1
|
Babeker H, Njotu FN, Pougoue Ketchemen J, Monzer A, Tikum AF, Doroudi A, Nwangele E, Uppalapati M, Fonge H. 225Ac/ 89Zr-Labeled N4MU01 Radioimmunoconjugates as Theranostics Against Nectin-4-Positive Triple-Negative Breast Cancer. J Nucl Med 2025; 66:592-598. [PMID: 39978811 PMCID: PMC11960605 DOI: 10.2967/jnumed.124.268387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Nectin-4 is an overexpressed biomarker in 60%-70% of triple-negative breast cancer (TNBC) cases and an ideal target for radiotherapy and PET imaging. In this study, theranostic radioimmunoconjugates were developed using a fully human anti-nectin-4 antibody (N4MU01). The imaging properties and therapeutic effectiveness of the radioimmunoconjugates were evaluated using TNBC models. Methods: N4MU01 was radiolabeled with 89Zr and 225Ac for imaging and radiotherapy, respectively, using TNBC xenograft and syngeneic models. Biodistribution and PET imaging of the [89Zr]Zr-deferoxamine (DFO)-N4MU01 radioimmunoconjugate was studied in mice bearing nectin-4-positive xenografts. Dosimetry and toxicity of [225Ac]Ac-Macropa-N4MU01 were studied in naïve BALB/c mice, and the therapeutic efficacy was evaluated with two doses of 13 or two doses of 18.6 kBq, administered 10 d apart in athymic BALB/c nude mice bearing either a human TNBC MDA-MB-468 xenograft or a human nectin-4-transfected 4T1 (4T1.nectin-4) syngeneic allograft. Results: The pharmacokinetic profile of the [89Zr]Zr-DFO-N4MU01 radioimmunoconjugate showed biphasic distribution with a moderate elimination half-life of 63 h. PET imaging and biodistribution of [89Zr]Zr-DFO-N4MU01 in mice bearing the MDA-MB-468 xenograft showed high tumor uptake of 13.2 ± 1.12 percent injected activity per gram at 120 h. [225Ac]Ac-Macropa-N4MU01 was effectively internalized in MDA-MB-468 and was cytotoxic to the cells with a 50% inhibition concentration of 1.2 kBq/mL. Toxicity studies revealed that 15 kBq of [225Ac]Ac-Macropa-N4MU01 was generally well tolerated, as indicated by hematologic, blood chemistry, and histopathologic analysis. Mice bearing MDA-MB-468 and 4T1.nectin-4 xenografts treated with 13 kBq of [225Ac]Ac-Macropa-N4MU01 had 100% (6/6) and 83.3% (5/6) complete tumor remissions, respectively. Conclusion: The specific tumor uptake and remarkable effectiveness against aggressive TNBC tumors are very promising and warrant the clinical development of N4MU01 radioimmunoconjugates.
Collapse
Affiliation(s)
- Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; and
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, Québec City, Quebec, Canada
| | - Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; and
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, Québec City, Quebec, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alireza Doroudi
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; and
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, Québec City, Quebec, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; and
- Faculté de Pharmacie, Université Laval, Ferdinand Andry Pavillon, Québec City, Quebec, Canada
| |
Collapse
|
2
|
Pougoue Ketchemen J, Njotu FN, Babeker H, Ahenkorah S, Tikum AF, Nwangele E, Henning N, Cleeren F, Fonge H. Effectiveness of [ 67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:2070-2084. [PMID: 38376808 DOI: 10.1007/s00259-024-06648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE To evaluate the imaging and therapeutic properties (theranostic) of 67Cu-labeled anti-human epidermal growth factor receptor II (HER2) monoclonal antibody trastuzumab against HER2-positive breast cancer (BC). METHODS We conjugated trastuzumab with p-SCN-Bn-NOTA, 3p-C-NETA-NCS, or p-SCN-Bn-DOTA, and radiolabeled with [67Cu]CuCl2. Immunoconjugate internalization was evaluated in BT-474, JIMT-1 and MCF-7 BC cells. In vitro stability was studied in human serum (HS) and Phosphate Buffered Saline (PBS). Flow cytometry, radioligand binding and immunoreactive fraction assays were carried out. ImmunoSPECT imaging of [67Cu]Cu-NOTA-trastuzumab was done in mice bearing BT-474, JIMT-1 and MCF-7 xenografts. Pharmacokinetic was studied in healthy Balb/c mice while dosimetry was done in both healthy Balb/c and in athymic nude mice bearing JIMT-1 xenograft. The therapeutic effectiveness of [67Cu]Cu-NOTA-trastuzumab was evaluated in mice bearing BT-474 and JIMT-1 xenografts after a single intravenous (i.v.) injection of ~ 16.8 MBq. RESULTS Pure immunoconjugates and radioimmunoconjugates (> 95%) were obtained. Internalization was HER2 density-dependent with highest internalization observed with NOTA-trastuzumab. After 5 days, in vitro stabilities were 97 ± 1.7%, 31 ± 6.2%, and 28 ± 4% in HS, and 79 ± 3.5%, 94 ± 1.2%, and 86 ± 2.3% in PBS for [67Cu]Cu-NOTA-trastuzumab, [67Cu]Cu-3p-C-NETA-trastuzumab and [67Cu]Cu-DOTA-trastuzumab, respectively. [67Cu]Cu-NOTA-trastuzumab was chosen for further evaluation. BT-474 flow cytometry showed low KD, 8.2 ± 0.2 nM for trastuzumab vs 26.5 ± 1.6 nM for NOTA-trastuzumab. There were 2.9 NOTA molecules per trastuzumab molecule. Radioligand binding assay showed a low KD of 2.1 ± 0.4 nM and immunoreactive fraction of 69.3 ± 0.9. Highest uptake of [67Cu]Cu-NOTA-trastuzumab was observed in JIMT-1 (33.9 ± 5.5% IA/g) and BT-474 (33.1 ± 10.6% IA/g) xenograft at 120 h post injection (p.i.). Effectiveness of the radioimmunoconjugate was also expressed as percent tumor growth inhibition (%TGI). [67Cu]Cu-NOTA-trastuzumab was more effective than trastuzumab against BT-474 xenografts (78% vs 54% TGI after 28 days), and JIMT-1 xenografts (90% vs 23% TGI after 19 days). Mean survival of [67Cu]Cu-NOTA-trastuzumab, trastuzumab and saline treated groups were > 90, 77 and 72 days for BT-474 xenografts, while that of JIMT-1 were 78, 24, and 20 days, respectively. CONCLUSION [67Cu]Cu-NOTA-trastuzumab is a promising theranostic agent against HER2-positive BC.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Stephen Ahenkorah
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
- Department of Pathology and Lab. Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5A2, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
3
|
Li Y, Li XM, Yang KD, Tong WH. Advancements in ovarian cancer immunodiagnostics and therapeutics via phage display technology. Front Immunol 2024; 15:1402862. [PMID: 38863706 PMCID: PMC11165035 DOI: 10.3389/fimmu.2024.1402862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.
Collapse
Affiliation(s)
- Yang Li
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Wei-hua Tong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Guo J, Zeng X, Zhu Y, Yang D, Zhao X. Mesothelin-based CAR-T cells exhibit potent antitumor activity against ovarian cancer. J Transl Med 2024; 22:367. [PMID: 38637885 PMCID: PMC11025286 DOI: 10.1186/s12967-024-05174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is characterized by its rapid growth and spread which, accompanied by a low 5-year survival rate, necessitates the development of improved treatments. In ovarian cancer, the selective overexpression of Mucin-16 (MUC16, CA125) in tumor cells highlights its potential as a promising target for developing anti-tumor therapies. However, the potential effectiveness of CAR-T cell therapy that targets MUC16 in ovarian cancer cells is unknown. METHODS The expression of MUC16 in viable OC cells was detected using immunofluorescence and flow cytometry techniques. A MSLN-CAR construct, comprising the MUC16-binding polypeptide region of mesothelin (MSLN), a CD8 hinge spacer and transmembrane domain, 4-1BB, and CD3ζ endo-domains; was synthesized and introduced into T cells using lentiviral particles. The cytotoxicity of the resultant CAR-T cells was evaluated in vitro using luciferase assays. Cytokine release by CAR-T cells was measured using enzyme-linked immunosorbent assays. The anti-tumor efficacy of the CAR-T cells was subsequently assessed in mice through both systemic and local administration protocols. RESULTS MSLN-CAR T cells exhibited potent cytotoxicity towards OVCAR3 cells and their stem-like cells that express high levels of MUC16. Also, MSLN-CAR T cells were inefficient at killing SKOV3 cells that express low levels of MUC16, but were potently cytotoxic to such cells overexpressing MUC16. Moreover, MSLN-CAR T cells delivered via tail vein or peritoneal injection could shrink OVCAR3 xenograft tumors in vivo, with sustained remission observed following peritoneal delivery of MSLN-CAR T cells. CONCLUSIONS Collectively, these results suggested that MSLN-CAR T cells could potently eliminate MUC16- positive ovarian cancer tumor cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for MUC16-positive patients.
Collapse
Affiliation(s)
- Jing Guo
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaozhu Zeng
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Chen X, Sandrine IK, Yang M, Tu J, Yuan X. MUC1 and MUC16: critical for immune modulation in cancer therapeutics. Front Immunol 2024; 15:1356913. [PMID: 38361923 PMCID: PMC10867145 DOI: 10.3389/fimmu.2024.1356913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
The Mucin (MUC) family, a range of highly glycosylated macromolecules, is ubiquitously expressed in mammalian epithelial cells. Such molecules are pivotal in establishing protective mucosal barriers, serving as defenses against pathogenic assaults. Intriguingly, the aberrant expression of specific MUC proteins, notably Mucin 1 (MUC1) and Mucin 16 (MUC16), within tumor cells, is intimately associated with oncogenesis, proliferation, and metastasis. This association involves various mechanisms, including cellular proliferation, viability, apoptosis resistance, chemotherapeutic resilience, metabolic shifts, and immune surveillance evasion. Due to their distinctive biological roles and structural features in oncology, MUC proteins have attracted considerable attention as prospective targets and biomarkers in cancer therapy. The current review offers an exhaustive exploration of the roles of MUC1 and MUC16 in the context of cancer biomarkers, elucidating their critical contributions to the mechanisms of cellular signal transduction, regulation of immune responses, and the modulation of the tumor microenvironment. Additionally, the article evaluates the latest advances in therapeutic strategies targeting these mucins, focusing on innovations in immunotherapies and targeted drugs, aiming to enhance customization and accuracy in cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Tu HF, Wong M, Tseng SH, Ingavat N, Olczak P, Notarte KI, Hung CF, Roden RBS. Virus-like particle vaccine displaying an external, membrane adjacent MUC16 epitope elicits ovarian cancer-reactive antibodies. J Ovarian Res 2024; 17:19. [PMID: 38225646 PMCID: PMC10790439 DOI: 10.1186/s13048-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nattha Ingavat
- Downstream Processing (DSP), Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), Singapore, 138632, Singapore
| | - Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|