1
|
Monsibais AN, Tea O, Ghatbale P, Dunham SJB, Zünd M, Phan J, Lam K, Paulson M, Tran N, Suder DS, Blanc AN, Samillano C, Suh J, Atif H, Vien E, Nguyen R, Vo A, Gonen S, Pride D, Whiteson K. Enhanced suppression of Stenotrophomonas maltophilia by a three-phage cocktail: genomic insights and kinetic profiling. Antimicrob Agents Chemother 2025; 69:e0116224. [PMID: 39840957 PMCID: PMC11881566 DOI: 10.1128/aac.01162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Stenotrophomonas maltophilia is an understudied, gram-negative, aerobic bacterium that is widespread in the environment and increasingly a cause of opportunistic infections. Treating S. maltophilia remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with cystic fibrosis, cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there remains a great need for well-characterized phages, especially against S. maltophilia. In response to an oncology patient with a sepsis infection, we collected 18 phages from Southern California wastewater influent that exhibit different plaque morphology against S. maltophilia host strain B28B. We hypothesized that, when combined into a cocktail, genetically diverse phages would give rise to distinct lytic infection kinetics that would enhance bacterial killing when compared to the individual phages alone. We identified three genetically distinct clusters of phages, and a representative from each group was further investigated and screened for potential therapeutic use. The results demonstrated that the three-phage cocktail significantly suppressed bacterial growth compared with individual phages when observed for 48 h. We also assessed the lytic impacts of our three-phage cocktail against a collection of 46 S. maltophilia strains to determine if a multi-phage cocktail has an expanded host range. Our phages remained strain-specific and infected >50% of tested strains. In six clinically relevant S. maltophilia strains, the multi-phage cocktail has enhanced suppression of bacterial growth. These findings suggest that specialized phage cocktails may be an effective avenue of treatment for recalcitrant S. maltophilia infections resistant to current antibiotics.
Collapse
Affiliation(s)
- Alisha N. Monsibais
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Olivia Tea
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Jennifer Phan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Karen Lam
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - McKenna Paulson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Natalie Tran
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Diana S. Suder
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cyril Samillano
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Joy Suh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Hanna Atif
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Ethan Vien
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Ryan Nguyen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Allene Vo
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - David Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Yakubovskij VI, Morozova VV, Kozlova YN, Tikunov AY, Fedorets VA, Zhirakovskaya EV, Babkin IV, Bardasheva AV, Tikunova NV. Phage vB_KlebPS_265 Active Against Resistant/MDR and Hypermucoid K2 Strains of Klebsiella pneumoniae. Viruses 2025; 17:83. [PMID: 39861872 PMCID: PMC11769527 DOI: 10.3390/v17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by K. pneumoniae. Klebsiella phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with Klebsiella infection. KlebP_265 was specific mainly to K. pneumoniae-type K2 strains including hypermucoid strains. Most of the hypermucoid KlebP_265-susceptible strains were antibiotic-resistant. This siphophage demonstrated good lytic activity and stability. The KlebP_265 genome was 46,962 bp and contained 88 putative genes; functions were predicted for 37 of them. No genes encoding integrases, toxins, or antibiotic resistance were found in the genome. So, KlebP_265 could potentially be a therapeutic phage. Comparative analysis indicated that KlebP_265 with the most relative Klebsiella phage DP01 formed the putative Dipiunovirus genus. Genome analysis revealed a large monophyletic group of phages related to KlebP_265 and DP01. This group is divided into two monophyletic clusters of phages forming new putative subfamilies Skatevirinae and Roufvirinae. Phylogenetic analysis showed extensive gene exchange between phages from the putative subfamilies. Horizontal transfer even involved conservative genes and led to clear genomic mosaicism, indicating multiple recombination events in the ancestral phages during evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina V. Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (I.V.B.)
| |
Collapse
|
3
|
Xi Y, Zhou W, Li X, Lan X, Yang Q, Huang YP. Characterization and genomic analysis of phage vB_SmaP_c9-N, a novel Stenotrophomonas maltophilia podophage with antibiofilm activity. Arch Virol 2024; 169:228. [PMID: 39432141 DOI: 10.1007/s00705-024-06148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024]
Abstract
Stenotrophomonas maltophilia strains are increasingly emerging as multidrug-resistant pathogens. Moreover, S. maltophilia commonly produces biofilms that enhance antibiotic resistance in bacteria. Phages are effective alternative drugs for treating S. maltophilia infections. In this study, the lytic phage vB_SmaP_c9-N (abbreviated as Φc9-N), which is specific for S. maltophilia, was isolated from Nanhu Lake, Wuhan, China. Electron microscopy observation revealed that Φc9-N is a podophage. Φc9-N is stable over a wide pH range, from pH 4 to 10, and its activity did not change after storage at 4 °C for 2 months. The latency period of Φc9-N is 5 min, and its outbreak period is 35 min. Antibacterial tests showed that Φc9-N could effectively inhibit the growth of S. maltophilia c24. Moreover, the biofilm production of S. maltophilia c24 decreased when Φc9-N was administered either to the forming biofilm or to the mature biofilm. These results suggest that Φc9-N has application potential in clinical treatment. The genome of Φc9-N is a dsDNA of 43,170 bp with 55 putative unidirectional genes, 18 of which were assigned putative functions, while other genes encoded hypothetical proteins. Genome sequence comparisons and phylogenetic analysis indicated that Φc9-N represents a new species, and, together with the Stenotrophomonas phages BUCT700, BUCT703, BUCT598, and vB_SmaS_P15, can be included in the newly proposed genus "Maltovirus" in the family Autographiviridae.
Collapse
Affiliation(s)
- Yaosheng Xi
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Zhou
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao Li
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangru Lan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qili Yang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ping Huang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Chen B, Chittò M, Tao S, Wagemans J, Lavigne R, Richards RG, Metsemakers WJ, Moriarty TF. Isolation and Antibiofilm Activity of Bacteriophages against Cutibacterium acnes from Patients with Periprosthetic Joint Infection. Viruses 2024; 16:1592. [PMID: 39459925 PMCID: PMC11512206 DOI: 10.3390/v16101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infections following shoulder surgery, particularly periprosthetic joint infection (PJI), are challenging to treat. Cutibacterium acnes is the causative pathogen in 39% to 76% of these cases. This study explores the efficacy of bacteriophage therapy as an alternative to conventional antibiotics for treating such infections. METHODS Nine phages with lytic activity were isolated from the skin of humans using C. acnes ATCC 6919 as the indicator host. These phages were tested individually or in combination to assess host range and antibiofilm activity against clinical strains of C. acnes associated with PJIs. The phage cocktail was optimized for broad-spectrum activity and tested in vitro against biofilms formed on titanium discs to mimic the prosthetic environment. RESULTS The isolated phages displayed lytic activity against a range of C. acnes clinical isolates. The phage cocktail significantly reduced the bacterial load of C. acnes strains 183, 184, and GG2A, as compared with untreated controls (p < 0.05). Individual phages, particularly CaJIE7 and CaJIE3, also demonstrated significant reductions in bacterial load with respect to specific strains. Moreover, phages notably disrupted the biofilm structure and reduced biofilm biomass, confirming the potential of phage therapy in targeting biofilm-associated infections. CONCLUSIONS Our preclinical findings support the potential of phage therapy as a viable adjunct to traditional antibiotics for treating C. acnes infections in orthopedic device-related infections. The ability of phages to disrupt biofilms may be particularly beneficial for managing infections associated with prosthetic implants.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (B.C.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (B.C.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
5
|
Li S, Xu M, Yang D, Yang M, Wu H, Li X, Yang C, Fang Z, Wu Q, Tan L, Xiao W, Weng Q. Characterization and genomic analysis of a lytic Stenotrophomonas maltophilia short-tailed phage A1432 revealed a new genus of the family Mesyanzhinovviridae. Front Microbiol 2024; 15:1400700. [PMID: 38993489 PMCID: PMC11236537 DOI: 10.3389/fmicb.2024.1400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic pathogen that exhibits resistant to a majority of commonly used antibiotics. Phages have the potential to serve as an alternative treatment for S. maltophilia infections. In this study, a lytic phage, A1432, infecting S. maltophilia YCR3A-1, was isolated and characterized from a karst cave. Transmission electron microscopy revealed that phage A1432 possesses an icosahedral head and a shorter tail. Phage A1432 demonstrated a narrow host range, with an optimal multiplicity of infection of 0.1. The one-step growth curve indicated a latent time of 10 min, a lysis period of 90 min, a burst size of 43.2 plaque-forming units per cell. In vitro bacteriolytic activity test showed that phage A1432 was capable to inhibit the growth of S. maltophilia YCR3A-1 in an MOI-dependent manner after 2 h of co-culture. BLASTn analysis showed that phage A1432 genome shares the highest similarity (81.46%) with Xanthomonas phage Xoo-sp2 in the NCBI database, while the query coverage was only 37%. The phage contains double-stranded DNA with a genome length of 61,660 bp and a GC content of 61.92%. It is predicted to have 79 open reading frames and one tRNA, with no virulence or antibiotic resistance genes. Phylogenetic analysis using terminase large subunit and DNA polymerase indicated that phage A1432 clustered with members of the Bradleyvirinae subfamily but diverged into a distinct branch. Further phylogenetic comparison analysis using Average Nucleotide Identity, proteomic phylogenetic analysis, genomic network analysis confirmed that phage A1432 belongs to a novel genus within the Bradleyvirinae subfamily, Mesyanzhinovviridae family. Additionally, phylogenetic analysis of the so far isolated S. maltophilia phages revealed significant genetic diversity among these phages. The results of this research will contribute valuable information for further studies on their morphological and genetic diversity, will aid in elucidating the evolutionary mechanisms that give rise to them.
Collapse
Affiliation(s)
- Shixia Li
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Man Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Deying Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hejing Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xuelian Li
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Changzhou Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology and Immunology, Yunnan University, Kunming, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- Qiannan Normal University for Nationalities, Duyun, China
| |
Collapse
|
6
|
Selcuk E, Dokuz S, Ozbek T. Evaluating the Stability of Lytic and Lysogenic Bacteriophages in Various Protectants. J Pharm Sci 2024; 113:1488-1497. [PMID: 38280723 DOI: 10.1016/j.xphs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Phage therapy has regained value as a potential alternative and a complementary anti-infective approach to antibiotics in the fight against bacterial pathogens. Due to their host specificity, non-pathogenic nature for humans, and low production cost, phages offer an effective opportunity for utilization in healthcare, agriculture, and food preservation. Well-defined storage conditions are essential for commercialization and dissemination of phage usage. For this purpose, in our study, after the isolation and characterization of two different phages, one lytic and the other lysogenic; storage and shelf-life studies of phages were evaluated in a presence of various protectants (glycerol, sodium azide, DMSO with chloroform) and without any protectant during 8-month period at four different temperatures. The short-time stability of the lytic P. syringae phage and lysogenic MRSA phage, which were determined by STEM analysis to belong to the Straboviridae and Siphoviridae families, respectively were also examined for the different temperatures and the pH levels ranging from 1.0 to 14.0. This study revealed the storage-model of phages that exhibit distinct lifecycles, for the first time and provided a theoretical basis for development and application of phages, has yielded valuable findings contributing to understanding of phage biology.
Collapse
Affiliation(s)
- Emine Selcuk
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
7
|
Ali SF, Teh SH, Yang HH, Tsai YC, Chao HJ, Peng SS, Chen SC, Lin LC, Lin NT. Therapeutic Potential of a Novel Lytic Phage, vB_EclM_ECLFM1, against Carbapenem-Resistant Enterobacter cloacae. Int J Mol Sci 2024; 25:854. [PMID: 38255926 PMCID: PMC10815064 DOI: 10.3390/ijms25020854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The global rise of multidrug-resistant Enterobacter cloacae strains, especially those that are resistant to carbapenems and produce metallo-β-lactamases, poses a critical challenge in clinical settings owing to limited treatment options. While bacteriophages show promise in treating these infections, their use is hindered by scarce resources and insufficient genomic data. In this study, we isolated ECLFM1, a novel E. cloacae phage, from sewage water using a carbapenem-resistant clinical strain as the host. ECLFM1 exhibited rapid adsorption and a 15-min latent period, with a burst size of approximately 75 PFU/infected cell. Its genome, spanning 172,036 bp, was characterized and identified as a member of Karamvirus. In therapeutic applications, owing to a high multiplicity of infection, ECLFM1 showed increased survival in zebrafish infected with E. cloacae. This study highlights ECLFM1's potential as a candidate for controlling clinical E. cloacae infections, which would help address challenges in treating multidrug-resistant strains and contribute to the development of alternative treatments.
Collapse
Affiliation(s)
- Saieeda Fabia Ali
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Yun-Chan Tsai
- Department of Life Sciences, College of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Huei-Jen Chao
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Si-Shiuan Peng
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Shu-Chen Chen
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Nien-Tsung Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| |
Collapse
|
8
|
Hou C, Wang X, Guo J, Qi C, Zhang Y, Chen Y, Feng J, Zhao B, Li F. Isolation, characterization, and genomic analysis of BUCT627: a lytic bacteriophage targeting Stenotrophomonas maltophilia. FEMS Microbiol Lett 2024; 371:fnae076. [PMID: 39349986 DOI: 10.1093/femsle/fnae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Stenotrophomonas infections pose significant therapeutic challenges due to escalating resistance to antibiotics and chemotherapeutic agents. Phages offer a potential solution by virtue of their specific bacterial targeting capabilities. In this study, we isolated a new Stenotrophomonas bacteriophage, named BUCT627, from hospital sewage. Phage BUCT627 exhibited a 30-min latent period and demonstrated a burst size of 46 plaque forming unit (PFU)/cell. Remarkably, this phage displayed robust stability across a wide pH range (pH 3-13) and exhibited resilience under varying thermal conditions. The receptor of phage BUCT627 on Stenotrophomonas maltophilia No. 826 predominantly consist of surface proteins. The complete genome of phage BUCT627 is a 61 860-bp linear double-stranded DNA molecule with a GC content of 56.3%, and contained 99 open reading frames and two tRNAs. Notably, no antibiotic resistance, toxin, virulence-related genes, or lysogen-formation gene clusters was identified in BUCT627. Transmission electron microscopy and phylogeny analysis indicated that this phage was a new member within the Siphoviridae family. The results of this study will enhance our understanding of phage diversity and hold promise for the development of alternative therapeutic strategies against S. maltophilia infections.
Collapse
Affiliation(s)
- Chenrui Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuexue Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Jianguang Guo
- Office of Taian Central Blood Station of Shandong Province, Taian, 271000, China
| | - Chunling Qi
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Yun Chen
- Department of Minimally Invasive Cancer, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Shanxi University, Taiyuan, 030006, China
| | - Bin Zhao
- Pediatric Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Fei Li
- Center for Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Post-doctoral Programme, Shandong Runde Biotechnology Co. Ltd, Taian, 271000, China
| |
Collapse
|
9
|
Morozova VV, Yakubovskij VI, Baykov IK, Kozlova YN, Tikunov AY, Babkin IV, Bardasheva AV, Zhirakovskaya EV, Tikunova NV. StenM_174: A Novel Podophage That Infects a Wide Range of Stenotrophomonas spp. and Suggests a New Subfamily in the Family Autographiviridae. Viruses 2023; 16:18. [PMID: 38275953 PMCID: PMC10820202 DOI: 10.3390/v16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Stenotrophomonas maltophilia was discovered as a soil bacterium associated with the rhizosphere. Later, S. maltophilia was found to be a multidrug-resistant hospital-associated pathogen. Lytic bacteriophages are prospective antimicrobials; therefore, there is a need for the isolation and characterization of new Stenotrophomonas phages. The phage StenM_174 was isolated from litter at a poultry farm using a clinical strain of S. maltophilia as the host. StenM_174 reproduced in a wide range of clinical and environmental strains of Stenotrophomonas, mainly S. maltophilia, and it had a podovirus morphotype. The length of the genomic sequence of StenM_174 was 42,956 bp, and it contained 52 putative genes. All genes were unidirectional, and 31 of them encoded proteins with predicted functions, while the remaining 21 were identified as hypothetical ones. Two tail spike proteins of StenM_174 were predicted using AlphaFold2 structural modeling. A comparative analysis of the genome shows that the Stenotrophomonas phage StenM_174, along with the phages Ponderosa, Pepon, Ptah, and TS-10, can be members of the new putative genus Ponderosavirus in the Autographiviridae family. In addition, the analyzed data suggest a new subfamily within this family.
Collapse
Affiliation(s)
- Vera V. Morozova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Vyacheslav I. Yakubovskij
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ivan K. Baykov
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
- Shared Research Facility “Siberian Circular Photon Source” (SRF “SKIF”) of Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
| | - Yuliya N. Kozlova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Artem Yu. Tikunov
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Igor V. Babkin
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Alevtina V. Bardasheva
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Elena V. Zhirakovskaya
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| | - Nina V. Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (V.I.Y.); (A.Y.T.); (I.V.B.)
| |
Collapse
|
10
|
Yousefi MH, Wagemans J, Shekarforoush SS, Vallino M, Pozhydaieva N, Höfer K, Lavigne R, Hosseinzadeh S. Isolation and molecular characterization of the Salmonella Typhimurium orphan phage Arash. BMC Microbiol 2023; 23:297. [PMID: 37858092 PMCID: PMC10585845 DOI: 10.1186/s12866-023-03056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The current threat of multidrug resistant strains necessitates development of alternatives to antibiotics such as bacteriophages. This study describes the isolation and characterization of a novel Salmonella Typhimurium phage 'Arash' from hospital wastewater in Leuven, Belgium. Arash has a myovirus morphology with a 95 nm capsid and a 140 nm tail. The host range of Arash is restricted to its isolation host. Approximately 86% of the phage particles are adsorbed to a host cell within 10 min. Arash has latent period of 65 min and burst size of 425 PFU/cell. Arash has a dsDNA genome of 180,819 bp with GC content of 53.02% with no similarities to any characterized phages, suggesting Arash as a novel species in the novel 'Arashvirus' genus. Arash carries no apparent lysogeny-, antibiotic resistance- nor virulence-related genes. Proteome analysis revealed 116 proteins as part of the mature phage particles of which 27 could be assigned a function. Therefore, the present findings shed light on the morphological, microbiological and genomic characteristics of Arash and suggest its potential application as therapeutic and/or biocontrol agent.
Collapse
Affiliation(s)
- Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran
| | | | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran
| | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, 10135, Italy
| | - Nadiia Pozhydaieva
- Max Planck Institute for Terrestrial Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946- 84471, Iran.
| |
Collapse
|
11
|
Kunz Coyne AJ, Herbin S, Caniff K, Rybak MJ. Steno-sphere: Navigating the enigmatic world of emerging multidrug-resistant Stenotrophomonas maltophilia. Pharmacotherapy 2023; 43:833-846. [PMID: 37199104 DOI: 10.1002/phar.2828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Kaylee Caniff
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|