1
|
Liao J, Sun J, Jia W, He W, Wang H, Huang W, Wang Y, Yu M, Xie Y, Chen Y. External stimuli-driven catalytic hydrogels for biomedical applications. Chem Commun (Camb) 2025; 61:3946-3966. [PMID: 39957542 DOI: 10.1039/d4cc05256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Hydrogels, bearing three-dimensional networks formed through chemical or physical crosslinking of hydrophilic macromolecules, benefit from their biocompatibility, tunable properties, and high loading capacities, and thus hold great promise for biomedical applications. Recent advancements have increasingly focused on the integration of non-invasive external stimuli-such as light, heat, electricity, magnetism, and ultrasound-into hydrogel design. These external stimuli-driven catalytic hydrogels can dynamically respond to these stimuli, allowing for high spatial and temporal precision in their application. This capability enables in situ activation, controlled degradation, and catalytic reactions, making them ideal for next-generation clinical interventions. This review discusses the design strategies for external stimuli-driven catalytic hydrogels, concentrating on essential mechanisms of catalytic processes aimed at optimizing therapeutic efficacy. The discussion highlights the importance of precise control over the chemical and physical properties of hydrogels in response to specific stimuli, elucidating the regulatory mechanisms that dictate hydrogel behavior and deepening the understanding of their applications with enhanced spatial and temporal resolution.
Collapse
Affiliation(s)
- Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jijun Sun
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wencong Jia
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Weiyun Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yanmei Wang
- Department of Nursing, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
2
|
Kallepalli B, Garg U, Jain N, Nagpal R, Malhotra S, Tiwari T, Kaul S, Nagaich U. Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration. Curr Drug Deliv 2025; 22:195-214. [PMID: 38310439 DOI: 10.2174/0115672018278641231221051359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 02/05/2024]
Abstract
In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.
Collapse
Affiliation(s)
- Badarinadh Kallepalli
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Rohan Nagpal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Sakshi Malhotra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Triveni Tiwari
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang C, Gong S, Liu H, Cui L, Ye Y, Liu D, Liu T, Xie S, Li S. Angiogenesis unveiled: Insights into its role and mechanisms in cartilage injury. Exp Gerontol 2024; 195:112537. [PMID: 39111547 DOI: 10.1016/j.exger.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
Osteoarthritis (OA) commonly results in compromised mobility and disability, thereby imposing a significant burden on healthcare systems. Cartilage injury is a prevalent pathological manifestation in OA and constitutes a central focus for the development of treatment strategies. Despite the considerable number of studies aimed at delaying this degenerative process, their outcomes remain unvalidated in preclinical settings. Recently, therapeutic strategies focused on angiogenesis have attracted the growing interest from researchers. Thus, we conducted a comprehensive literature review to elucidate the current progress in research and pinpoint research gaps in this domain. Additionally, it provides theoretical guidance for future research endeavors and the development of treatment strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Shuangquan Gong
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Hongjun Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Liqiang Cui
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Yu Ye
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Dengshang Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Tianzhu Liu
- Neurological Disease Center, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan, China
| | - Shiming Xie
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
4
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
5
|
Chen J, Luo J, Feng J, Wang Y, Lv H, Zhou Y. Spatiotemporal controlled released hydrogels for multi-system regulated bone regeneration. J Control Release 2024; 372:846-861. [PMID: 38955252 DOI: 10.1016/j.jconrel.2024.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Bone defect is one of the urgent problems to be solved in clinics, and it is very important to construct efficient scaffold materials to facilitate bone tissue regeneration. Hydrogels, characterized by their unique three-dimensional network structure, serve as excellent biological scaffold materials. Their internal pores are capable of loading osteogenic drugs to expedite bone formation. The rate and quality of new bone formation are intimately linked with immune regulation and vascular remodeling. The strategic sequential release of drugs to balance inflammation and regulate vascular remodeling is crucial for initiating the osteogenic process. Through the design of hydrogel microstructures, it is possible to achieve sequential drug release and the drug action time can be prolonged, thereby catering to the multi-systemic collaborative regulation needs of osteosynthesis. The drug release rate within the hydrogel is governed by swelling control systems, physical control systems, chemical control systems, and environmental control systems. Utilizing these control systems to design hydrogel materials capable of multi-drug delivery optimizes the construction of the bone microenvironment. Consequently, this facilitates the spatiotemporal controlled released of drugs, promoting bone tissue regeneration. This paper reviews the principles of the controlled release system of various sustained-release hydrogels and the advancements in research on hydrogel multi-drug delivery systems for bone tissue regeneration.
Collapse
Affiliation(s)
- Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jian Feng
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yihan Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huixin Lv
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Yang K, Wu Z, Zhang K, Weir MD, Xu HHK, Cheng L, Huang X, Zhou W. Unlocking the potential of stimuli-responsive biomaterials for bone regeneration. Front Pharmacol 2024; 15:1437457. [PMID: 39144636 PMCID: PMC11322102 DOI: 10.3389/fphar.2024.1437457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Ke Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhuoshu Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
8
|
Conzatti G, Nadal C, Berthelot J, Vachoud L, Labour MN, Tourrette A, Belamie E. Chitosan-PNIPAM Thermogel Associated with Hydrogel Microspheres as a Smart Formulation for MSC Injection. ACS APPLIED BIO MATERIALS 2024; 7:3033-3040. [PMID: 38587908 DOI: 10.1021/acsabm.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.
Collapse
Affiliation(s)
- Guillaume Conzatti
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
- INSERM/University of Strasbourg (Faculty of Pharmacy), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Clémence Nadal
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
| | - Jade Berthelot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Laurent Vachoud
- UMR QualiSud, UMR Cirad 95, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, B.P. 14 491, 34093 Montpellier Cedex 5, France
| | - Marie-Noëlle Labour
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Audrey Tourrette
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
| | - Emmanuel Belamie
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| |
Collapse
|
9
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
10
|
Ji T, Ji Y, Meng X, Wang Q. Temperature-Responsive Separation Membrane with High Antifouling Performance for Efficient Separation. Polymers (Basel) 2024; 16:416. [PMID: 38337305 DOI: 10.3390/polym16030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Temperature-responsive separation membranes can significantly change their permeability and separation properties in response to changes in their surrounding temperature, improving efficiency and reducing membrane costs. This study focuses on the modification of polyvinylidene fluoride (PVDF) membranes with amphiphilic temperature-responsive copolymer and inorganic nanoparticles. We prepared an amphiphilic temperature-responsive copolymer in which the hydrophilic poly(N-isopropyl acrylamide) (PNIPAAm) was side-linked to a hydrophobic polyvinylidene fluoride (PVDF) skeleton. Subsequently, PVDF-g-PNIPAAm polymer and graphene oxide (GO) were blended with PVDF to prepare temperature-responsive separation membranes. The results showed that temperature-responsive polymers with different NIPAAm grafting ratios were successfully prepared by adjusting the material ratio of NIPAAm to PVDF. PVDF-g-PNIPAAm was blended with PVDF with different grafting ratios to obtain separate membranes with different temperature responses. GO and PVDF-g-PNIPAAm formed a relatively stable hydrogen bond network, which improved the internal structure and antifouling performance of the membrane without affecting the temperature response, thus extending the service life of the membrane.
Collapse
Affiliation(s)
- Tong Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Ji
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangli Meng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
11
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
13
|
Li X, Ren Y, Xue Y, Zhang Y, Liu Y. Nanofibrous scaffolds for the healing of the fibrocartilaginous enthesis: advances and prospects. NANOSCALE HORIZONS 2023; 8:1313-1332. [PMID: 37614124 DOI: 10.1039/d3nh00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|