome these barriers and efficiently deliver therapeutic gene payloads to retinal cells. We conclude the article by discussing a few important considerations for successful implementation of the strategy. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation and characterization of PNPs Basic Protocol 2: Evaluation of in vitro transfection efficacy Basic Protocol 3: Evaluation of PNP diffusion in vitreous gel Basic Protocol 4: Ex vivo assessment of PNP penetration within vitreoretinal explant culture Basic Protocol 5: Assessment of in vivo transgene expression mediated by intravitreally administered PNPs.
Collapse
Affiliation(s)
- Daiheon Lee
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Gijung Kwak
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Thomas V. Johnson
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Hayashi K, Matsuda M, Nakahata M, Takashima Y, Tanaka M. Stimulus-Responsive, Gelatin-Containing Supramolecular Nanofibers as Switchable 3D Microenvironments for Cells. Polymers (Basel) 2022; 14:polym14204407. [PMID: 36297985 PMCID: PMC9607093 DOI: 10.3390/polym14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young’s modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host–guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young’s modulus between 2–3 kPa and 0.2–0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Mami Matsuda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan
- Correspondence: (Y.T.); (M.T.)
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (Y.T.); (M.T.)
| |
Collapse
|