1
|
El Gazzah E, Parker S, Pierobon M. Multi-omic profiling in breast cancer: utility for advancing diagnostics and clinical care. Expert Rev Mol Diagn 2025:1-17. [PMID: 40193192 DOI: 10.1080/14737159.2025.2482639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Breast cancer remains a major global health challenge. While advances in precision oncology have contributed to improvements in patient outcomes and provided a deeper understanding of the biological mechanisms that drive the disease, historically, research and patients' allocation to treatment have heavily relied on single-omic approaches, analyzing individual molecular dimensions such as genomics, transcriptomics, or proteomics. While these have provided deep insights into breast cancer biology, they often fail to offer a complete understanding of the disease's complex molecular landscape. AREAS COVERED In this review, the authors explore the recent advancements in multi-omic research in the realm of breast cancer and use clinical data to show how multi-omic integration can offer a more holistic understanding of the molecular alterations and their functional consequences underlying breast cancer. EXPERT OPINION The overall developments in multi-omic research and AI are expected to complement precision diagnostics through potentially refining prognostic models, and treatment selection. Overcoming challenges such as cost, data complexity, and lack of standardization is crucial for unlocking the full potential of multi-omics and AI in breast cancer patient care to enable the advancement of personalized treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Emna El Gazzah
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Scott Parker
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
2
|
Yamazaki S, Matsuda Y. Antibody Modification via Lipoic Acid Ligase A-Mediated Site-Specific Labeling. Chem Biodivers 2025; 22:e202402113. [PMID: 39435640 DOI: 10.1002/cbdv.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Enzymatic modification, particularly utilizing lipoic acid ligase (LplA), has emerged as a transformative approach in biopharmaceuticals, enabling precise and site-specific protein modifications. This review delves into the innovative applications of LplA in antibody modifications, including the creation of antibody-drug conjugates (ADCs) and the advancement of tag-free conjugation techniques. LplA's ability to facilitate the incorporation of bioorthogonal groups and its adaptability to various substrates underscores its versatility. Key developments include the successful generation of dual-labeled antibodies and the application of LplA in modifying antibody fragments. Additionally, the review explores the potential for LplA to enhance the therapeutic efficacy of ADCs through improved drug-to-antibody ratios and site-specific payload attachment. The implications of these advancements are significant, suggesting that LplA-mediated modifications could lead to more effective and targeted antibody-based therapies. This review aims to provide a comprehensive overview of LplA's role in expanding the possibilities of enzymatic conjugation, setting the stage for future research and clinical applications.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
3
|
Li WF, Chiang MF, Weng HC, Yang JJ, Wu HS, Wu SY, Chen YJ, Lu C, Tu JS, Hsu RY, Shia CS, Huang TY, Lai MT. OBI-992, a Novel TROP2-Targeted Antibody-Drug Conjugate, Demonstrates Antitumor Activity in Multiple Cancer Models. Mol Cancer Ther 2025; 24:163-175. [PMID: 39786401 PMCID: PMC11791482 DOI: 10.1158/1535-7163.mct-24-0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Trophoblast cell surface antigen 2 (TROP2) is highly expressed in multiple cancers relative to normal tissues, supporting its role as a target for cancer therapy. OBI-992 is an antibody-drug conjugate (ADC) derived from a novel TROP2-targeted antibody linked to the topoisomerase 1 (TOP1) inhibitor exatecan via an enzyme-cleavable hydrophilic linker, with a drug-antibody ratio of 4. This study evaluated and compared the antitumor activity of OBI-992 with that of benchmark TROP2-targeted ADCs datopotamab deruxtecan (Dato-DXd) and sacituzumab govitecan (SG) in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. OBI-992 treatment exhibited statistically significant antitumor activity versus controls at doses of 3 and 10 mg/kg in various CDX and PDX models, demonstrating comparable or better antitumor activity with benchmark ADCs. In a large-tumor model, longer survival times were observed in OBI-992-treated mice compared with Dato-DXd-treated mice. OBI-992 treatment induced marked bystander killing of TROP2-negative cells in the presence of nearby TROP2-positive cells in both in vitro and in vivo studies. In lung adenocarcinoma CDX models with overexpression of either P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) to mimic ATP-binding cassette transporter-mediated multidrug resistance, OBI-992 treatment maintained antitumor activity when Dato-DXd treatment became less effective. The combination of OBI-992 at suboptimal doses with either poly (ADP-ribose) polymerase (PARP) inhibitors or an immune check point inhibitor produced synergistic antitumor effects in mouse models. Taken together, these translational results support further development of OBI-992 as a cancer therapy.
Collapse
|
4
|
Liu B, Yao L. Camptothecin: a key building block in the design of anti-tumor agents. Future Med Chem 2025; 17:381-384. [PMID: 39862114 PMCID: PMC11834417 DOI: 10.1080/17568919.2025.2458455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Affiliation(s)
- Bowen Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System, Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System, Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
5
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Boos A, Most J, Cahuzac H, Moreira da Silva L, Daubeuf F, Erb S, Cianférani S, Hernandez-Alba O, Semenchenko C, Dovgan I, Kolodych S, Detappe A, Dantzer F, Wagner A, Zeniou M, Chaubet G. Antibody-Vincristine Conjugates as Potent Anticancer Therapeutic Agents. J Med Chem 2025; 68:695-705. [PMID: 39680648 DOI: 10.1021/acs.jmedchem.4c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Antibody-drug conjugates (ADCs) are a well-established class of therapeutics primarily used in oncology to selectively deliver highly cytotoxic agents into cancer cells. While ADCs should theoretically spare healthy tissues and diminish side effects in patients, off-target toxicity is still observed, all the more serious, as the drugs are extremely potent. In the quest toward safer payloads, we used the conventional chemotherapeutic drug vincristine to develop antibody-vincristine conjugates. Vincristine was N-alkylated with a cleavable linker and the resulting linker-payload conjugated to free cysteines of antibodies. We show that trastuzumab-vincristine conjugates display subnanomolar potency in vitro on HER2-positive cells, 2 orders of magnitude lower than free vincristine and comparable with marketed ADC. In vivo, trastuzumab-vincristine conjugates led to remarkable efficacy when compared to two standards of care, with complete tumor regression just 9 days after single administration. This highlights the untapped potential of the chemotherapeutic arsenal toward the development of novel ADC.
Collapse
Affiliation(s)
- Agathe Boos
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Julien Most
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Héloïse Cahuzac
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Louis Moreira da Silva
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- PCBIS (CNRS - UAR 3286), ESBS - Pôle API, 300, boulevard Sébastien Brant, CS 10413 67412 Illkirch-Graffenstaden Cedex, France
| | - Stéphane Erb
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | - Oscar Hernandez-Alba
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | | | - Igor Dovgan
- Carbogen Amcis AG, Hauptstrasse 171, 4416 Bubendorf, Switzerland
| | - Sergii Kolodych
- Syndivia SAS, Syndivia, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
- Équipe labellisée Ligue contre le Cancer, Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Alain Wagner
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Maria Zeniou
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Guilhem Chaubet
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
7
|
Zhang H, Xu M. Twenty-four-month Progression-free Survival in HER2-amplified Advanced Gastric Cancer with Brain Metastases after Trastuzumab Deruxtecan Treatment: A Case Report and Literature Review. Curr Cancer Drug Targets 2025; 25:96-101. [PMID: 38465434 DOI: 10.2174/0115680096283210240209062301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Trastuzumab deruxtecan (T-DXd) has shown promising outcomes as a second or subsequent-line treatment for human epidermal growth factor-2 (HER2)-positive advanced gastric or gastroesophageal junction cancer. CASE PRESENTATION We reported a 49-year-old male patient with stage IV HER2-amplified gastric cancer. Despite extensive pretreatments, including first-line trastuzumab plus FOLFOX, second-- line trastuzumab plus FOLFOX, followed by traditional Chinese medicine, third-line nivolumab plus trastuzumab, fourth-line pyrotinib plus paclitaxel and five hepatic arterial chemoembolization procedures, and fifth-line pembrolizumab plus nab-paclitaxel and thoracic radiotherapy, the patient experienced disease progression. In April 2021, T-DXd was initiated as the sixth-line therapy in combination with radiotherapy for brain metastases. After one treatment cycle, the patient achieved a partial response. T-DXd was discontinued in August 2022 due to recurrent anemia attributed to cardiac stenosis-related bleeding. CONCLUSION The condition of the patient remained stable until May 2023, indicating a progression- free survival of over 24 months. This case suggests that T-DXd may offer long-term clinical benefits in patients with HER2-amplified advanced gastric cancer with brain metastases.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Min Xu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
8
|
McNamara B, Greenman M, Bellone S, Santin LA, Demirkiran C, Mutlu L, Hartwich TMP, Yang-Hartwich Y, Ratner E, Schwartz PE, Santin AD. Preclinical activity of datopotamab deruxtecan, a novel TROP2 directed antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (TROP2) in ovarian carcinoma. Gynecol Oncol 2024; 189:16-23. [PMID: 38981151 DOI: 10.1016/j.ygyno.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical activity of datopotamab deruxtecan (Dato-Dxd), a novel TROP2 targeting antibody drug conjugate (ADC) in ovarian cancer cell lines and xenografts with variable TROP2 expression. METHODS In vitro cell viability with Dato-DXd was assessed using flow-cytometry based assays against a panel of EOC primary cell lines with variable TROP2 expression. Fluorescent anti-phospho-histone H2A.X antibody was used to detect dsDNA breaks by flow-cytometry. The in vivo antitumor activity of Dato-DXd was tested in TROP2 overexpressing xenografts. RESULTS TROP2 overexpressing (3+) and moderate (2+) expressing EOC cell lines demonstrated higher sensitivity to Dato-DXd when compared to TROP2 negative tumors. Dato-DXd exposed TROP2+ EOC demonstrated increased dsDNA breaks and Annexin-V positivity (a marker of apoptosis) when compared to tumor cells exposed to the non-binding conjugate (p = 0.001 and p = 0.016, respectively). Dato-DXd induced significant antibody-dependent cellular cytotoxicity (ADCC) in the presence of peripheral-blood-lymphocytes. While negligible activity was detected against EOC cell lines with low TROP2 expression, Dato-DXd demonstrated significant bystander killing against tumor cells with low/negligible TROP2 when such cells were admixed with TROP2 3+ tumor cells in vitro. Dato-DXd showed tumor growth suppression against EOC cell line derived xenograft models that overexpress TROP2 at 3+ levels, prolonging survival when compared to controls, with minimal toxicity. CONCLUSION Dato-DXd shows promising preclinical activity against TROP2 overexpressing ovarian cancers. Future clinical trials in ovarian cancer patients are warranted.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Michelle Greenman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Luca A Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, CT 06520, USA.
| |
Collapse
|
9
|
Lim SY, Kim L, Kim H, Park JA, Yun J, Lim KS. Synergistic Chemo-Immunotherapy: Recombinant Fusion Protein-Based Surface Modification of NK Cell for Targeted Cancer Treatment. Pharmaceutics 2024; 16:1189. [PMID: 39339225 PMCID: PMC11435017 DOI: 10.3390/pharmaceutics16091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
While traditional combination anticancer treatments have shown promising results, there remains significant interest in developing innovative methods to enhance and integrate chemotherapy and immunotherapy. This study introduces a recombinant fusion protein-based cell surface modification system that synergistically combines chemotherapy and immunotherapy into a single-targeted chemo-immunotherapy approach. A cell surface-modified protein composed of an antibody-specific binding domain and a cell-penetrating domain rapidly converts immune cells into chemo-immuno therapeutics by binding to antibodies on the surface of immune cells. Utilizing a non-invasive, non-toxic approach free of chemical modifications and binding, our system homogeneously transforms immune cells by transiently introducing targeted cytotoxic drugs into them. The surface-engineered immune cells loaded with antibody-drug conjugates (ADCs) significantly inhibit the growth of target tumors and enhance the targeted elimination of cancer cells. Therefore, NK cells modified by the cell surface-modified protein to incorporate ADCs could be expected to achieve the combined effects of targeted cancer cell recognition, chemotherapy, and immunotherapy, thereby enhancing their therapeutic efficacy against cancer. This strategy allows for the efficient and rapid preparation of advanced chemo-immuno therapeutics to treat various types of cancer and provides significant potential to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Su Yeon Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Luna Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jina Yun
- Division of Hemato-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Khorani K, Burkart S, Weusthof C, Han R, Liang S, Stögbauer F, Hess J. Context-Dependent Regulation of Peripheral Nerve Abundance by the PI3K Pathway in the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma. Cells 2024; 13:1033. [PMID: 38920662 PMCID: PMC11202044 DOI: 10.3390/cells13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key regulators of cancer development. However, the mode of their interaction with tumor cells or other components of the tumor microenvironment (TME) remains elusive. We established an SC-related 43-gene set as a surrogate for peripheral nerves in the TME. Head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA) were classified into low, intermediate and high SC score groups based on the expression of this gene set. Perineural invasion (PNI) and TGF-β signaling were hallmarks of SChigh tumors, whereas SClow tumors were enriched for HPV16-positive OPSCC and higher PI3K-MTOR activity. The latter activity was partially explained by a higher frequency of PTEN mutation and PIK3CA copy number gain. The inverse association between PI3K-MTOR activity and peripheral nerve abundance was context-dependent and influenced by the TP53 mutation status. An in silico drug screening approach highlighted the potential vulnerabilities of HNSCC with variable SC scores and predicted a higher sensitivity of SClow tumors to DNA topoisomerase inhibitors. In conclusion, we have established a tool for assessing peripheral nerve abundance in the TME and provided new clinical and biological insights into their regulation. This knowledge may pave the way for new therapeutic strategies and impart proof of concept in appropriate preclinical models.
Collapse
Affiliation(s)
- Karam Khorani
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Sebastian Burkart
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Christopher Weusthof
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Rui Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Siyuan Liang
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany and Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80337 Munich, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| |
Collapse
|
12
|
Inoue Y, Lee H, Fu T, Luna A. drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network. ARXIV 2024:arXiv:2405.08979v1. [PMID: 38800657 PMCID: PMC11118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Drug development is a lengthy process with a high failure rate. Increasingly, machine learning is utilized to facilitate the drug development processes. These models aim to enhance our understanding of drug characteristics, including their activity in biological contexts. However, a major challenge in drug response (DR) prediction is model interpretability as it aids in the validation of findings. This is important in biomedicine, where models need to be understandable in comparison with established knowledge of drug interactions with proteins. drGAT, a graph deep learning model, leverages a heterogeneous graph composed of relationships between proteins, cell lines, and drugs. drGAT is designed with two objectives: DR prediction as a binary sensitivity prediction and elucidation of drug mechanism from attention coefficients. drGAT has demonstrated superior performance over existing models, achieving 78% accuracy (and precision), and 76% F1 score for 269 DNA-damaging compounds of the NCI60 drug response dataset. To assess the model's interpretability, we conducted a review of drug-gene co-occurrences in Pubmed abstracts in comparison to the top 5 genes with the highest attention coefficients for each drug. We also examined whether known relationships were retained in the model by inspecting the neighborhoods of topoisomerase-related drugs. For example, our model retained TOP1 as a highly weighted predictive feature for irinotecan and topotecan, in addition to other genes that could potentially be regulators of the drugs. Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
Collapse
Affiliation(s)
- Yoshitaka Inoue
- Department of Computer Science and Engineering, University of Minnesota
- Computational Biology Branch, National Library of Medicine
| | - Hunmin Lee
- Department of Computer Science and Engineering, University of Minnesota
| | - Tianfan Fu
- Computer Science Department, Rensselaer Polytechnic Institute
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine
- Developmental Therapeutics Branch, National Cancer Institute
| |
Collapse
|
13
|
Kannaujiya VK, Qiao Y, Sheikh RH, Xue J, Dargaville TR, Liang K, Wich PR. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Biomacromolecules 2024; 25:1775-1789. [PMID: 38377594 DOI: 10.1021/acs.biomac.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yijie Qiao
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Rakib H Sheikh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Jueyi Xue
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
14
|
Jäger S, Könning D, Rasche N, Hart F, Sensbach J, Krug C, Raab-Westphal S, Richter K, Unverzagt C, Hecht S, Anderl J, Schröter C. Generation and Characterization of Iduronidase-Cleavable ADCs. Bioconjug Chem 2023; 34:2221-2233. [PMID: 38054705 DOI: 10.1021/acs.bioconjchem.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A crucial design feature for the therapeutic success of antibody-drug conjugates (ADCs) is the linker that connects the antibody with the drug. Linkers must be stable in circulation and efficiently release the drug inside the target cell, thereby having a fundamental impact on ADC pharmacokinetics and efficacy. The variety of enzymatically cleavable linkers applied in ADCs is limited, and some are believed to be associated with unwanted side effects due to the expression of cleavage-mediating enzymes in nonmalignant cells. Based on a bioinformatic screen of lysosomal enzymes, we identified α-l-iduronidase (IduA) as an interesting candidate for ADC linker cleavage because of its low expression in normal tissues and its overexpression in several tumor types. In the present study, we report a novel IduA-cleavable ADC linker using exatecan and duocarmycin as payloads. We showed the functionality of our linker system in cleavage assays using recombinant IduA or cell lysates and compared it to established ADC linkers. Subsequently, we coupled iduronide-exatecan via interchain cysteines or iduronide-duocarmycin via microbial transglutaminase (mTG) to an anti-CEACAM5 (aCEA5) antibody. The generated iduronide-exatecan ADC showed high serum stability and similar target-dependent tumor cell killing in the subnanomolar range but reduced toxicity on nonmalignant cells compared to an analogous cathepsin B-activatable valine-citrulline-exatecan ADC. Finally, in vivo antitumor activity could be demonstrated for an IduA-cleavable duocarmycin ADC. The presented results emphasize the potential of iduronide linkers for ADC development and represent a tool for further balancing out tumor selectivity and safety.
Collapse
Affiliation(s)
| | - Doreen Könning
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Felix Hart
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Carina Krug
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Konstantin Richter
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Stefan Hecht
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | |
Collapse
|
15
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
16
|
Lin P, Lourenco C, Cruickshank J, Palomero L, van Leeuwen JE, Tong AHY, Chan K, El Ghamrasni S, Pujana MA, Cescon DW, Moffat J, Penn LZ. Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality. Cancer Res 2023; 83:4015-4029. [PMID: 37987734 PMCID: PMC10722143 DOI: 10.1158/0008-5472.can-22-2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/31/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023]
Abstract
UNLABELLED MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.
Collapse
Affiliation(s)
- Peter Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Jenna E. van Leeuwen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
17
|
Schöffski P, Wang CC, Schöffski MP, Wozniak A. Current Role of Topoisomerase I Inhibitors for the Treatment of Mesenchymal Malignancies and Their Potential Future Use as Payload of Sarcoma-Specific Antibody-Drug Conjugates. Oncol Res Treat 2023; 47:18-41. [PMID: 38016427 PMCID: PMC10860894 DOI: 10.1159/000535491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Topoisomerase I is an enzyme that plays a crucial part in DNA replication and transcription by the relaxation of supercoiled double-stranded DNA. Topoisomerase I inhibitors bind to the topoisomerase I cleavage complex, thereby stabilizing it and preventing the religation of the DNA strands, leading to DNA damage, cell cycle arrest, and apoptosis. Various topoisomerase I inhibitors have been evaluated in solid tumors, and irinotecan and topotecan have been approved for the treatment of epithelial malignancies. None of them have been approved for sarcoma, a diverse group of rare solid tumors with an unmet need for effective treatments. SUMMARY Topoisomerase I inhibitors have been evaluated in preclinical studies as single agents or in combination in solid tumors, some of which have included sarcomas where activity was observed. Clinical trials evaluating topoisomerase I inhibitors for the treatment of sarcoma have shown limited efficacy as monotherapy. In combination with other cytotoxic agents, topoisomerase I inhibitors have become part of clinical routine in selected sarcoma subtypes. Regimens such as irinotecan/vincristine/temozolomide are used in relapsed rhabdomyosarcoma, irinotecan/temozolomide and vincristine/topotecan/cyclophosphamide are commonly given in refractory Ewing sarcoma, and topotecan/carboplatin showed some activity in advanced soft tissue sarcoma. This review provides an overview of key studies with topoisomerase I inhibitors for the treatment of sarcoma. Topoisomerase I inhibitors are currently also being assessed as "payloads" for antibody-drug conjugates (ADCs), allowing for the targeting of specific antigen-expressing tumor cells and the delivery of the inhibitor directly to the tumor cells with the potential of enhancing therapeutic efficacy while minimizing systemic toxicity. Here, we also provide a brief overview on topoisomerase I-ADCs. KEY MESSAGE Topoisomerase I inhibitors are an important component of some systemic therapies for selected sarcomas and have potent cytotoxic properties and pharmacological characteristics that make them relevant candidates as payloads for the development of sarcoma-specific ADCs. ADCs are antibody-based targeted agents allowing for efficient and specific delivery of a given drug to the tumor cell. Topoisomerase I-ADCs are a novel targeted delivery approach which may have the potential to improve the therapeutic index of topoisomerase I inhibitors in the treatment of sarcoma and warrants investigation in a broad variety of mesenchymal malignancies.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Chao-Chi Wang
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| | | | - Agnieszka Wozniak
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
19
|
Dent RA, Cescon DW, Bachelot T, Jung KH, Shao ZM, Saji S, Traina TA, Vukovic P, Mapiye D, Maxwell MJ, Schmid P, Cortés J. TROPION-Breast02: Datopotamab deruxtecan for locally recurrent inoperable or metastatic triple-negative breast cancer. Future Oncol 2023; 19:2349-2359. [PMID: 37526149 DOI: 10.2217/fon-2023-0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
Despite recent treatment advances, the prognosis for patients with locally recurrent inoperable or metastatic triple-negative breast cancer (TNBC) remains poor. The antibody-drug conjugate datopotamab deruxtecan (Dato-DXd) is composed of a humanized anti-TROP2 IgG1 monoclonal antibody linked to a topoisomerase I inhibitor payload via a stable, cleavable linker. The phase III TROPION-Breast02 trial in patients previously untreated for locally recurrent inoperable or metastatic TNBC, who are not candidates for PD-1/PD-L1 inhibitors is evaluating efficacy and safety of Dato-DXd versus investigator's choice of chemotherapy (ICC). Approximately 600 patients will be randomized 1:1 to Dato-DXd 6 mg/kg iv. every 3 weeks or ICC (paclitaxel, nab-paclitaxel, carboplatin, capecitabine or eribulin mesylate). Dual primary end points are progression-free survival by blinded independent central review and overall survival.
Collapse
Affiliation(s)
| | - David W Cescon
- Princess Margaret Cancer Centre/UHN, Toronto, ON, Canada
| | | | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | - Javier Cortés
- International Breast Cancer Center, Pangaea Oncology IBCC, Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical & Health Sciences, Department of Medicine, Madrid, Spain
| |
Collapse
|
20
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
21
|
Phytochemical Characterization of Pterocephalus frutescens with In-Silico Evaluation as Chemotherapeutic Medicine and Oral Pharmacokinetics Prediction Study. Sci Pharm 2023. [DOI: 10.3390/scipharm91010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Virtual screening of the potential lead chemotherapeutic phytochemicals from medicinal plants has useful application in the field of in-silico modelling and computer-based drug design by orienting and scoring ligands in the active binding site of a target protein. The phytochemical investigation of the Pterocephalus frutescens extract in n-butanol resulted in the isolation and structure elucidation of three iridoids and four flavonoids which were identified as Geniposide (1), Geniposidic acid (2), Nepetanudoside C (3), Isovitexin (4), Luteolin-7-O-glucoside (5) Isoorientin (6) and Orientin (7), respectively. Molecular docking studies were used to compare the binding energies of the isolated phytochemicals at four biological cancer-relevant targets; namely, aromatase, carbonic anhydrase IX, fatty acid synthase, and topoisomerase II-DNA complex. The docking study concluded that the isolated compounds have promising cytotoxic activities, in particular, Luteolin-7-O-glucoside (5) and Orientin (7) which exhibited high binding affinities among the isolated compounds at the active sites of the target enzymes; Aromatase (−8.73 Kcal/mol), and Carbonic anhydrase IX (−8.92 Kcal/mol), respectively, surpassing the corresponding binding scores of the co-crystallized ligands and the reference drugs at these target enzymes. Additionally, among the isolated compounds, Luteolin-7-O-glucoside (5) showed the most outstanding binding affinities at the active sites of the target enzymes; Fatty acid synthase, and Topisomerase II-DNA complex with binding scores of −6.82, and −7.99 Kcal/mol, respectively. Finally, the SwissADME online web tool predicted that most of these compounds possessed acceptable oral bioavailability and drug likeness characteristics.
Collapse
|
22
|
Bocian W, Naumczuk B, Urbanowicz M, Sitkowski J, Bednarek E, Wiktorska K, Pogorzelska A, Wielgus E, Kozerski L. Insight on the Interaction between the Camptothecin Derivative and DNA Oligomer Mimicking the Target of Topo I Inhibitors. Molecules 2022; 27:molecules27206946. [PMID: 36296539 PMCID: PMC9612166 DOI: 10.3390/molecules27206946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an ‘interfacial inhibitor’, thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the ‘interfacial inhibitors’ are primarily kinetic inhibitors that form molecular complexes with an “on–off” rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the “off rate”. To test this hypothesis, we designed the compound using a C-9-(N-(2′-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the “off rate” of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM−1, which was compared with a Ka of 3.78 mM−1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the “on–off” timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.
Collapse
Affiliation(s)
| | - Beata Naumczuk
- National Medicines Institute, 00-725 Warsaw, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-8514371 (ext. 318)
| | | | | | | | | | | | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, 90-363 Lodz, Poland
| | | |
Collapse
|