1
|
Rahman MA, Jalouli M, Yadab MK, Al-Zharani M. Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities. Cancers (Basel) 2025; 17:701. [PMID: 40002294 PMCID: PMC11852615 DOI: 10.3390/cancers17040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor that has a bleak outlook despite existing treatments such as surgery, radiation, and chemotherapy. The utilization of nanoparticles for drug delivery presents a promising method by which to improve the effectiveness of treatment while reducing the harmful effects on the entire body. This review examines the application of nanoparticles in the treatment of GBM, focusing on different types of nanoparticles, including lipid-based, polymeric, metallic, and those under development. Every variety is analyzed for its distinct characteristics and therapeutic capacity. Lipid-based nanoparticles, such as liposomes and solid lipid nanoparticles, enhance the transport of medicines that are not soluble in water and have shown considerable potential in preclinical investigations. Polymeric nanoparticles have benefits in terms of controlled release and targeted distribution, whereas metallic nanoparticles have potential in both therapy and imaging. In the current review we would like to emphasize the ways in which nanoparticles improve medicine delivery, specifically by enhancing penetration of the blood-brain barrier (BBB), targeting tumors, and enabling controlled release. Additionally, we also discuss current preclinical and clinical discoveries, highlighting both achievements and obstacles in the process of converting these technologies into effective treatments for GBM. This study offers a thorough examination of the present status and prospects of nanoparticles in the treatment of GBM.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| | - Mahesh Kumar Yadab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| |
Collapse
|
2
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Fu J, Li S, Xu M, Liu L, Chen L, Zhang D. Absorption and transport mechanism of colloidal nanoparticles (CNPs) in lamb soup based on Caco-2 cell. Food Chem 2025; 463:141196. [PMID: 39260179 DOI: 10.1016/j.foodchem.2024.141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Soup is an important presence in diet, but its absorption and transport mechanism by the human body remains unclear. In this study, Caco-2 intact cell and monolayer cell models were constructed to simulate small intestine absorption on colloidal nanoparticles (CNPs) isolated from lamb soup. The intracellular localization of CNPs was viewed by laser confocal microscopy (LSCM). CNPs uptake and release pathways were explored by differences in CNPs concentrations in 5 endocytosis inhibitor models and 4 exocytosis inhibitor models. Results indicated that CNPs endocytosis by Caco-2 cells was restrained by Nystatin and Cytochalasin D, with exocytosis being inhibited by Nocodazole and Monensin. Therefore, the major absorption pathways for CNPs were caveolin-dependent endocytosis, macropinocytosis and phagocytosis. The major transport pathways were microtubule-vesicle-mediated protein transport to the membrane and transportation between the Golgi apparatus and membrane. This study may provide theoretical support for the transport mechanism of soup products in the small intestine.
Collapse
Affiliation(s)
- Jianing Fu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Meizhen Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
4
|
Zhang M, Liu T, Tan D, Liu J, Gao Y, Wang H, Gao F, Yang Z. Preparation, characterization, and ex vivo evaluation of isoxanthohumol nanosuspension. Int J Pharm 2024; 667:124909. [PMID: 39522839 DOI: 10.1016/j.ijpharm.2024.124909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the equilibrium solubility, oil-water distribution coefficient, and dissociation constant of Isoxanthohumol (IXN), and formulated IXN nanoparticles (IXN-Nps) using a micro media grinding method. The research characterized the particle size, polydispersity index, zeta potential, morphology, and structure of the nanoparticles, and evaluated the optimal cryoprotectant. Additionally, the study examined the toxicity and in vitro and in vivo release of IXN on HT-29 cells. IXN is classified as a Biopharmaceutical Classification System (BCS) II class drug with weak acidity. The average particle size of IXN-Nps is 249.500 nm, with a polydispersity index (PDI) of 0.149 and a zeta potential of -25.210 mV. The research identified 5 % mannitol as the optimal cryoprotectant. Compared to IXN, the half-maximal inhibitory concentration of IXN-Nps decreased to one-third, demonstrating a significant inhibitory effect on HT-29 colon cancer cells. The in vitro cumulative release rate of IXN-Nps within 24 h was 3.5 times higher than that of the IXN solution. In vivo pharmacokinetic results revealed that the oral bioavailability of IXN-Nps increased significantly by 2.8 times compared to the IXN solution. The correlation coefficient (r = 0.9227) exceeded the critical value for significance at the 0.01 (r = 0.834) level, indicating a strong correlation between in vivo and in vitro results. Consequently, the nanosuspension overcame the low solubility limitation of IXN and proved to be an effective method for enhancing the oral bioavailability of IXN.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Tianjiao Liu
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Ding Tan
- School of Pharmacy Fuzhou University, China
| | - Jingrui Liu
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Yingying Gao
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Haibo Wang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Feng Gao
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Zhixin Yang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China.
| |
Collapse
|
5
|
Jung N, Schreiner J, Baur F, Vogel-Kindgen S, Windbergs M. Predicting nanocarrier permeation across the human intestine in vitro: model matters. Biomater Sci 2024; 12:5775-5788. [PMID: 39402906 DOI: 10.1039/d4bm01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG-PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Florentin Baur
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
7
|
Zhang X, Wu W. Novel Drug Delivery Systems for Phytomedicines. Pharmaceutics 2024; 16:1059. [PMID: 39204404 PMCID: PMC11359162 DOI: 10.3390/pharmaceutics16081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Many active pharmaceutical ingredients (APIs) are found in or originate from phytomedicines [...].
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou 511443, China
| | - Wei Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
8
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Wang F, Hang L, Dai B, Li F, Zhu Y, Jia H, Ai Y, Wang L, Xue Y, Yuan H. Characterization of herpetrione amorphous nanoparticles stabilized by hydroxypropylmethyl cellulose and its absorption mechanism in vitro. Int J Biol Macromol 2024; 268:131744. [PMID: 38663711 DOI: 10.1016/j.ijbiomac.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Herpetrione(HPE) is an effective compound that has been used in the treatment of liver diseases. To improve its dissolution and absorption, herpetrione nanosuspensions was prepared. Nanosuspensions were proved to achieve intact absorption in vivo. However, the transport mechanisms are not fully understood, especially lack of direct evidence of translocation of particulates. In this study, an environment-responsive dye, P4, was loaded into herpetrione amorphous nanoparticles (HPE-ANPs) to elucidate the absorption and transport mechanism of the nanoparticles. And the amount of HPE and nanoparticles in the samples were quantified using HPLC/LC-MS/MS and IVIS with the model of Caco-2 and Caco-2/HT29-MTX. Results demonstrated that HPE is mainly taken up by passive diffusion in the form of free drugs, while HPE-ANPs are internalized by an energy dependent active transport pathway or intracellular endocytosis. It is speculated that HPE-ANPs may change the original entry pathway of drug molecules. Furthermore, the presence of mucus layer and the use of HPMC E15 may contribute to drug absorption to some extent. Transcellular transport study indicates that HPE-ANPs has a poor absorption. In conclusion, the differences in the absorption behavior trends of HPE-ANPs are caused by the difference in particle properties and the form of existence of the drug.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Bo Dai
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Fangqin Li
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Yuwen Zhu
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Haiqiang Jia
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Yu Ai
- Bohai (Tianjin) Medical Laboratory, Tianjin 300400, China
| | - Liqiang Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| |
Collapse
|
10
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
11
|
Nakai D, Miyake M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023; 16:29. [PMID: 38258040 PMCID: PMC10820082 DOI: 10.3390/pharmaceutics16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease is a set of chronic inflammatory diseases that mainly develop in the gastrointestinal mucosa, including ulcerative colitis and Crohn's disease. Gastrointestinal membrane permeability is an important factor influencing the pharmacological effects of pharmaceuticals administered orally for treating inflammatory bowel disease and other diseases. Understanding the presence or absence of changes in pharmacokinetic properties under a disease state facilitates effective pharmacotherapy. In this paper, we reviewed the gastrointestinal membrane function in ulcerative colitis and Crohn's disease from the perspective of in vitro membrane permeability and electrophysiological parameters. Information on in vivo permeability in humans is summarized. We also overviewed the inflammatory bowel disease research using gut-on-a-chip, in which some advances have recently been achieved. It is expected that these findings will be exploited for the development of therapeutic drugs for inflammatory bowel disease and the optimization of treatment options and regimens.
Collapse
Affiliation(s)
- Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masateru Miyake
- Pharmapack Co., Ltd., 1-27 Nakaokubo, Toyama 939-2243, Japan;
| |
Collapse
|