1
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
2
|
Brusco S, Conte G, Corteggio A, Silvestri T, Spitaleri A, Brocca P, Miro A, Quaglia F, d'Angelo I, D'Apice L, Italiani P, Costabile G, Ungaro F. PEI-Engineered Lipid@PLGA Hybrid Nanoparticles for Multimodal Delivery of Antigens and Immune Adjuvants to the Respiratory Mucosa. Adv Healthc Mater 2024; 13:e2402688. [PMID: 39258393 PMCID: PMC11670295 DOI: 10.1002/adhm.202402688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Antigen delivery via respiratory mucosal surfaces is an interesting needle-free option for vaccination. Nonetheless, it demands for the design of especially tailored formulations. Here, lipid/poly(lactic-co-glycolic) acid (PLGA) hybrid nanoparticles (hNPs) for the combined delivery of an antigen, ovalbumin (Ova), and an adjuvant, synthetic unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) motifs, is developed. A panel of Ova/CpG-loaded lipid@PLGA hNPs with tunable size and surface is attained by exploiting two lipid moieties, 1,2 distearoil-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) and monophosphoryl lipid A (MPLA), with or without polyethyleneimine (PEI). It is gained insights on the lipid@PLGA hNPs through a combination of techniques to analytically determine the specific moiety on the surface, the spatial distribution of the components and the internal structure of the nanoplatforms. The collected results suggest that PEI plays a role of paramount importance not only in promoting in vitro antigen escape from lysosomes and enhancing antigen cross-presentation, but also in determining the arrangement of the moieties in the final architecture of the hNPs. Though multicomponent PEI-engineered lipid@PLGA hNPs turn out as a viable strategy for delivery of antigens and adjuvant to the respiratory mucosa, tunable nanoparticle features are achievable only through the optimal selection of the components and their relative amounts.
Collapse
Affiliation(s)
- Susy Brusco
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Gemma Conte
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell BiologyNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Teresa Silvestri
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Andrea Spitaleri
- Department of Medical Biotechnologies and Translational MedicineUniversity of MilanoVia F.lli Cervi 93Segrate (MI)20054Italy
| | - Paola Brocca
- Department of Medical Biotechnologies and Translational MedicineUniversity of MilanoVia F.lli Cervi 93Segrate (MI)20054Italy
| | - Agnese Miro
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F.University of Campania Luigi VanvitelliCaserta81100Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell BiologyNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell BiologyNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Gabriella Costabile
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| | - Francesca Ungaro
- Department of PharmacyUniversity of Napoli Federico IIVia D. Montesano 49Napoli80131Italy
| |
Collapse
|
3
|
Hu C, Hou B, Yang F, Huang X, Chen Y, Liu C, Xiao X, Zou L, Deng J, Xie S. Enhancing diabetic wound healing through anti-bacterial and promoting angiogenesis using dual-functional slow-release microspheres-loaded dermal scaffolds. Colloids Surf B Biointerfaces 2024; 242:114095. [PMID: 39018912 DOI: 10.1016/j.colsurfb.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacterial infections and the degeneration of the capillary network comprise the primary factors that contribute to the delayed healing of diabetic wounds. However, treatment modalities that cater to effective diabetic wounds healing in clinical settings are severely lacking. Herein, a dual-functional microsphere carrier was designed, which encapsulates polyhexamethylene biguanide (PHMB) or recombinant human vascular endothelial growth factor (rhVEGF) together. The in vitro release experiments demonstrated that the use of the microspheres ensured the sustained release of the drugs (PHMB or rhVEGF) over a period of 12 days. Additionally, the integration of these controlled-release microspheres into a dermal scaffold (DS-PLGA@PHMB/rhVEGF) imbued both antibacterial and angiogenic functions to the resulting material. Accordingly, the DS-PLGA@PHMB/rhVEGF scaffold exhibited potent antibacterial properties, effectively suppressing bacterial growth and providing a conducive environment for wound healing, thereby addressing the drawbacks associated with the susceptibility of rhVEGF to deactivation in inflammatory conditions. Additionally, the histological analysis revealed that the use of the DS-PLGA@PHMB/rhVEGF scaffold accelerated the process of wound healing by inhibiting inflammatory reactions, stimulating the production of collagen formation, and enhancing angiogenesis. This provides a novel solution for enhancing the antibacterial and vascularization capabilities of artificial dermal scaffolds, providing a beacon of hope for improving diabetic wound healing.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Medical School, University of Chinese Academy of Sciences, Beijing 100010, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Beijing 100010, China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Fen Yang
- Department of Infectious Diseases, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xiangjun Xiao
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Lihua Zou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| | - Jun Deng
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing 400038, China.
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China.
| |
Collapse
|
4
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Qi W, Yu Y, Yang C, Wang X, Jiang Y, Zhang L, Yu Z. Nanospheres as the delivery vehicle: novel application of Toxoplasma gondii ribosomal protein S2 in PLGA and chitosan nanospheres against acute toxoplasmosis. Front Immunol 2024; 15:1475280. [PMID: 39416787 PMCID: PMC11480959 DOI: 10.3389/fimmu.2024.1475280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.
Collapse
Affiliation(s)
- WeiYu Qi
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YouLi Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, China
| | - ChenChen Yang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - XiaoJuan Wang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YuChen Jiang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - Li Zhang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - ZhengQing Yu
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
7
|
Basler M, Schliehe C. In memory of Prof. Dr. Marcus Groettrup (1964-2022). Eur J Immunol 2024; 54:e2451341. [PMID: 39540575 DOI: 10.1002/eji.202451341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
10
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
11
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
12
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
13
|
Saleemi MA, Zhang Y, Zhang G. Current Progress in the Science of Novel Adjuvant Nano-Vaccine-Induced Protective Immune Responses. Pathogens 2024; 13:441. [PMID: 38921739 PMCID: PMC11206999 DOI: 10.3390/pathogens13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vaccinations are vital as they protect us from various illness-causing agents. Despite all the advancements in vaccine-related research, developing improved and safer vaccines against devastating infectious diseases including Ebola, tuberculosis and acquired immune deficiency syndrome (AIDS) remains a significant challenge. In addition, some of the current human vaccines can cause adverse reactions in some individuals, which limits their use for massive vaccination program. Therefore, it is necessary to design optimal vaccine candidates that can elicit appropriate immune responses but do not induce side effects. Subunit vaccines are relatively safe for the vaccination of humans, but they are unable to trigger an optimal protective immune response without an adjuvant. Although different types of adjuvants have been used for the formulation of vaccines to fight pathogens that have high antigenic diversity, due to the toxicity and safety issues associated with human-specific adjuvants, there are only a few adjuvants that have been approved for the formulation of human vaccines. Recently, nanoparticles (NPs) have gain specific attention and are commonly used as adjuvants for vaccine development as well as for drug delivery due to their excellent immune modulation properties. This review will focus on the current state of adjuvants in vaccine development, the mechanisms of human-compatible adjuvants and future research directions. We hope this review will provide valuable information to discovery novel adjuvants and drug delivery systems for developing novel vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, College of Sciences, University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.A.S.); (Y.Z.)
| |
Collapse
|
14
|
Harris PE, Burkholz S, Herst CV, Rubsamen RM. Bioinformatic, Biochemical, and Immunological Mining of MHC Class I Restricted T Cell Epitopes for a Marburg Nucleoprotein Microparticle Vaccine. Vaccines (Basel) 2024; 12:322. [PMID: 38543955 PMCID: PMC10976095 DOI: 10.3390/vaccines12030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
The Marburg virus (MARV), the virus responsible for Marburg hemorrhagic fever (MHF), is considered a top-priority pathogen for vaccine development. Recent outbreaks in Equatorial Africa have highlighted the urgency of MARV because of its high fatality rate and historical concerns about potential weaponization. Currently, there are no licensed vaccines for MARV. Existing vaccine candidates rely on attenuated recombinant vesicular stomatitis virus carrying MARV glycoprotein (VSVΔG) or the chimpanzee replication-defective adenovirus 3 vector ChAd3-MARV. Although these platforms provide significant protection in animal models, they face challenges because of their limited thermal stability and the need for cold storage during deployment in resource-poor areas. An alternative approach involves using adjuvanted poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with synthetic peptides representing MHC class I-restricted T cell epitopes. This vaccine platform has demonstrated effectiveness in protecting against SARS-CoV-2 and EBoV disease in animal models and has the advantage of not requiring cold storage and remaining stable at room temperature for over six months. This report outlines the design, manufacturing, and in vivo immunogenicity testing of PLGA microparticle human vaccines designed to prevent Marburg hemorrhagic fever.
Collapse
Affiliation(s)
- Paul E. Harris
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA
| | | | | | - Reid M. Rubsamen
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Cassaidy B, Moser BA, Solanki A, Chen Q, Shen J, Gotsis K, Lockhart Z, Rutledge N, Rosenberger MG, Dong Y, Davis D, Esser- Kahn AP. Immune Potentiation of PLGA Controlled-Release Vaccines for Improved Immunological Outcomes. ACS OMEGA 2024; 9:11608-11614. [PMID: 38496947 PMCID: PMC10938429 DOI: 10.1021/acsomega.3c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
With the emergence of SARS-CoV-2 and the continued emergence of new infectious diseases, there is a need to improve and expand current vaccine technology. Controlled-release subunit vaccines provide several benefits over current vaccines on the market, including the use of less antigen and fewer boost doses. Previously, our group reported molecules that alter NF-κB signaling improved the vaccine's performance and improved adjuvant-related tolerability. In this report, we test how these immune potentiators will influence responses when included as part of a controlled-release poly(lactic-co-glycolic) vaccine formulation. Murine in vivo studies revealed that SN50 and honokiol improved antibody levels at early vaccine time points. Microparticles with SN50 produced strong antibody levels over a longer period compared to microparticles without SN50. The same particles also increased T-cell activity. All of the immune potentiators tested further promoted Th2 humoral responses already exhibited by the control CpG OVA microparticle formulation. Overall, under controlled-release conditions, immune potentiators enhance the existing effects of controlled-release formulations, making it a potentially beneficial additive for controlled-release vaccine formulations.
Collapse
Affiliation(s)
- Britteny
J. Cassaidy
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brittany A. Moser
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Ani Solanki
- Animal
Resource Center, University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kristen Gotsis
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Zoe Lockhart
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nakisha Rutledge
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew G. Rosenberger
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yixiao Dong
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Delaney Davis
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser- Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Diedericks B, Kok AM, Mandiwana V, Lall N. A Review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an Active Antimycobacterial Compound, 7-Methyljuglone. Pharmaceutics 2024; 16:216. [PMID: 38399270 PMCID: PMC10893214 DOI: 10.3390/pharmaceutics16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
7-Methyljuglone (7-MJ) is a pure compound isolated from the roots of Euclea natalensis A. DC., a shrub indigenous to South Africa. It exhibits significant promise as a potential treatment for the highly communicable disease tuberculosis (TB), owing to its effective antimycobacterial activity against Mycobacterium tuberculosis. Despite its potential therapeutic benefits, 7-MJ has demonstrated in vitro cytotoxicity against various cancerous and non-cancerous cell lines, raising concerns about its safety for consumption by TB patients. Therefore, this review focuses on exploring the potential of poly-(lactide-co-glycolic) acid (PLGA) nanoparticles as a delivery system, which has been shown to decrease in vitro cytotoxicity, and 7-MJ as an effective antimycobacterial compound.
Collapse
Affiliation(s)
- Bianca Diedericks
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
| | - Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha 6019, South Africa
| | - Vusani Mandiwana
- Chemicals Cluster, Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa; (B.D.); (A.-M.K.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 643001, India
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston IAU-016615, Jamaica
| |
Collapse
|
17
|
Udompornpitak K, Bhunyakarnjanarat T, Saisorn W, Manipuntee C, Plengplang K, Sittichaitaweekul S, Jenphatanapong P, Udomkarnjananun S, Kaewduangduen W, Ariya-anandech K, Samaeng A, Insin N, Ritprajak P, Leelahavanichkul A. Polymeric Particle BAM15 Targeting Macrophages Attenuates the Severity of LPS-Induced Sepsis: A Proof of Concept for Specific Immune Cell-Targeted Therapy. Pharmaceutics 2023; 15:2695. [PMID: 38140036 PMCID: PMC10747619 DOI: 10.3390/pharmaceutics15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Macrophage polarization requires different energy sources and metabolic processes. Therefore, cell energy interference to alter macrophage functions has been proposed as a treatment for severe inflammatory diseases, including sepsis. In this study, targeting cell energy using BAM15 (a mitochondrial uncoupling agent) in human THP-1 and mouse RAW264.7 macrophages prominently interfered with M1 but not M2 polarization. Free BAM15 (BAM15) and BAM15-loaded PLGA particles (BAM15 particles) reduced the inflammatory response of M1 macrophages and enhanced the expression of M2 signature genes with the restoration of mitochondrial activity (extracellular flux analysis) in RAW264.7 cells. Furthermore, BAM15 particles but not BAM15 showed specific effects on the inflammatory response of macrophages but not neutrophils, and the particles were actively captured by splenic and liver macrophages in vivo. Administration of BAM15 and BAM15 particles attenuated the severity of sepsis in LPS-induced sepsis mice. Interestingly, BAM15 particles but not BAM15 alleviated LPS-induced liver injury by reducing hepatic inflammation. Our findings substantiate the superior efficacy of macrophage-targeted therapy using a BAM15 particle-delivery system and provide further support for clinical development as a potential therapy for severe inflammatory diseases.
Collapse
Affiliation(s)
- Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.)
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.)
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chonnavee Manipuntee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
| | - Kittawat Plengplang
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| | - Samarch Sittichaitaweekul
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| | - Panisa Jenphatanapong
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Warerat Kaewduangduen
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
| | - Kasirapat Ariya-anandech
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
| | - Amanee Samaeng
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
| | - Numpon Insin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.)
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.)
- Center of Excellence in Translational Research on Immunology and Immune-Mediated Diseases (CETRII), Department of Microbiology, Faculty of Medicine, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
19
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
20
|
Puricelli C, Gigliotti CL, Stoppa I, Sacchetti S, Pantham D, Scomparin A, Rolla R, Pizzimenti S, Dianzani U, Boggio E, Sutti S. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023; 15:1772. [PMID: 37376219 PMCID: PMC10301392 DOI: 10.3390/pharmaceutics15061772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy;
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Torino, Italy;
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
| |
Collapse
|
21
|
Pudineh Moarref M, Alimolaei M, Emami T, Koohi MK. Development and evaluation of cell membrane-based biomimetic nanoparticles loaded by Clostridium perfringens epsilon toxin: a novel vaccine delivery platform for Clostridial-associated diseases. Nanotoxicology 2023; 17:420-431. [PMID: 37695263 DOI: 10.1080/17435390.2023.2252899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
As Clostridium perfringens (C. perfringens) epsilon toxin (ETX) ranks as the third most potent clostridial toxin after botulinum and tetanus toxins, vaccination is necessary for creatures that can be affected by it to be safe from the effects of this toxin. Nowadays, nanostructures are good choices for carriers for biological environments. We aimed to synthesize biomimetic biodegradable nanodevices to enhance the efficiency of the ETX vaccine. For this purpose, poly(lactic-co-glycolic acid) (PLGA) copolymer loaded with purified epsilon protoxin (proETX) to create nanoparticles called nanotoxins (NTs) and then coated by RBC membrane-derived vesicles (RVs) to form epsilon nanotoxoids (RV-NTs). The resulting RV-NTs shaped smooth spherical surfaces with double-layer core/shell structure with an average particle size of 105.9 ± 35.1 nm and encapsulation efficiency of 97.5% ± 0.13%. Compared with NTs, the RV-NTs were more stable for 15 consecutive days. In addition, although both structures showed a long-term cumulative release, the release rates from RV-NTs were slower than NTs during 144 hours. According to the results of cell viability, ETX loading in PLGA and entrapment in the RBC membrane decreased the toxicity of the toxin. The presence of PLGA enhances the uptake of proETX, and the synthesized structures showed no significant lesion after injection. These results demonstrate that NTs and RV-NTs could serve as an effective vaccine platform to deliver ETX for future in vivo assays.
Collapse
Affiliation(s)
- Mokarameh Pudineh Moarref
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Alimolaei
- Research and Development Department, Kerman Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | - Tara Emami
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
22
|
Li JD, Yin J. Interleukin-10-alveolar macrophage cell membrane-coated nanoparticles alleviate airway inflammation and regulate Th17/regulatory T cell balance in a mouse model. Front Immunol 2023; 14:1186393. [PMID: 37275919 PMCID: PMC10235466 DOI: 10.3389/fimmu.2023.1186393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Background Allergic airway disease (AAD) is a chronic disease characterized by airway inflammation, bronchoconstriction, and hyperresponsiveness. Although exogenous interleukin-10 (IL-10) alleviates allergic inflammation, it has a short half-life in vivo. Cell membrane-coated nanomaterials have been shown to protect therapeutic payloads and increase therapeutic efficacy. Objective This study was aimed at investigating the efficacy of a novel macrophage-based nanoparticle drug for the treatment of house dust mite (HDM)-induced allergic airway diseases. Methods IL-10-poly (lactic-co-glycolic acid (PLGA) nanoparticles were encapsulated in alveolar macrophage cell membranes. An allergic airway disease mouse model was established by repeated inhalation of HDM extracts. The mice were treated with free IL-10, IL-10-PLGA nanoparticles (IL10-NP), or IL-10-alveolar macrophage cell membrane-coated nanoparticles (IL10-AMNP). The therapeutic effects were evaluated by measuring airway hyperresponsiveness, lung inflammation, cytokine levels, and regulatory T cells (Treg)- T-helper 17 (Th17) cell balance. Results Compared to free IL-10, IL10-AMNP significantly reduced airway hyperresponsiveness and T-helper 2 (Th2)/Th17 cytokines and inhibited neutrophilia and eosinophilia recruitment into the airways of HDM-induced mouse models. Additionally, the balance between Tregs and Th17 cells was significantly improved in groups treated with IL10-AMNP. Conclusion This study demonstrated that PLGA nanoparticle cores coated with alveolar macrophage cell membranes can effectively deliver therapeutic cytokines to the lungs and improve the homeostatic balance between Tregs and Th17 cells. These findings suggest that macrophage-based nanoparticle drugs represent a promising approach for treating allergic airway diseases.
Collapse
Affiliation(s)
- Jun-Da Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- Department of Allergy, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Disease, Beijing, China
| |
Collapse
|