1
|
Henry Dusim GA, Muhamad F, Lai KW. Enhancing Calcium Phosphate Cements: A review of Bacterial Cellulose (BC) and other Biopolymer Reinforcements for Biomedical Applications. BIOMATERIALS ADVANCES 2025; 172:214245. [PMID: 40054229 DOI: 10.1016/j.bioadv.2025.214245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Calcium phosphate cements (CPCs) are renowned for their biocompatibility and osteoconductivity, making them ideal for bone tissue engineering. However, their brittleness and low tensile strength limit their use in load-bearing applications. Bacterial cellulose (BC) has emerged as a promising reinforcement material due to its high tensile strength, biocompatibility, and biodegradability. The incorporation of 2 wt% BC into CPCs increased compressive strength from 5 MPa to 12 MPa, representing a 2.4-fold enhancement, while also improving toughness and promoting cellular interactions through its nanofibrillar structure. Additionally, hybrid composites combining BC with collagen, chitosan, or polycaprolactone (PCL) exhibit synergistic effects, further enhancing mechanical properties and biodegradability. These advancements highlight the potential of BC-reinforced CPCs for clinical applications in bone repair and regeneration. Despite these improvements, limited research addresses tensile and flexural properties, which are critical for load-bearing applications, as well as the effects of BC on injectability and setting time for minimally invasive procedures. Emerging innovations, such as electroactive BC-reinforced CPCs for stimulating bone healing, hold significant potential but remain underexplored. Future research should focus on optimising mechanical properties, validating clinical performance, and developing hybrid formulations to expand their use in load-bearing bone repairs.
Collapse
Affiliation(s)
- Grace Anabela Henry Dusim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Abdelhaq FEZM, Hasanin MS, Abdel-Monem MO, Abd El-Razek NM, Dacrory S, Dawwam GE. Highly Compatible Nanocomposite-Based Bacterial Cellulose Doped With Dopamine and Titanium Dioxide Nanoparticles: Study the Effect of Mode of Addition, Characterization, Antibacterial, and Wound Healing Efficiencies. Biopolymers 2025; 116:e70025. [PMID: 40326494 DOI: 10.1002/bip.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Microbial resistance is an expenditure for a country's economy as a whole as well as its health systems. Metal oxide nanoparticles play a role in overcoming microbial resistance to antibiotics. Bacterial cellulose (BC) is a biopolymer that is friendly to the environment and has a wide range of economic uses, particularly in biomedicine. This work deals with the formulation of BC-doped titanium dioxide nanoparticles (TiO2NPs) and polydopamine (DOP), which are presented with antimicrobial activity. Additionally, the mode of addition of the doped materials was studied using physicochemical analysis, including Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Moreover, the topographical study used scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The antimicrobial activity was studied and showed the efficiency of the BC/DOP/TiO2NP composite against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli) strains. Additionally, the wound healing was examined on rats that had been purposely wounded. The results observed that the mode of addition contributed to the molecular structure of the formulated BC-doped samples according to the physicochemical and topographical analysis. Moreover, the BC/DOP/TiO2NP composite enhanced wound healing for about 95% closure by Day 14 compared to 50% in the control group. Based on the results, we can suggest BC/DOP/TiO2NP as an excellent candidate for wound dressings.
Collapse
Affiliation(s)
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Ye L, Yan Y, Yan J. Design and biofabrication of barnacle and spider silk protein decorated composite bacterial cellulose for diabetic wound healing. Carbohydr Polym 2025; 354:123301. [PMID: 39978894 DOI: 10.1016/j.carbpol.2025.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/22/2025]
Abstract
Delayed healing of wounds in diabetics is mainly due to tissue inflammation, poor vasculature, lack of neovascularization, and bacterial infection. Therefore, a therapeutic protocol that disrupts this cycle and speeds healing is urgently needed. Despite attempts to enhance wound dressing effectiveness through hydrogels with diverse complexes such as bacterial cellulose (BC) combined with chitosan, BC/ chitosan/hyaluronic acid, and BC/chitosan/collagen, the toughness and adhesion properties of hydrogel remain constrained, leading to inadequate and uncontrollable wound healing. To address the challenge, we have devised an innovative solution by integrating barnacle cement protein (cp19k) and spider silk protein (major ampullate spidroin 1, MaSp1) into a BC matrix, complemented by chitosan. This development has led to the creation of a novel BC-based composite hydrogel BC/cp19k-MaSp1/C150k. The composite hydrogel stands out with its remarkable mechanical (3.92 Mpa) and adhesion properties (8.4 kPa) compared to its BC/C150k counterpart. Meanwhile, the BC/cp19k-MaSp1/C150k hydrogel also demonstrated antimicrobial activity, coagulation, and biocompatibility. The BC/cp19k-MaSp1/C150k hydrogel showed an exceptional capacity to enhance wound healing in a diabetic rat model, achieving a significant wound closure rate of over 98 % on day 14 when compared to BC and commercially available dressing 3 M™ Tegaderm™. This advancement holds significant promise in revolutionizing wound management for diabetics.
Collapse
Affiliation(s)
- Luona Ye
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, China.
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Pai S, Binu A, Lavanya GS, Harikumar M, Kedlaya Herga S, Citartan M, Mani NK. Advancements of paper-based microfluidics and organ-on-a-chip models in cosmetics hazards. RSC Adv 2025; 15:10319-10335. [PMID: 40182506 PMCID: PMC11966604 DOI: 10.1039/d4ra07336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Cosmetics have been used in society for centuries for beautification and personal hygiene maintenance. Modern cosmetics include various makeup, hair, and skincare products that range from moisturizers and shampoos to lipsticks and foundations and have become a quintessential part of our daily grooming activities. However, dangerous adulterants are added during the production of these cosmetics, which range from heavy metals to microbial contaminants. These adulterants not only reduce the quality and efficacy of cosmetic products but also pose a significant risk to human health. Detecting the presence of adulterants in cosmetics is crucial for regulating substandard cosmetic products in the industry. The conventional methods to detect such adulterants and quality testing are expensive and take a lot of effort, particularly when involving advanced analytical detection and clinical trials. Recently, efficient methods such as microfluidic methods have emerged to detect adulterants rapidly. In this review, we mainly focus on various adulterants present in cosmetics and their detection using paper-based microfluidic devices. In addition, this review also sheds light on the organ-on-a-chip model with the goal of developing a human tissue model for cosmetic testing. Combined, these approaches provide an efficient, inexpensive, and sustainable approach for quality testing in the cosmetics industry.
Collapse
Affiliation(s)
- Sanidhya Pai
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability Straubing Germany
| | - Amanda Binu
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - G S Lavanya
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Meenakshi Harikumar
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Srikrishna Kedlaya Herga
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia Kepala Batas Penang 13200 Malaysia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| |
Collapse
|
5
|
Ruiz-Solaní N, Alonso-Díaz A, Capellades M, Serrano-Ron L, Ferro-Costa M, Sanchez-Corrionero Á, Rabissi A, Argueso CT, Rubio-Somoza I, Laromaine A, Moreno-Risueno MA, Coll NS. Exogenous bacterial cellulose induces plant tissue regeneration through the regulation of cytokinin and defense networks. SCIENCE ADVANCES 2025; 11:eadr1509. [PMID: 39937889 PMCID: PMC11817927 DOI: 10.1126/sciadv.adr1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Regeneration is a unique feature of postembryonic development extensively observed in plants. The capacity to induce regeneration exogenously is limited and usually confined to meristematic-like tissues. We show that bacterial cellulose (BC), but not other structurally similar matrixes, induces postwounding regeneration in nonmeristematic plant tissues via a distinctive route to callus-mediated regenerative programs. The BC-specific program involves cytokinin operating concurrently with strongly activated plant biotic response genes to induce plant regeneration. A reactive oxygen species (ROS) burst, normally associated with defense responses, is sustained upon BC application, involving a network of tightly interconnected transcription factors, where WRKY8, known for regulating stress responses, shows a clustering and hierarchical prevalence. WRKY8 regulates BC-mediated plant regeneration and ROS homeostasis, including superoxide anion accumulation, to potentially promote cell proliferation after wounding. Collectively, our results demonstrate that the cytokinin- and ROS-associated defense responses can be targeted by BC application to promote plant wound regeneration through alternative regenerative programs.
Collapse
Affiliation(s)
- Nerea Ruiz-Solaní
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Alejandro Alonso-Díaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| | - Laura Serrano-Ron
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), Madrid, Spain
| | - Miquel Ferro-Costa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Álvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), Madrid, Spain
| | - Agnese Rabissi
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Institut Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Program for Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ignacio Rubio-Somoza
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| | - Anna Laromaine
- Institut Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), Madrid, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| |
Collapse
|
6
|
Popa-Tudor I, Tritean N, Dima ȘO, Trică B, Ghiurea M, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Kombucha Versus Vegetal Cellulose for Affordable Mucoadhesive (nano)Formulations. Gels 2025; 11:37. [PMID: 39852008 PMCID: PMC11765165 DOI: 10.3390/gels11010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Cellulose nanofibers gained increasing interest in the production of medical devices such as mucoadhesive nanohydrogels due to their ability to retain moisture (high hydrophilicity), flexibility, superior porosity and durability, biodegradability, non-toxicity, and biocompatibility. In this work, we aimed to compare the suitability of selected bacterial and vegetal nanocellulose to form hydrogels for biomedical applications. The vegetal and bacterial cellulose nanofibers were synthesized from brewer's spent grains (BSG) and kombucha membranes, respectively. Two hydrogels were prepared, one based on the vegetal and the other based on the bacterial cellulose nanofibers (VNC and BNC, respectively). VNC was less opaque and more fluid than BNC. The cytocompatibility and in vitro antioxidant activity of the nanocellulose-based hydrogels were investigated using human gingival fibroblasts (HGF-1, ATCC CRL-2014). The investigation of the hydrogel-mucin interaction revealed that the BNC hydrogel had an approx. 2× higher mucin binding efficiency than the VNC hydrogel at a hydrogel/mucin ratio (mg/mg) = 4. The BNC hydrogel exhibited the highest potential to increase the number of metabolically active viable cells (107.60 ± 0.98% of cytotoxicity negative control) among all culture conditions. VNC reduced the amount of reactive oxygen species (ROS) by about 23% (105.5 ± 2.2% of C-) in comparison with the positive control, whereas the ROS level was slightly higher (120.2 ± 3.9% of C-) following the BNC hydrogel treatment. Neither of the two hydrogels showed antibacterial activity when assessed by the diffusion method. The data suggest that the BNC hydrogel based on nanocellulose from kombucha fermentation could be a better candidate for cytocompatible and mucoadhesive nanoformulations than the VNC hydrogel based on nanocellulose from brewer's spent grains. The antioxidant and antibacterial activity of BNC and both BNC and VNC, respectively, should be improved.
Collapse
Affiliation(s)
- Ioana Popa-Tudor
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei nr. 91-95, Sector 5, 050095 Bucharest, Romania;
| | - Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Bogdan Trică
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Splaiul Independentei nr. 91-95, Sector 5, 050095 Bucharest, Romania;
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania; (I.P.-T.); (N.T.); (Ș.-O.D.); (B.T.); (M.G.)
| |
Collapse
|
7
|
Salihu R, Abd Razak SI, Sani MH, Wsoo MA, Zawawi NA, Shahir S. Citrate-modified bacterial cellulose as a potential scaffolding material for bone tissue regeneration. PLoS One 2024; 19:e0312396. [PMID: 39739716 DOI: 10.1371/journal.pone.0312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 01/02/2025] Open
Abstract
Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermal gravimetric analysis (TGA), and compressive modulus were used to characterize the biomineralized MBC (BMBC) samples. Using 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), trypan blue dye exclusion (TBDE), and cell attachment assays on osteoblast cells, the developed BMBC have shown good cell viability, proliferation, and attachment after 3, 5, and 7 days of culture and therefore suggested as potential bone tissue regeneration scaffolding material.
Collapse
Affiliation(s)
- Rabiu Salihu
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of Microbiology and Biotechnology, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Saiful Izwan Abd Razak
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Faculty of Engineering, Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Helmi Sani
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohammed Ahmad Wsoo
- Department of Chemistry, College of Science, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Nurliyana Ahmad Zawawi
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
8
|
Tofanica BM, Mikhailidi A, Samuil C, Ungureanu OC, Fortună ME, Ungureanu E. Advances in Cellulose-Based Hydrogels: Current Trends and Challenges. Gels 2024; 10:842. [PMID: 39727599 DOI: 10.3390/gels10120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, future research should address the gaps in understanding the environmental impact, mechanical stability, and scalability of cellulose-based gels, while also considering how to overcome barriers to their industrial use. This will ultimately allow for the realization of cellulose-based gels in large-scale, sustainable applications.
Collapse
Affiliation(s)
- Bogdan-Marian Tofanica
- "Gheorghe Asachi" Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Aleksandra Mikhailidi
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Costel Samuil
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Ovidiu C Ungureanu
- Faculty of Medicine,"Vasile Goldis" Western University of Arad, 94 the Boulevard of the Revolution, 310025 Arad, Romania
| | - Maria E Fortună
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena Ungureanu
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
9
|
Zarepour A, Gok B, Budama-Kilinc Y, Khosravi A, Iravani S, Zarrabi A. Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings. J Mater Chem B 2024; 12:12489-12507. [PMID: 39533945 DOI: 10.1039/d4tb01024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wound healing remains a significant clinical challenge, calling for innovative approaches to expedite the recovery process and improve patient outcomes. Bacterial nanocelluloses (BNCs) have emerged as a promising solution in the field of wound healing and dressings due to their unique properties such as high crystallinity, mechanical strength, high purity, porosity, high water absorption capacity, biodegradability, biocompatibility, sustainability, and flexibility. BNC-based materials can be applied for the treatment of different types of wounds, from second-degree burns to skin tears, biopsy sites, and diabetic and ischemic wounds. BNC-based dressings have exceptional mechanical properties such as flexibility and strength, which ensure proper wound coverage and protection. The renewable nature, eco-friendly production process, longer lifespan, and potential for biodegradability of BNCs make them a more sustainable alternative to conventional wound care materials. This review aims to provide a detailed overview on the application of BNC-based composites for wound healing and dressings via highlighting their ability as a carrier for delivery of different types of antimicrobial compounds as well as their direct effect on the healing process. Besides, it mentions some of the in vivo and clinical studies using BNC-based dressings and describes challenges related to the application of these materials as well as their future directions.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Yasemin Budama-Kilinc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
10
|
Korte D, Swapna MNS, Budasheva H, Diaz PC, Chhikara M, Škorjanc T, Tripon C, Farcas A, Pavlica E, Tran CD, Franko M. Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules. Int J Biol Macromol 2024; 282:136649. [PMID: 39419139 DOI: 10.1016/j.ijbiomac.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40-80 mWm-1 K-1, while the thermal diffusivities were on the order of fractions of mm2s-1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Collapse
Affiliation(s)
- Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia.
| | | | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Patricia Cazon Diaz
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Manisha Chhikara
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Tina Škorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Ajdovscina SI-5270, Slovenia
| | - Carmen Tripon
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Alexandra Farcas
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
11
|
Guziewicz W, Srivatsa S, Zambrzycki M, Dziadek M, Szatkowski P, Szymczak P, Berent K, Marciszko-Wiąckowska M, Radecka M, Kołodziejczyk A, Uhl T. MXene/Bacterial Cellulose Hybrid Materials for Sustainable Soft Electronics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5513. [PMID: 39597337 PMCID: PMC11595519 DOI: 10.3390/ma17225513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
This work evaluated bacterial cellulose (BC) as a possible biodegradable soft electronics substrate in comparison to polyethylene terephthalate (PET), while also focusing on evaluating hybrid MXene/BC material as potential flexible electronic sensor. Material characterization studies revealed that the BC material structure consists of nanofibers with diameters ranging from 70 to 140 nm, stacked layer-by-layer. BC samples produced are sensitive to post-treatment with isopropanol resulting in a change of structural and mechanical properties. The viscoelastic properties of the BC substrates have been studied experimentally in comparison with the PET film. Aged BC substrate showcased similar viscoelastic properties stability, while exhibiting better properties above 70 °C, with total storage modulus change of -15% and loss modulus change of 21%. MXenes prepared using the Minimally Intensive Layer Delamination (MILD) method were screen-printed onto BC substrates and PET films to form MXene/BC (MX/BC) and MXene/PET (MX/PET) devices. The electrical properties results showcased different resistive behavior on both BC and PET substrate samples with different impedance moduli. MX/PET presented lower sheet resistance of around 156 Ω·sq-1, while MX/BC was 2733 Ω·sq-1. Finally, the MX/BC and MX/PET devices were subjected to repeatable quasi-static load tests and the piezoresistive sensing behavior of the devices has been reported.
Collapse
Affiliation(s)
- Wojciech Guziewicz
- Space Technology Centre AGH, AGH University of Krakow, 30-059 Krakow, Poland
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Shreyas Srivatsa
- Space Technology Centre AGH, AGH University of Krakow, 30-059 Krakow, Poland
| | - Marcel Zambrzycki
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Michał Dziadek
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Piotr Szatkowski
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Patryk Szymczak
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Katarzyna Berent
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland
| | | | - Marta Radecka
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Agata Kołodziejczyk
- Space Technology Centre AGH, AGH University of Krakow, 30-059 Krakow, Poland
| | - Tadeusz Uhl
- Space Technology Centre AGH, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
12
|
Pasaribu KM, Mahendra IP, Karina M, Masruchin N, Sholeha NA, Gea S, Gupta A, Johnston B, Radecka I. A review: Current trends and future perspectives of bacterial nanocellulose-based wound dressings. Int J Biol Macromol 2024; 279:135602. [PMID: 39276891 DOI: 10.1016/j.ijbiomac.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Bacterial cellulose (BC) has gained significant attention as a base material for wound dressings due to its superior physical properties, biocompatibility, and non-toxicity. However, to produce wound dressings that actively facilitate wound healing, BC modification is essential. To provide a comprehensive analysis of the potential research developments and the trends in bacterial cellulose-based wound dressings (BCWD), this review focuses on the BCWD research conducted in the last decade. The review highlights the optimization of BC usage as a base material for active wound dressing, including the incorporation of miscellaneous materials and the enhancement of BC properties such as ultra-transparency, anti-leakage, stretchability/flexibility, adhesiveness, conductivity, injectability, pattern, and pH-sensor ability.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia.
| | - I Putu Mahendra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Jati Agung, Lampung Selatan 35365, Indonesia
| | - Myrtha Karina
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | - Saharman Gea
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Brian Johnston
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Izabela Radecka
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
13
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Shishparenok AN, Petryaev ER, Koroleva SA, Dobryakova NV, Zlotnikov ID, Komedchikova EN, Kolesnikova OA, Kudryashova EV, Zhdanov DD. Bacterial Cellulose-Chitosan Composite for Prolonged-Action L-Asparaginase in Treatment of Melanoma Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1727-1743. [PMID: 39523112 DOI: 10.1134/s0006297924100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
A significant challenge associated with the therapeutic use of L-ASP for treatment of tumors is its rapid clearance from plasma. Effectiveness of L-ASP is limited by the dose-dependent toxicity. Therefore, new approaches are being developed for L-ASP to improve its therapeutic properties. One of the approaches to improve properties of the enzymes, including L-ASP, is immobilization on various types of biocompatible polymers. Immobilization of enzymes on a carrier could improve stability of the enzyme and change duration of its enzymatic activity. Bacterial cellulose (BC) is a promising carrier for various drugs due to its biocompatibility, non-toxicity, high porosity, and high drug loading capacity. Therefore, this material has high potential for application in biomedicine. Native BC is known to have a number of disadvantages related to structural stability, which has led to consideration of the modified BC as a potential carrier for immobilization of various proteins, including L-ASP. In our study, a BC-chitosan composite in which chitosan is cross-linked with glutaraldehyde was proposed for immobilization of L-ASP. Physicochemical characteristics of the BC-chitosan films were found to be superior to those of native BC films, resulting in increase in the release time of L-ASP in vitro from 8 to 24 h. These films exhibited prolonged toxicity (up to 10 h) against the melanoma cell line. The suggested strategy for A-ASP immobilization on the BC-chitosan films could be potentially used for developing therapeutics for treatment of surface types of cancers including melanomas.
Collapse
Affiliation(s)
| | | | - Svetlana A Koroleva
- Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | | | - Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga A Kolesnikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
15
|
Güzel M. Characterization of cellulose produced by bacteria isolated from different vinegars. Int J Biol Macromol 2024; 277:134436. [PMID: 39098689 DOI: 10.1016/j.ijbiomac.2024.134436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Traditional vinegars are naturally produced from sugar- or starch-containing raw materials, through alcoholic fermentation followed by acetic fermentation. Fermentation is a spontaneous and complex process involving interactions between various microorganisms. In this study, we produced vinegar using traditional methods from six fruits: rosehip, pear, fig, wild pear, apple, and plum. Bacteria that produce bacterial cellulose (BC) were isolated from these vinegars and identified. In addition, we investigated the properties of BC produced from these bacteria. The strains isolated from vinegars were identified as Gluconobacter oxydans strain MG2022, Acetobacter tropicalis strain MG2022, Acetobacter fabarum strain MG2022, Komagataeibacter saccharivorans strain MG2022, K. saccharivorans strain EG2022, and Acetobacter lovaniensis strain OD2022. In total, 0.83-2.04 g/L BC was produced and the bacterial strain isolated from pear vinegar yielded the most BC. BC produced by the bacterial strain isolated from wild pear vinegar had the highest thermal stability and crystallinity (87.44 %). Overall, this study shows that different fruits contain different BC-producing bacteria in their natural flora and vinegars obtained from fruits can be used in BC production. Also, different BC-producing bacteria can be isolated from different vinegars, and BC produced by these bacteria might have different properties.
Collapse
Affiliation(s)
- Melih Güzel
- Department of Hotel, Restaurant and Catering Services, Gümüşhane University, Gümüşhane, 29100, Turkey.
| |
Collapse
|
16
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
17
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
18
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
19
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
20
|
de Moraes CMB, Bassanelli AM, Rodrigues LDS, Barud HDS, Fontes MDL, Lourenção PLTDA, Castro MCNE, Bertanha M. Biocellulose-based hydrogel dressing as a strategy for the management of chronic arterial wounds. Acta Cir Bras 2024; 39:e392924. [PMID: 38958305 PMCID: PMC11216531 DOI: 10.1590/acb392924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE To evaluate using a biocellulose-based hydrogel as an adjuvant in the healing process of arterial ulcers. METHODS A prospective single group quasi-experimental study was carried out with chronic lower limb arterial ulcer patients. These patients received biocellulose-based hydrogel dressings and outpatient guidance on dressing and periodic reassessments. The primary outcomes were the ulcer-healing rate and product safety, which were assessed by ulcer area measured in photographic records of pre-treatment and posttreatment after 7, 30, and 60 days. Secondary outcomes were related to clinical assessment by the quality-of-life scores (SF-36 and EQ-5D) and pain, evaluated by the visual analogue scale (VAS). RESULTS Seventeen participants were included, and one of them was excluded. Six patients (37%) had complete wound healing, and all patients had a significant reduction in the ulcer area during follow-up (233.6mm2 versus 2.7mm2) and reduction on the score PUSH 3.0 (p < 0.0001). The analysis of the SF-36 and EQ-5D questionnaires showed a statistically significant improvement in almost all parameters analyzed and with a reduction of pain assessed by the VAS. CONCLUSIONS The biocellulose-based hydrogel was safe and showed a good perspective to promoting the necessary conditions to facilitate partial or complete healing of chronic arterial ulcers within a 60-day follow-up. Quality of life and pain were positively affected by the treatment.
Collapse
Affiliation(s)
- Carolina Magro Barreiros de Moraes
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| | - Arthur Mestriner Bassanelli
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| | - Lenize da Silva Rodrigues
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| | - Hernane da Silva Barud
- Centro Universitário de Araraquara – Biopolymers and Biomaterials Laboratory – Araraquara (SP), Brazil
| | - Marina de Lima Fontes
- Centro Universitário de Araraquara – Biopolymers and Biomaterials Laboratory – Araraquara (SP), Brazil
| | - Pedro Luiz Toledo de Arruda Lourenção
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| | - Meire Cristina Novelli e Castro
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| | - Matheus Bertanha
- Universidade Estadual Paulista – Hospital Clinics of the Faculty of Medicine of Botucatu - Department of Surgery and Orthopedics – Botucatu (SP), Brazil
| |
Collapse
|
21
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
22
|
Tabatabaei Hosseini BS, Meadows K, Gabriel V, Hu J, Kim K. Biofabrication of Cellulose-based Hydrogels for Advanced Wound Healing: A Special Emphasis on 3D Bioprinting. Macromol Biosci 2024; 24:e2300376. [PMID: 38031512 DOI: 10.1002/mabi.202300376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Even with the current advancements in wound management, addressing most skin injuries and wounds continues to pose a significant obstacle for the healthcare industry. As a result, researchers are now focusing on creating innovative materials utilizing cellulose and its derivatives. Cellulose, the most abundant biopolymer in nature, has unique properties that make it a promising material for wound healing, such as biocompatibility, tunable physiochemical characteristics, accessibility, and low cost. 3D bioprinting technology has enabled the production of cellulose-based wound dressings with complex structures that mimic the extracellular matrix. The inclusion of bioactive molecules such as growth factors offers the ability to aid in promoting wound healing, while cellulose creates an ideal environment for controlled release of these biomolecules and moisture retention. The use of 3D bioprinted cellulose-based wound dressings has potential benefits for managing chronic wounds, burns, and painful wounds by promoting wound healing and reducing the risk of infection. This review provides an up-to-date summary of cellulose-based dressings manufactured by 3D bioprinting techniques by looking into wound healing biology, biofabrication methods, cellulose derivatives, and the existing cellulose bioinks targeted toward wound healing.
Collapse
Affiliation(s)
| | - Kieran Meadows
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Vincent Gabriel
- Calgary Firefighters Burn Treatment Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jinguang Hu
- Department of Petroleum and Chemical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
23
|
Brudzyńska P, Kulka-Kamińska K, Piwowarski Ł, Lewandowska K, Sionkowska A. Dialdehyde Starch as a Cross-Linking Agent Modifying Fish Collagen Film Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1475. [PMID: 38611990 PMCID: PMC11012723 DOI: 10.3390/ma17071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The aim of this research was the modification of fish collagen films with various amounts of dialdehyde starch (DAS). Film properties were examined before and after the cross-linking process by DAS. Prepared biopolymer materials were characterized by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy. Moreover, the mechanical, thermal and swelling properties of the films were evaluated and the contact angle was measured. Research has shown that dialdehyde starch applied as a cross-linking agent influences collagen film properties. Mechanical testing indicated a decrease in Young's Modulus and an increase in breaking force, elongation at break, and tensile strength parameters. Results for contact angle were significantly higher for collagen films cross-linked with DAS; thus, the hydrophilicity of samples decreased. Modified samples presented a lower swelling degree in PBS than native collagen films. However, the highest values for the degree of swelling among the modified specimens were obtained from the 1% DAS samples, which were 717% and 702% for 1% and 2% collagen, respectively. Based on AFM images and roughness values, it was noticed that DAS influenced collagen film surface morphology. The lowest value of Rq was observed for 2%Coll_2%DAS and was approximately 10 nm. Analyzing thermograms for collagen samples, it was observed that pure collagen samples were less thermally stable than cross-linked ones. Dialdehyde starch is a promising cross-linking agent for collagen extracted from fish skin and may increase its applicability.
Collapse
Affiliation(s)
- Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Łukasz Piwowarski
- SanColl Sp. z o.o., Juliusza Słowackiego 24, 35-060 Rzeszów, Poland;
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland; (P.B.); (K.K.-K.); (K.L.)
| |
Collapse
|
24
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
25
|
Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024; 10:188. [PMID: 38534606 DOI: 10.3390/gels10030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are polymeric materials that possess a set of characteristics meeting various requirements of an ideal wound dressing, making them promising for wound care. These features include, among others, the ability to absorb and retain large amounts of water and the capacity to closely mimic native structures, such as the extracellular matrix, facilitating various cellular processes like proliferation and differentiation. The polymers used in hydrogel formulations exhibit a broad spectrum of properties, allowing them to be classified into two main categories: natural polymers like collagen and chitosan, and synthetic polymers such as polyurethane and polyethylene glycol. This review offers a comprehensive overview and critical analysis of the key polymers that can constitute hydrogels, beginning with a brief contextualization of the polymers. It delves into their function, origin, and chemical structure, highlighting key sources of extraction and obtaining. Additionally, this review encompasses the main intrinsic properties of these polymers and their roles in the wound healing process, accompanied, whenever available, by explanations of the underlying mechanisms of action. It also addresses limitations and describes some studies on the effectiveness of isolated polymers in promoting skin regeneration and wound healing. Subsequently, we briefly discuss some application strategies of hydrogels derived from their intrinsic potential to promote the wound healing process. This can be achieved due to their role in the stimulation of angiogenesis, for example, or through the incorporation of substances like growth factors or drugs, such as antimicrobials, imparting new properties to the hydrogels. In addition to substance incorporation, the potential of hydrogels is also related to their ability to serve as a three-dimensional matrix for cell culture, whether it involves loading cells into the hydrogel or recruiting cells to the wound site, where they proliferate on the scaffold to form new tissue. The latter strategy presupposes the incorporation of biosensors into the hydrogel for real-time monitoring of wound conditions, such as temperature and pH. Future prospects are then ultimately addressed. As far as we are aware, this manuscript represents the first comprehensive approach that brings together and critically analyzes fundamental aspects of both natural and synthetic polymers constituting hydrogels in the context of cutaneous wound healing. It will serve as a foundational point for future studies, aiming to contribute to the development of an effective and environmentally friendly dressing for wounds.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Marco Simões
- CISUC-Center for Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
26
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
27
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
28
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
29
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
30
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
31
|
Mohammadi S, Jabbari F, Babaeipour V. Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review. Int J Biol Macromol 2023:124955. [PMID: 37245742 DOI: 10.1016/j.ijbiomac.2023.124955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a significant amount of drugs have been taken orally, which are not as effective as desired. To solve this problem, bacterial cellulose-based dermal/transdermal drug delivery systems (BC-DDSs) with unique properties such as cell compatibility, hemocompatibility, tunable mechanical properties, and the ability to encapsulate various therapeutic agents with the controlled release have been introduced. A BC-dermal/transdermal DDS reduces first-pass metabolism and systematic side effects while improving patient compliance and dosage effectiveness by controlling drug release through the skin. The barrier function of the skin, especially the stratum corneum, can interfere with drug delivery. Few drugs can pass through the skin to reach effective concentrations in the blood to treat diseases. Due to their unique physicochemical properties and high potential to reduce immunogenicity and improve bioavailability, BC-dermal/transdermal DDSs are widely used to deliver various types of drugs for disease treatment. In this review, we describe the different types of BC-dermal/ transdermal DDSs, along with a critical discussion of the advantages and disadvantages of these systems. After the general presentation, the review is focused on recent advances in the preparation and applications of BC-based dermal/transdermal DDSs in various types of disease treatment.
Collapse
Affiliation(s)
- Sajad Mohammadi
- 3D Microfluidic Biofabrication Lab, Center for Life Nano- & Neuro-science (CLN2S), Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, 00161, Italy.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 1774-15875, Iran.
| |
Collapse
|