1
|
Zhen W, Zhao T, Chen X, Zhang J. Unlocking the Potential of Disulfidptosis: Nanotechnology-Driven Strategies for Advanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500880. [PMID: 40269657 DOI: 10.1002/smll.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor tissues exhibit elevated oxidative stress, with the cystine-glutamate transporter xCT solute carrier family 7 member 11 (xCT/SLC7A11) protecting cancer cells from oxidative damage by facilitating cystine uptake for glutathione synthesis. Disulfidptosis, a newly identified form of programmed cell death (PCD), occurs in cells with high xCT/SLC7A11 expression under glucose-deprived conditions. Distinct from other PCD pathways, disulfidptosis is characterized by aberrant disulfide bond formation and cellular dysfunction, ultimately resulting in cancer cell death. This novel mechanism offers remarkable therapeutic potential by targeting the inherent oxidative stress vulnerabilities of rapidly growing cancer cells. Advances in nanotechnology enable the development of nanomaterials capable of inducing reactive oxygen species (ROS) generation, disrupting disulfide bonds. In addition, they are capable to deliver therapeutic agents directly to tumors, thereby improving therapeutic precision and minimizing off-target effects. Moreover, combining disulfidptosis with ROS-induced immunogenic cell death can remodel the tumor microenvironment and enhance anti-tumor immunity. This review explores the mechanisms underlying disulfidptosis, its therapeutic potential in cancer treatment, and the synergistic role of nanotechnology in amplifying its effects. Selective induction of disulfidptosis using nanomaterials represents a promising strategy for achieving more effective, selective, and less toxic cancer therapies.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| |
Collapse
|
2
|
Chen P, Wang Y, Cai Z, Lu X. Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study. Food Chem 2025; 471:142841. [PMID: 39808983 DOI: 10.1016/j.foodchem.2025.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (Dh) and better encapsulation effect on CLS. Formation of CLS-loaded NPs was driven by hydrogen bonds and electrostatic interactions. Presence of CD improved the thermal, pH and storage stabilities of NPs. Besides, CD prevented premature release of CLS in the stomach and enhanced the bioaccessibility of CLS to a maximum of 86.71 % ± 2.20 %. Lipid-raft-mediated endocytosis was involved in the cell uptake of NPs, where the addition of CD significantly facilitated the uptake of NPs. Z-CD NPs also enhanced absorption and reduced secretion of CLS after digestion. Overall, this study provides a simple approach to enhance the oral delivery efficiency of CLS by modulating Z-based NPs with CD.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
3
|
Xing Y, Hu W, Li Y, Zhang Y, Zhang Y, Wang B, Guo X. GLUT-Targeted Adhesive Nanoparticles Enhance the Oral Absorption and Anti-Tumor Effects of 2-Methoxyestradiol. Int J Nanomedicine 2025; 20:4661-4675. [PMID: 40255672 PMCID: PMC12007609 DOI: 10.2147/ijn.s506086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
Purpose 2-Methoxyestradiol (2-ME) has been demonstrated to possess extensive antitumor effects; however, various challenges have impeded its clinical utilization. In this study, we aimed to design a novel oral delivery system for 2-ME using a dual-target modification strategy to address the inherent drawbacks associated with poor absorption and rapid elimination, as well as to enhance oral bioavailability and antitumor effects. Methods Mannose(M)-modified zein (MZ) and cysteine(C)-modified zein (CZ) were synthesized. Glucose transporter (GLUT)-targeted adhesive nanoparticles (NPs), designated as 2-ME-CMZ (1:1:9)-NPs, were prepared via a solvent evaporation method using MZ, CZ, and Zein at a mass ratio of 1:1:9. Their in vitro and in vivo properties, including in vitro release, adhesion, antitumor effects etc. were evaluated. Results Compared with 2-ME-NPs, 2-ME-CMZ (1:1:9)-NPs showed a 3.89-fold increase in mucin adsorption in simulated intestinal fluid (SIF), a 0.61-fold extension of mean residence time (MRT), and a 1.2-fold increase in Caco-2 cell uptake, thereby prolonging the maintenance time of effective concentration (MTEC) after single-dose administration by 2.53-fold and enhancing oral bioavailability by 3.7-fold and tumor growth inhibition rate by 1.06-fold. Interestingly, for 2-ME-CMZ (1:1:9)-NPs, their cellular uptake was related to the mediation of multiple subtypes of GLUT with relative specificity, and they significantly enhanced the original cellular uptake pathway of 2-ME-NPs and showed higher tumor distribution than 2-ME-NPs. However, merely modifying 2-ME-NPs with mannose only increased the oral bioavailability of 2-ME-NPs by 0.44-fold. Conclusion Compared with 2-ME-NPs, 2-ME-CMZ (1:1:9)-NPs significantly enhanced absorption through the mediation of multiple subtypes of GLUT, enhancing their original cellular uptake pathway and prolonging absorption time. These findings demonstrated that 2-ME-CMZ (1:1:9)-NPs are an extremely promising oral drug delivery system for 2-ME, and endowing GLUT-targeted drug-loaded nanoparticles with adhesion is an effective strategy for fully leveraging the role of GLUT in mediating oral absorption.
Collapse
Affiliation(s)
- Yabing Xing
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Wentao Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuru Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yulu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, Henan, People’s Republic of China
| | - Xinhong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
4
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond Nanoparticle-Based Intracellular Drug Delivery: Cytosol/Organelle-Targeted Drug Release and Therapeutic Synergism. Macromol Biosci 2024; 24:e2300590. [PMID: 38488862 DOI: 10.1002/mabi.202300590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Indexed: 07/16/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
5
|
Xing Y, Lian X, Zhang Y, Zhang Y, Guo X. Polymeric liposomes targeting dual transporters for highly efficient oral delivery of paclitaxel. Carbohydr Polym 2024; 334:121989. [PMID: 38553209 DOI: 10.1016/j.carbpol.2024.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
A novel delivery system comprising N-succinic anhydride (N-SAA) and D-fructose co-conjugated chitosan (NSCF)-modified polymeric liposomes (NSCF-PLip) were designed to enhance oral delivery of paclitaxel (PTX) by targeting monocarboxylate transporters (MCT) and glucose transporters (GLUT). The synthesized NSCF was characterised by FT-IR and 1H NMR spectra. The prepared 30.78 % (degree of substitution of N-SAA) NSCF-PTX-PLip were approximately 150 nm in size, with a regular spherical shape, the zeta potential of -25.4 ± 5.13 mv, drug loading of 2.35 % ± 0.05 %, and pH-sensitive and slow-release characteristics. Compared with PTX-Lip, 30.78 % NSCF-PTX-PLip significantly enhanced Caco-2 cellular uptake via co-mediation of MCT and GLUT, showing relatively specific binding of propionic acid and MCT. Notably, the NSCF modification of PTX-Lip had no appreciable influence on their original cellular uptake pathway. The fructose modification of 30.78 % NSC-PTX-PLip significantly increased the concentration after tmax, indicating their continuous and efficient absorption. Compared with PTX-Lip, the 30.78 % NSCF-PTX-PLip resulted in a 2.09-fold extension of MRT, and a 6.06-fold increase of oral bioavailability. It significantly increased tumour drug distribution and tumour growth inhibition rate. These findings confirm that 30.78 % NSCF-PLip offer a potential oral delivery platform for PTX and targeting the dual transporters of MCT and GLUT is an effective strategy for enhancing the intestinal absorption of drugs.
Collapse
Affiliation(s)
- YaBing Xing
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - XinJie Lian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - YuRu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - YuLu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - XinHong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
7
|
Maeyouf K, Sakpakdeejaroen I, Somani S, Meewan J, Ali-Jerman H, Laskar P, Mullin M, MacKenzie G, Tate RJ, Dufès C. Transferrin-Bearing, Zein-Based Hybrid Lipid Nanoparticles for Drug and Gene Delivery to Prostate Cancer Cells. Pharmaceutics 2023; 15:2643. [PMID: 38004621 PMCID: PMC10675605 DOI: 10.3390/pharmaceutics15112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the potential of novel hybrid lipid nanoparticles, composed of biocompatible zein and conjugated to the cancer-targeting ligand transferrin. These nanoparticles were designed to entrap the anti-cancer drug docetaxel and carry plasmid DNA, with the objective of improving the delivery of therapeutic payloads to prostate cancer cells, thereby enhancing their anti-proliferative efficacy and gene expression levels. These transferrin-bearing, zein-based hybrid lipid nanoparticles efficiently entrapped docetaxel, leading to increased uptake by PC-3 and LNCaP cancer cells and significantly enhancing anti-proliferative efficacy at docetaxel concentrations exceeding 1 µg/mL. Furthermore, they demonstrated proficient DNA condensation, exceeding 80% at polymer-DNA weight ratios of 1500:1 and 2000:1. This resulted in increased gene expression across all tested cell lines, with the highest transfection levels up to 11-fold higher than those observed with controls, in LNCaP cells. These novel transferrin-bearing, zein-based hybrid lipid nanoparticles therefore exhibit promising potential as drug and gene delivery systems for prostate cancer therapy.
Collapse
Affiliation(s)
- Khadeejah Maeyouf
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Intouch Sakpakdeejaroen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
- Faculty of Medicine, Thammasat University, Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Hawraa Ali-Jerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
- Department of Chemistry, School of Science, Gandhi Institute of Technology and Management, Visakhapatnam 530045, Andhra Pradesh, India
| | - Margaret Mullin
- Glasgow Imaging Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Graeme MacKenzie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Rothwelle J. Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (K.M.); (I.S.); (S.S.); (J.M.); (H.A.-J.); (P.L.); (G.M.); (R.J.T.)
| |
Collapse
|
8
|
Lam YT, Lee BSL, Hung J, Michael P, Santos M, Tan RP, Liu R, Wise SG. Delivery of Therapeutic miRNA via Plasma-Polymerised Nanoparticles Rescues Diabetes-Impaired Endothelial Function. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2360. [PMID: 37630945 PMCID: PMC10459051 DOI: 10.3390/nano13162360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
MicroRNAs (miRNAs) are increasingly recognised as key regulators of the development and progression of many diseases due to their ability to modulate gene expression post-translationally. While this makes them an attractive therapeutic target, clinical application of miRNA therapy remains at an early stage and in part is limited by the lack of effective delivery modalities. Here, we determined the feasibility of delivering miRNA using a new class of plasma-polymerised nanoparticles (PPNs), which we have recently isolated and characterised. We showed that PPN-miRNAs have no significant effect on endothelial cell viability in vitro in either normal media or in the presence of high-glucose conditions. Delivery of a miRNA inhibitor targeting miR-503 suppressed glucose-induced miR-503 upregulation and restored the downstream mRNA expression of CCNE1 and CDC25a in endothelial cells. Subsequently, PPN delivery of miR-503 inhibitors enhanced endothelial angiogenesis, including tubulogenesis and migration, in culture conditions that mimic diabetic ischemia. An intramuscular injection of a PPN-miR-503 inhibitor promoted blood-perfusion recovery in the hindlimb of diabetic mice following surgically induced ischemia, linked with an increase in new blood vessel formation. Together, this study demonstrates the effective use of PPN to deliver therapeutic miRNAs in the context of diabetes.
Collapse
Affiliation(s)
- Yuen Ting Lam
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Bob S. L. Lee
- Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney 2050, Australia
| | - Juichien Hung
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Praveesuda Michael
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Miguel Santos
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Richard P. Tan
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney 2050, Australia
| | - Steven G. Wise
- Chronic Diseases Theme, School of Medical Science, University of Sydney, Sydney 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
9
|
Peng H, Wang J, Chen J, Peng Y, Wang X, Chen Y, Kaplan DL, Wang Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv 2023; 20:1349-1369. [PMID: 37450427 PMCID: PMC10990675 DOI: 10.1080/17425247.2023.2237408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jiahe Wang
- Department of Humanities, Daqing Branch, Harbin Medical University, Daqing, China
| | - Jiayu Chen
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, China
| | - Xiaoxian Wang
- The Affiliated Hospital of Medical College, University of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|