1
|
Duan M, Che L, Wu X, Quek SY, Zhang B, Lin H, He N. Incorporation of probiotics with pressure-sensitive pectin-fructooligosaccharide hydrogel for potential intestinal delivery. Carbohydr Polym 2025; 359:123566. [PMID: 40306774 DOI: 10.1016/j.carbpol.2025.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/09/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025]
Abstract
Probiotics and prebiotics serve as vital tools in managing gut microecology and enhancing immune responses. However, the effectiveness of non-encapsulated probiotics often diminishes during processing, storage, and transport to the gastrointestinal tract, especially at elevated temperatures. To address this challenge, a novel loading strategy for Lactobacillus reuteri DPC16 (L. reuteri) is proposed in this work, using pressure-sensitive high-methoxy pectin (HMP)/fructooligosaccharides (FOS) hydrogel. The HMP/FOS hydrogel melted at 600 MPa to form a sol. The resulting sol was mixed with L. reuteri immediately at ambient conditions, which underwent a sol-to-gel transition subsequently to form a composite hydrogel with a continuous porous structure. The resulting HMP/FOS@L. reuteri hydrogel achieved a loading concentration of viable bacteria at 109 CFU/mL. In vitro assessments reveal that the hydrogel demonstrates good biocompatibility and targeted release of probiotics within the intestine. Furthermore, the hydrogel substantially boosted the short-chain fatty acids levels and increased the amounts of acetic and isovaleric acids, respectively. This work underscores the unique advantages of employing a pressure-sensitive HMP/FOS hydrogel for loading and targeted delivery of probiotics and prebiotics to improve intestinal health.
Collapse
Affiliation(s)
- Mengwen Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Liming Che
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350000, PR China
| | - Hao Lin
- Xiamen Treatgut Biotechnology Co. Ltd., Xiamen 361005, PR China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Zou Y, Yang Y, Pei J, Sun P, Wang Y. Ganoderma lucidum Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing. Biomacromolecules 2025; 26:2675-2689. [PMID: 40153544 DOI: 10.1021/acs.biomac.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized Ganoderma lucidum polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.
Collapse
Affiliation(s)
- Yu Zou
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Yuheng Yang
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Jingying Pei
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
3
|
Akdoğan D, Peksel A. Immobilization and characterization of β-galactosidase from Aspergillus oryzae in polyvinyl alcohol hydrogels. Biotechnol Appl Biochem 2024. [PMID: 39491541 DOI: 10.1002/bab.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
One of the main goals of contemporary biotechnology has been the development of novel immobilized enzyme formulations. In the present study, the industrially important β-galactosidase was trapped in a polyvinyl alcohol (PVA) gel to immobilize it. The optimization of immobilization method and characterization of the immobilized enzyme were studied. The results were compared with free enzymes. The results indicate that the optimal temperature range for the enzyme to be at following immobilization is between 40°C and 50°C. At pH 7, the optimal pH, the activity increased, the Vmax value increased from 1.936 to 2.495 U mg‒1, and the Km value decreased from 4.861 to 0.982 mM. Depending on how stable the immobilized enzyme when stored, β-galactosidases immobilized on PVA gels showed 52.87% activity at the end of the seventh week and 58.86% activity at the end of the fifth week. Their initial activity subsided after three reuses. The final result was 66%. Therefore, one may argue that it increases the catalytic effect of the enzyme. As a result, it has been found that immobilized β-galactosidase has more potent enzymatic properties than free β-galactosidase, which may make it more advantageous for industrial processes. Further studies could delve deeper into the mechanistic aspects of the immobilization process in an effort to improve optimization and tailor the immobilized enzyme to specific industrial needs.
Collapse
Affiliation(s)
- Doruk Akdoğan
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
- Department of Pharmacy Services, Health Services Vocational School, Istanbul Nisantasi University, Sariyer, Turkey
| | - Ayşegül Peksel
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Kwak M, Min SC. Monitoring Meat Freshness with Intelligent Colorimetric Labels Containing Red Cabbage Anthocyanins Copigmented with Gelatin and Gallic Acid. Foods 2024; 13:3464. [PMID: 39517248 PMCID: PMC11545453 DOI: 10.3390/foods13213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Polyvinyl alcohol (PVA)-based pH-responsive color indicators were developed using red cabbage anthocyanin (Anth) copigmented with gelatin and gallic acid (GA). The indicator prepared with gelatin and GA (GA/gelatin/Anth/PVA) was highly resistant to light exposure. GA/gelatin/Anth/PVA exhibited distinct color changes in pH 2-11 buffer solutions and stable color indication in acidic and neutral solid systems (pH 2 and 7) at 97% relative humidity. GA/gelatin/Anth/PVA exhibited the highest sensitivity to dimethylamine, followed by ammonia and trimethylamine. The addition of gelatin and GA facilitated hydrogen bonding, which enhanced thermal stability and water solubility without compromising tensile properties. A color change from purple to blue signaled spoilage when total volatile basic nitrogen values for beef and squid reached 21.0 and 37.8 mg/100 g, respectively. The GA/gelatin/Anth/PVA indicator shows potential for indicating the freshness of raw beef.
Collapse
Affiliation(s)
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| |
Collapse
|
5
|
Sheta B, El-Zahed M, Nawareg M, Elkhiary Z, Sadek S, Hyder A. Nanoremediation of tilapia fish culture using iron oxide nanoparticles biosynthesized by Bacillus subtilis and immobilized in a free-floating macroporous cryogel. BMC Vet Res 2024; 20:455. [PMID: 39385161 PMCID: PMC11462889 DOI: 10.1186/s12917-024-04292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND AND AIM Contamination from increased anthropogenic activities poses a threat to human health as well as the ecosystem. To develop a nanotechnological approach to improve aqua fisheries, we synthesized magnetic hematite nanoparticle-based gel and evaluated its efficacy in a cadmium-polluted closed system to decontaminate water and improve tilapia fish health. METHODS Green iron oxide nanoparticles were biosynthesized by the metabolite of bacillus subtilis and incorporated into polyvinyl alcohol to construct a hydrogel by cryogelation. KEY FINDINGS The cryogel had interconnected macropores with diameters widely ranging between 20 and 200 μm and could be free-floating in water. When applied in cadmium-polluted tilapia culture, this nanogel reduced turbidity and ammonia in the aquarium, adsorbed cadmium from the water with a larger quantity on the gel's outer surface than in its center., and reduced cadmium concentration in tilapia's liver, gills, and muscles. Application of this nano-based cryogel reduced the toxic effects of cadmium on tilapia fish. It maintained hepatic and renal cell nuclear integrity as determined by comet assay. This nano-treatment also reversed the cadmium-induced elevations of plasma lipids, glucose, stress marker cortisol, the hepatic enzymes AST and ALT, and the kidney function marker urea, and improved the lymphocytopenia and other hematological functions in tilapia fish intoxicated by cadmium.
Collapse
Affiliation(s)
- Basma Sheta
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohammed El-Zahed
- Botany & microbiology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mona Nawareg
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Zeinab Elkhiary
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Salahuddin Sadek
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
6
|
Wattanavijitkul T, Khamwannah J, Lohwongwatana B, Puncreobutr C, Reddy N, Yamdech R, Cherdchom S, Aramwit P. Development of Biocompatible Coatings with PVA/Gelatin Hydrogel Films on Vancomycin-Loaded Titania Nanotubes for Controllable Drug Release. ACS OMEGA 2024; 9:37052-37062. [PMID: 39246498 PMCID: PMC11375713 DOI: 10.1021/acsomega.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the utilization of poly(vinyl alcohol) (PVA)/gelatin hydrogel films cross-linked with glutaraldehyde as a novel material to coat the surface of vancomycin-loaded titania nanotubes (TNTs), with a focus on enhancing biocompatibility and achieving controlled vancomycin release. Hydrogel films have emerged as promising candidates in tissue engineering and drug-delivery systems due to their versatile properties. The development of these hydrogel films involved varying the proportions of PVA, gelatin, and glutaraldehyde to achieve the desired properties, including the gel fraction, swelling behavior, biocompatibility, and biodegradation. Among the formulations tested, the hydrogel with a PVA-to-gelatin ratio of 25:75 and 0.2% glutaraldehyde was selected to coat vancomycin-loaded TNTs. The coated TNTs demonstrated slower release of vancomycin compared with the uncoated TNTs. In addition, the coated TNTs demonstrated the ability to promote osteogenesis, as evidenced by increased alkaline phosphatase activity and calcium accumulation. The vancomycin-loaded TNTs coated with hydrogel film demonstrated effectiveness against both E. coli and S. aureus. These findings highlight the potential benefits and therapeutic applications of using hydrogel films to coat implant materials, offering efficient drug delivery and controlled release. This study contributes valuable insights into the development of alternative materials for medical applications, thereby advancing the field of biomaterials and drug delivery systems.
Collapse
Affiliation(s)
- Thitima Wattanavijitkul
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirapon Khamwannah
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrat Lohwongwatana
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chedtha Puncreobutr
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thathaguni, Bengaluru, Karnataka 560082, India
| | - Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
7
|
Ortega-Sánchez C, Melgarejo-Ramírez Y, Rodríguez-Rodríguez R, Jiménez-Ávalos JA, Giraldo-Gomez DM, Gutiérrez-Gómez C, Rodriguez-Campos J, Luna-Bárcenas G, Velasquillo C, Martínez-López V, García-Carvajal ZY. Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture. Polymers (Basel) 2024; 16:479. [PMID: 38399857 PMCID: PMC10892533 DOI: 10.3390/polym16040479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 μm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.
Collapse
Affiliation(s)
- Carmina Ortega-Sánchez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Rogelio Rodríguez-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - Jorge Armando Jiménez-Ávalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - David M. Giraldo-Gomez
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Claudia Gutiérrez-Gómez
- División de Cirugía Plástica y Reconstructiva, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Jacobo Rodriguez-Campos
- Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing Tecnológico de Monterrey, Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Querétaro, Mexico;
| | - Cristina Velasquillo
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Zaira Y. García-Carvajal
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
8
|
Riedel F, Bartolomé MP, Enrico LLT, Fink-Straube C, Duong CN, Gherlone F, Huang Y, Valiante V, Del Campo A, Sankaran S. Engineered living materials for the conversion of a low-cost food-grade precursor to a high-value flavonoid. Front Bioeng Biotechnol 2023; 11:1278062. [PMID: 38090710 PMCID: PMC10715425 DOI: 10.3389/fbioe.2023.1278062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
Microbial biofactories allow the upscaled production of high-value compounds in biotechnological processes. This is particularly advantageous for compounds like flavonoids that promote better health through their antioxidant, anti-bacterial, anti-cancer and other beneficial effects but are produced in small quantities in their natural plant-based hosts. Bacteria like E. coli have been genetically modified with enzyme cascades to produce flavonoids like naringenin and pinocembrin from coumaric or cinnamic acid. Despite advancements in yield optimization, the production of these compounds still involves high costs associated with their biosynthesis, purification, storage and transport. An alternative production strategy could involve the direct delivery of the microbial biofactories to the body. In such a strategy, ensuring biocontainment of the engineered microbes in the body and controlling production rates are major challenges. In this study, these two aspects are addressed by developing engineered living materials (ELMs) consisting of probiotic microbial biofactories encapsulated in biocompatible hydrogels. Engineered probiotic E. coli Nissle 1917 able to efficiently convert cinnamic acid into pinocembrin were encapsulated in poly(vinyl alcohol)-based hydrogels. The biofactories are contained in the hydrogels for a month and remain metabolically active during this time. Control over production levels is achieved by the containment inside the material, which regulates bacteria growth, and by the amount of cinnamic acid in the medium.
Collapse
Affiliation(s)
- Florian Riedel
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
| | | | - Lara Luana Teruel Enrico
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Chemistry Department, Saarland University, Saarbrücken, Germany
| | | | | | - Fabio Gherlone
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infections Biology—Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Aránzazu Del Campo
- INM—Leibniz Institute for New Materials, Saarbrücken, Germany
- Chemistry Department, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|