1
|
Zhuo Y, Wang F, Lv Q, Fang C. Dissolving microneedles: Drug delivery and disease treatment. Colloids Surf B Biointerfaces 2025; 250:114571. [PMID: 39983455 DOI: 10.1016/j.colsurfb.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Traditional transdermal drug delivery methods are often plagued by technical inefficiencies, limited absorption, and the potential for adverse reactions. In contrast, dissolving microneedles (DMNs) offer a novel approach to transdermal drug delivery by effectively merging the benefits of subcutaneous injection with those of conventional transdermal methods. These microneedles dissolve completely within the body, releasing the encapsulated antigen without leaving any sharp remnants. Furthermore, DMNs overcome the limitations of traditional transdermal patches, which are restricted to delivering only small molecule drugs. By facilitating the efficient transdermal absorption of large molecules, DMNs enable precise and painless disease treatment. With advantages such as effective delivery, safety, controllable administration, DMNs hold significant promise in the fields of disease treatment and drug delivery. This article explores the substrate materials, preparation techniques, characterization methods, and current applications of DMNs. We also discuss the current challenges and obstacles faced by DMNs. Finally, we outline potential future research directions for DMNs, aiming to provide a theoretical reference for researchers involved in their preparation and application.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China
| | - Fangyue Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
2
|
Bianchi E, Ruggeri M, Vigani B, Aguzzi C, Rossi S, Sandri G. Synthesis and use of thermoplastic polymers for tissue engineering purposes. Int J Pharm X 2025; 9:100313. [PMID: 39807177 PMCID: PMC11729033 DOI: 10.1016/j.ijpx.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility. We also discuss how these materials can be applied in tissue engineering, mimicking tissues' structure and function, and stimulate mesenchymal stem cells differentiation and mechanotransduction.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Jian X, Deng Y, Xiao S, Qi F, Deng C. Microneedles in diabetic wound care: multifunctional solutions for enhanced healing. BURNS & TRAUMA 2025; 13:tkae076. [PMID: 39958434 PMCID: PMC11827613 DOI: 10.1093/burnst/tkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 11/09/2024] [Indexed: 02/18/2025]
Abstract
Diabetic wounds present a significant challenge in clinical treatment and are characterized by chronic inflammation, oxidative stress, impaired angiogenesis, peripheral neuropathy, and a heightened risk of infection during the healing process. By creating small channels in the surface of the skin, microneedle technology offers a minimally invasive and efficient approach for drug delivery and treatment. This article begins by outlining the biological foundation of normal skin wound healing and the unique pathophysiological mechanisms of diabetic wounds. It then delves into the various types, materials, and preparation processes of microneedles. The focus is on the application of multifunctional microneedles in diabetic wound treatment, highlighting their antibacterial, anti-inflammatory, immunomodulatory, antioxidant, angiogenic and neural repair properties. These multifunctional microneedles demonstrate synergistic therapeutic effects by directly influencing the wound microenvironment, ultimately accelerating the healing of diabetic wounds. The advancement of microneedle technology not only holds promise for enhancing the treatment outcomes of diabetic wounds but also offers new strategies for addressing other chronic wounds.
Collapse
Affiliation(s)
- Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Yaping Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, P.R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, No. 6 Xuefu West Road, Xinpu New District, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
4
|
Park J, Zhang J, Kim B. Development of optical microneedle-lens array for photodynamic therapy. Biomed Microdevices 2025; 27:6. [PMID: 39873932 PMCID: PMC11775042 DOI: 10.1007/s10544-025-00735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use. One of the biggest challenges is the limited penetration of light owing to scattering, reflection, and absorption of light inside the skin layers. In addition, accidental light exposure of the target area causes additional cellular damage, which causes unexpected complications. To solve these issues, we introduced an optical microneedle-lens array (OMLA) to improve the efficiency and safety of PDT treatment. We designed and fabricated a novel optical microneedle-lens array with controlled dimensions to optimize light transmission. In addition, PS was coated uniformly over the tips of the OMLA using the dip coating method. Finally, we confirmed that the PS coated on the OMLA was released into the target area and subsequently generated radical oxygen by light irradiation. We expect that our proposed OMLA for PDT treatment can realize a new light-transmission platform optimized for PDT with targeting various types of skin cancers.
Collapse
Affiliation(s)
- Jongho Park
- Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan
| | - Jingzong Zhang
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Bunkyo City, 113-8656, Tokyo, Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.
| |
Collapse
|
5
|
Wang Y, Guan P, Tan R, Shi Z, Li Q, Lu B, Hu E, Ding W, Wang W, Cheng B, Lan G, Lu F. Fiber-Reinforced Silk Microneedle Patches for Improved Tissue Adhesion in Treating Diabetic Wound Infections. ADVANCED FIBER MATERIALS 2024; 6:1596-1615. [DOI: 10.1007/s42765-024-00439-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 01/12/2025]
|
6
|
Hamed R, AbuKwiak AD, Aburayya R, Alkilani AZ, Hamadneh L, Naser M, Al-Adhami Y, Alhusban AA. Microneedles mediated-dermal delivery of Vitamin C: Formulation, characterization, cytotoxicity, and enhancement of stability. Heliyon 2024; 10:e37381. [PMID: 39290271 PMCID: PMC11407233 DOI: 10.1016/j.heliyon.2024.e37381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin C (VIT C) is an antioxidant that prevents skin aging. Although dermal delivery is one of the most effective routes to transport VIT C to the skin, the impact of this route can be limited by the barrier function of the stratum corneum (SC). Additionally, VIT C rapidly oxidized and degraded under light and temperature. Therefore, this study provides an approach to utilizing microneedles (MNs) to improve the dermal delivery of VIT C and enhance its stability by incorporating a stabilizing system of ethylenediaminetetraacetic acid (EDTA) and sodium metabisulfite (Meta) within the MNs. Vitamin C microneedles (VIT C MNs) were fabricated using different biodegradable polymers and various concentrations of EDTA/Meta. VIT C MNs were evaluated for morphology, VIT C content, mechanical properties, dissolution rate, needles' insertion, physicochemical properties, ex vivo permeation, viscosity of VIT C polymeric solutions, cytotoxicity, and stability. The results showed that VIT C MNs were uniform and mechanically strong. The recovery of VIT C in MNs was 88.3-90.0 %. The dissolution rate of MNs was <30 min. The flux of VIT C varied based on the composition of MNs. VIT C MNs demonstrated safety against human dermal fibroblasts. VIT C MNs with EDTA/Meta (0.1/0.3 %) were stable under different storage conditions for two months. In conclusion, VIT C MNs were successfully developed using biodegradable polymers, and the stabilizing system (EDTA/META) provided a stable dermal delivery system for VIT C to protect skin from aging.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Amani D AbuKwiak
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Rafa Aburayya
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt, 19117, Jordan
| | - Mais Naser
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Yasmeen Al-Adhami
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| |
Collapse
|
7
|
Zhou X, Liu H, Yu Z, Yu H, Meng D, Zhu L, Li H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci 2024; 670:1-11. [PMID: 38749378 DOI: 10.1016/j.jcis.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
8
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Chaiwarit T, Chanabodeechalermrung B, Jantrawut P, Ruksiriwanich W, Sainakham M. Fabrication and Characterization of Dissolving Microneedles Containing Oryza sativa L. Extract Complex for Enhancement of Transfollicular Delivery. Polymers (Basel) 2024; 16:2377. [PMID: 39204596 PMCID: PMC11359393 DOI: 10.3390/polym16162377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated Oryza sativa L. extract complex and its characteristics, transfollicular penetration, and safety were observed. The microneedles, fabricated from PVP K90: HPMC E50 in a ratio of 25:5 (P25H5) and 20:10 (P20H10), revealed excellent morphological structure, proper mechanical strength, and excellent skin insertion. P25H5 microneedles exhibited faster dissolution than P20H10 microneedles. Microneedles containing Oryza sativa L. extract complex showed excellent morphological structure via scanning electron microscopy but decreased mechanical strength. P25H5-O, which exhibited an effective ability to enter skin, was selected for further investigation. This microneedle formulation had a high percentage of drug-loading content, enhanced skin penetration via the transfollicular route, and was safe for keratinocytes. As a result, the dissolving microneedle containing Oryza sativa L. extract complex can be used to enhance transfollicular delivery through the skin with safety.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mathukorn Sainakham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (B.C.); (P.J.); (W.R.)
- Cluster of Valorization and Bio-Green Transformation for Translational Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Xiao M, Wang Z, An Y, Dai Y, Wang X, Zhu Z. Fabrication and mechanical modelling of dissolvable PVA/PVP composite microneedles with biocompatibility for efficient transdermal delivery of ibuprofen. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1439-1454. [PMID: 38590076 DOI: 10.1080/09205063.2024.2333627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Microneedles offer minimally invasive, user-friendly, and subcutaneously accessible transdermal drug delivery and have been widely investigated as an effective transdermal delivery system. Ibuprofen is a common anti-inflammatory drug to treat chronic inflammation. It is crucial to develop microneedle patches capable of efficiently delivering ibuprofen through the skin for the effective treatment of arthritis patients requiring repeated medication. In this study, the mechanical properties of a new type of polymer microneedle were studied by finite element analysis, and the experimental results showed that the microneedle could effectively deliver drugs through the skin. In addition, a high ibuprofen-loaded microneedle patch was successfully prepared by micromolding and subjected to evaluation of its infrared spectrum morphology and dissolve degree. The morphology of microneedles was characterized by scanning electron microscopy, and the mechanical properties were assessed using a built linear stretching system. In the in-vitro diffusion cell drug release test, the microneedle released 85.2 ± 1.52% (210 ± 3.7 μg) ibuprofen in the modified Franz diffusion within 4 h, exhibiting a higher drug release compared to other drug delivery methods. This study provides a portable, safe and efficient treatment approach for arthritis patients requiring daily repeated medication.
Collapse
Affiliation(s)
- Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanru An
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yingqi Dai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
12
|
Ahmad Z, Zafar N, Mahmood A, Sarfraz RM, Latif R, Gad HA. Fast dissolving microneedle patch for pronounced systemic delivery of an antihyperlipidemic drug. Pharm Dev Technol 2023; 28:896-906. [PMID: 37873604 DOI: 10.1080/10837450.2023.2272863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Fast dissolving microneedles (F-dMN) are quite a novel approach delivering specific drug molecules directly into the bloodstream, bypassing the first-pass effect. The present study reported an F-dMN patch to enhance systemic delivery of simvastatin in a patient-friendly manner. The F-dMN patch was developed using polyvinyl pyrrolidone and polyvinyl alcohol and characterized using light microscopy, SEM, XRD, FTIR, mechanical strength, drug content (%), an ex-vivo penetration study, an ex-vivo drug release study, a skin irritation test, and a pharmacokinetics study. The optimized F-dMN patch exhibited excellent elongation of 35.17%, good tensile strength of 9.68 MPa, an appropriate moisture content of 5.65%, and good penetrability up to 560 µm. Moreover, it showed 93.4% of the drug content within the needles and 81.75% in-vitro release. Histopathological findings and a skin irritation study proved that the F-dMN patch was biocompatible and did not cause any sort of irritation on animal skin. Pharmacokinetic parameters of F-dMN patches were improved (Cmax 6.974 µg/ml, tmax 1 hr and AUC 19. 518 µg.h/ml) as compared to tablet Simva 20 mg solution (Cmax 2.485 µg/ml, tmax 1.4 hr and AUC 11.199 µg.h/ml), thus confirming bioavailability enhancement. Moreover, stability studies confirmed the stability of the developed F-dMN patch, as investigated by axial needle fracture force and drug content.
Collapse
Affiliation(s)
- Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
| | - Nadiah Zafar
- Department of Pharmaceutics, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | | | - Riffat Latif
- Avera Health and Science, Department of Pharmaceutical Sciences, South Dakota State University, USA
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Zhang S, Yang L, Liu J, Li H, Hong S, Hong L. Microneedle systems: cell, exosome, and nucleic acid based strategies. Biomater Sci 2023; 11:7018-7033. [PMID: 37779477 DOI: 10.1039/d3bm01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Cells, exosomes, and nucleic acids play crucial roles in biomedical engineering, holding substantial clinical potential. However, their utility is often hindered by various drawbacks, including cellular immunogenicity, and instability of exosomes and nucleic acids. In recent years, microneedle (MN) technology has revolutionized drug delivery by offering minimal invasiveness and remarkable versatility. MN has emerged as an ideal platform for the extraction, storage, and delivery of these biological components. This review presents a comprehensive overview of the historical progression and recent advances in the field of MN. Specifically, it highlights the current applications of cell-, exosome-, and nucleic acid-based MN systems, while presenting prevailing research challenges. Additionally, the review provides insights into the prospects of MN in this area, aiming to provide new ideas for researchers and facilitate the clinical translation of MN technology.
Collapse
Affiliation(s)
- Shufei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Jianfeng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Hanyue Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
Zhang L, Chen Y, Tan J, Feng S, Xie Y, Li L. Performance Enhancement of PLA-Based Blend Microneedle Arrays through Shish-Kebab Structuring Strategy in Microinjection Molding. Polymers (Basel) 2023; 15:polym15102234. [PMID: 37242809 DOI: 10.3390/polym15102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(lactic acid) (PLA) microneedles have been explored extensively, but the current regular fabrication strategy, such as thermoforming, is inefficient and poorly conformable. In addition, PLA needs to be modified as the application of microneedle arrays made of pure PLA is limited because of their easy tip fracture and poor skin adhesion. For this purpose, in this article, we reported a facile and scalable strategy to fabricate the microneedle arrays of the blend of PLA matrix and poly(p-dioxanone) (PPDO) dispersed phase with complementary mechanical properties through microinjection molding technology. The results showed that the PPDO dispersed phase could be in situ fibrillated under the effect of the strong shear stress field generated in micro-injection molding. These in situ fibrillated PPDO dispersed phases could hence induce the formation of the shish-kebab structures in the PLA matrix. Particularly for PLA/PPDO (90/10) blend, there are the densest and most perfect shish-kebab structures formed. The above microscopic structure evolution could be also advantageous to the enhancement in the mechanical properties of microparts of PLA/PPDO blend (tensile microparts and microneedle arrays), e.g., the elongation at break of the blend is almost double that of pure PLA while still maintaining the high stiffness (Young's modulus of 2.7 GPa) and the high strength (tensile strength of 68.3 MPa) in the tensile test, and relative to pure PLA, there is 100% or more increase in the load and displacement of microneedle in the compression test. This could open up new spaces for expanding the industrial application of the fabricated microneedle arrays.
Collapse
Affiliation(s)
- Lifan Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yinghong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jiayu Tan
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shuo Feng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yeping Xie
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Li Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Ahmed MM, Fatima F, Alnami A, Alsenaidy M, Aodah AH, Aldawsari MF, Almutairy B, Anwer MK, Jafar M. Design and Characterization of Baricitinib Incorporated PLA 3D Printed Pills by Fused Deposition Modeling: An Oral Pill for Treating Alopecia Areata. Polymers (Basel) 2023; 15:polym15081825. [PMID: 37111972 PMCID: PMC10143920 DOI: 10.3390/polym15081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Bjad Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
16
|
Azis SBA, Syafika N, Qonita HA, Mahmud TRA, Abizart A, Permana AD. Application of validated spectrophotometric method to quantify metformin in the development of glucose-responsive microparticles loaded dissolving microneedles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|