1
|
Brugnera M, Vicario-de-la-Torre M, González-Cela-Casamayor MA, González-Fernández FM, Ferraboschi I, Andrés-Guerrero V, Nicoli S, Sissa C, Pescina S, Herrero-Vanrell R, Bravo-Osuna I. Disclosing long-term tolerance, efficacy and penetration properties of hyaluronic acid-coated latanoprost-loaded liposomes as chronic glaucoma therapy. J Control Release 2025; 379:730-742. [PMID: 39832744 DOI: 10.1016/j.jconrel.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Frequent topical administration of hypotensive eye drops in glaucoma patients may lead to the development of dry eye disease (DED) symptoms, because of tear film destabilization and the adverse effects associated with antiglaucoma formulations. To address all this, in the current study preservative-free latanoprost-loaded (0.005 % w/v) synthetic phosphatidylcholine (1,2-dioleoyl-sn-glycero-3-phosphocholine 0.75 % w/v, 1,2-dimyristoyl-sn-glycero-3-phosphocholine 0.25 % w/v) liposomes dispersed in the mucoadhesive polymer hyaluronic acid (0.2 % w/v), containing the osmoprotective ingredients betaine (0.40 % w/v) and leucine (0.90 % w/v) (LAT-HA-LIP), have been prepared and further characterised. Permeation and retention evaluations on a validated ex vivo porcine eye model revealed that the active metabolite latanoprost acid was quantified only starting from LAT-HA-LIP once passing conjunctiva, sclera and choroid compared to the marketed latanoprost (0.005 % w/v) benchmark (MF). The liposomal formulation outperformed MF when applied to the corneal tissue. Additionally, distribution and interactions within corneal and scleral tissues were investigated by means of two-photon microscopy with liposomal formulations containing coumarin-6. Furthermore, acute and chronic tolerance studies on rabbits revealed no signs of discomfort or ocular damage. Schirmer's test, tear osmolarity, tear breakup time (TBUT) and fluorescence staining evaluated through the Oxford grading scale, were assessed as DED diagnostic parameters over a 25-day monitoring period; LAT-HA-LIP consistently maintained levels comparable to physiological solution (0.9 % w/v NaCl) used as control, with a slight increase of TBUT values from day 15 (6.00 ± 0.63 s for control, 7.00 ± 0.78 s for LAT-HA-LIP at day 15, p = 0.0066). A daily topical application of LAT-HA-LIP for 15 consecutive days, effectively lowered IOP in a sustained way (2.51-3.88 mmHg mean IOP reduction over the 5-15-day period). These results highlight the clinical relevance of the proposed technological platform, able to provide IOP reduction during the simulated long-term administration and simultaneous ocular surface protection with potential for the treatment of glaucoma.
Collapse
Affiliation(s)
- Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - Ilaria Ferraboschi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parma, Italy
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| |
Collapse
|
2
|
Farooq U, O'Reilly NJ, Ahmed Z, Gasco P, Raghu Raj Singh T, Behl G, Fitzhenry L, McLoughlin P. Design of liposomal nanocarriers with a potential for combined dexamethasone and bevacizumab delivery to the eye. Int J Pharm 2024; 654:123958. [PMID: 38442797 DOI: 10.1016/j.ijpharm.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Clinicians face numerous challenges when delivering medications to the eyes topically because of physiological barriers, that can inhibit the complete dose from getting to the intended location. Due to their small size, the ability to deliver drugs of different polarities simultaneously, and their biocompatibility, liposomes hold great promise for ocular drug delivery. This study aimed to develop and characterise a dual loaded liposome formulation encapsulating Bevacizumab (BEV) and Dexamethasone (DEX) that possessed the physicochemical attributes suitable for topical ocular delivery. Liposomes were prepared by using thin film hydration followed by extrusion, and the formulations were optimised using a design of experiments approach. Physicochemical characterisation along with cytocompatibility and bioactivity of the formulations were assessed. Liposomes were successfully prepared with a particle size of 139 ± 2 nm, PDI 0.03 ± 0.01 and zeta potential -2 ± 0.7 mV for the optimised formulation. BEV and DEX were successfully encapsulated into the liposomes with an encapsulation efficiency of 97 ± 0.5 % and 26 ± 0.5 %, respectively. A sustained release of BEV was observed from the liposomes and the bioactivity of the formulation was confirmed using a wound healing assay. In summary, a potential topical eye drop drug delivery system, which can co-load DEX and BEV was developed and characterised for its potential to be used in ocular drug delivery.
Collapse
Affiliation(s)
- Umer Farooq
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland
| | - Niall J O'Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paolo Gasco
- Nanovector srl, Via Livorno, 60 Turin, Italy
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gautam Behl
- Eirgen Pharma Limited, Westside Business Park, Old, Kilmeaden Road Co. Waterford X91 YV67, Ireland
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland.
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Cork Road, Waterford City, Co. Waterford X91 K0EK, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
3
|
Toffoletto N, Salema-Oom M, Nicoli S, Pescina S, González-Fernández FM, Pinto CA, Saraiva JA, Alves de Matos AP, Vivero-Lopez M, Huete-Toral F, Carracedo G, Saramago B, Serro AP. Dexamethasone phosphate and penetratin co-eluting contact lenses: a strategy to enhance ocular drug permeability. Int J Pharm 2024; 650:123685. [PMID: 38072146 DOI: 10.1016/j.ijpharm.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Contact lenses (CLs) have been suggested as drug delivery platforms capable of increasing the drug residence time on the cornea and therefore its bioavailability. However, when targeting the posterior segment of the eye, the drug released from CLs still encounters the barrier effect of the ocular tissues, which considerably reduces the efficacy of administration. This work aims at the development of CLs able to simultaneously deliver an anti-inflammatory drug (dexamethasone sodium phosphate) and a cell-penetrating peptide (penetratin), the latter acting as a drug carrier across the tissues. Hydroxyethyl methacrylate (HEMA)-based hydrogels were functionalized with acrylic acid (AAc) and/or aminopropyl methacrylamide (APMA) to serve as CL materials with increased affinity for the drug and peptide. APMA-functionalized hydrogels sustained the dual release for 8 h, which is compatible with the wearing time of daily CLs. Hydrogels demonstrated suitable light transmittance, swelling capacity and in vitro biocompatibility. The anti-inflammatory activity of the drug was not compromised by the presence of the peptide nor by sterilization. The ocular distribution of the drug after 6 h of CL wearing was evaluated in vivo in rabbits and revealed that the amount of drug in the cornea and aqueous humor significantly increased when the drug was co-delivered with penetratin.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Felipe M González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| |
Collapse
|
4
|
Pucek-Kaczmarek A, Celary D, Bazylińska U. Natural-Origin Betaine Surfactants as Promising Components for the Stabilization of Lipid Carriers. Int J Mol Sci 2024; 25:955. [PMID: 38256029 PMCID: PMC10815673 DOI: 10.3390/ijms25020955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In the present work, we demonstrate studies involving the influence of the formulation composition on the physicochemical properties of nanocarriers: solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Novel lipid-origin platforms were prepared using two "green" betaine-based surfactants, cocamidopropyl betaine (ROKAmina K30) and coco betaine (ROKAmina K30B), in combination with three different solid lipids, cetyl palmitate (CRODAMOL CP), trimyristin (Dynasan 114), and tristearin (Dynasan 118). Extensive optimization studies included the selection of the most appropriate lipid and surfactant concentration for effective SLN and NLC stabilization. The control parameters involving the hydrodynamic diameters of the obtained nanocarriers along with the size distribution (polydispersity index) were determined by dynamic light scattering (DLS), while shape and morphology were evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Electrophoretic light scattering (ELS) and turbidimetric method (backscattering profiles) were used to assess colloidal stability. The studied results revealed that both betaine-stabilized SLN and NLC formulations containing CRODAMOL CP as lipid matrix are the most monodisperse and colloidally stable regardless of the other components and their concentrations used, indicating them as the most promising candidates for drug delivery nanosystems with a diverse range of potential uses.
Collapse
Affiliation(s)
- Agata Pucek-Kaczmarek
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | | | - Urszula Bazylińska
- Laboratory of Nanocolloids and Disperse Systems, Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
5
|
Huang C, Zhang Z, Gu J, Li D, Gao S, Zhang R, Shi R, Sun J. Combined Therapy of Experimental Autoimmune Uveitis by a Dual-Drug Nanocomposite Formulation with Berberine and Dexamethasone. Int J Nanomedicine 2023; 18:4347-4363. [PMID: 37545873 PMCID: PMC10402891 DOI: 10.2147/ijn.s417750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose Autoimmune uveitis is a kind of sight-threatening ocular and systemic disorders. Recent treatments on autoimmune uveitis still remain many limitations due to extreme complexity and undetermined pathogenesis. In this study, a novel dual-drug nanocomposite formulation is developed to treat experimental autoimmune uveitis by a combined and sustained therapy method. Methods The dual-drug nanocomposite formulation is constructed by integrating berberine (BBR)-loaded mesoporous silica nanoparticles (MSNs) into dexamethasone (DEX)-loaded thermogel (BBR@MSN-DEX@Gel). The BBR@MSN-DEX@Gel is characterized by transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectrometer and rheometer. The in vitro drug release profile, cytotoxicity and anti-inflammation effectiveness of BBR@MSN-DEX@Gel on lipopolysaccharide-stimulated human conjunctival epithelial cells are investigated. After the in vivo drug release profile and biosafety of the dual-drug nanocomposite formulation are confirmed, its treatment effectiveness is fully assessed based on the induced experimental autoimmune uveitis (EAU) Lewis rat's model. Results The dual-drug nanocomposite formulation has good injectability and thermosensitivity, suitable for administration by an intravitreal injection. The BBR@MSN-DEX@Gel has been found to sustainably release both drugs for up to 4 weeks. The carrier materials have minimal in vitro cytotoxicity and high in vivo biosafety. BBR@MSN-DEX@Gel presents obviously anti-inflammatory effectiveness in vitro. After administration of BBR@MSN-DEX@Gel into Lewis rat's eye with EAU by an intravitreal injection, the nanocomposite formulation significantly suppresses inflammatory reaction of autoimmune uveitis via a dual-drug combined and sustained therapy method, compared with the equivalent dose of single-component formulations. Conclusion BBR@MSN-DEX@Gel serves as a promising dual-drug nanocomposite formulation for future treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Zhutian Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Jifeng Gu
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Rong Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Rong Shi
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, People’s Republic of China
- NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, People’s Republic of China
| |
Collapse
|
6
|
Chang W, Shen J, Liu Z, Chen Q. Application of organic nanocarriers for intraocular drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:259-266. [PMID: 37476937 PMCID: PMC10409895 DOI: 10.3724/zdxbyxb-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
The application of intraocular drug delivery is usually limited due to special anatomical and physiological barriers, and the elimination mechanisms in the eye. Organic nano-drug delivery carriers exhibit excellent adhesion, permeability, targeted modification and controlled release abilities to overcome the obstacles and improve the efficiency of drug delivery and bioavailability. Solid lipid nanoparticles can entrap the active components in the lipid structure to improve the stability of drugs and reduce the production cost. Liposomes can transport hydrophobic or hydrophilic molecules, including small molecules, proteins and nucleic acids. Compared with linear macromolecules, dendrimers have a regular structure and well-defined molecular mass and size, which can precisely control the molecular shape and functional groups. Degradable polymer materials endow nano-delivery systems a variety of size, potential, morphology and other characteristics, which enable controlled release of drugs and are easy to modify with a variety of ligands and functional molecules. Organic biomimetic nanocarriers are highly optimized through evolution of natural particles, showing better biocompatibility and lower toxicity. In this article, we summarize the advantages of organic nanocarriers in overcoming multiple barriers and improving the bioavailability of drugs, and highlight the latest research progresses on the application of organic nanocarriers for treatment of ocular diseases.
Collapse
Affiliation(s)
- Wanwan Chang
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials, Soochow University, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
7
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|