1
|
Zdziennicka A, Jańczuk B. Adsorption and wetting properties of biosurfactants, Tritons and their mixtures in aqueous and water-ethanol environment. Adv Colloid Interface Sci 2025; 337:103379. [PMID: 39700969 DOI: 10.1016/j.cis.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures. Changes of these interface tensions as a function of concentration and composition of the mixtures were compared to those affected by individual mixture components. In turn, these changes of the interface tension were considered as regards properties of the biosurfactants, Tritons and ethanol layers adsorbed at the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces. Based on the changes of the contact angle of the aqueous and water-ethanol solutions of the biosurfactants and Tritons as well as biosurfactants mixtures with Tritons on PMMA and quartz as a function of mixture concentration and composition, the changes of the PMMA and quartz surface tension were analyzed using various approaches to the surface and interface tension. The thermodynamic functions change as a results of RL, SF, TX100, TX165, ET as well as the mixtures of RL and SF with Tritons adsorption at different interfaces were also analyzed based on the literature data. These considerations allow to describe and/or predict changes of the interface tension, contact angle of the mixtures as a function of their composition based on these properties of individual mixture components.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Sonbhadra S, Mishra A, Pandey LM. Nature's Marvels: Exploring the Multifaceted Applications of Surfactin and Rhamnolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3731-3743. [PMID: 39924911 DOI: 10.1021/acs.langmuir.4c04093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Biosurfactants are fascinating amphiphilic molecules synthesized by living sources, such as bacteria and fungi. Biosurfactants can be lipopeptides, glycolipids, lipopolysaccharides, phospholipids, proteins, and polymeric substances in nature. With their unique surface-active properties, these molecules play a vital role in numerous industrial, environmental, and biomedical applications. They are stable molecules that improve biointerfacial interactions, i.e., alter wettability properties and reduce surface tension, enabling efficient emulsification, foaming, and dispersion. For instance, surfactin (a major lipopeptide) is capable of effectively reducing the surface tension of water from 72.80 ± 0.5 to 24.09 ± 0.11 mN/m and reducing the interfacial tension to as low as 0.056 mN/m (for an oil-water interface). Rhamnolipids (a significant glycolipid) demonstrate remarkable stability across a wide range of temperatures (30 to 100 °C), pH (4-12), and salinity (0 to 9% w/v NaCl). For example, the bioremediation of hydrophobic oil molecules happens through emulsifying and solubilizing, along with improving cell surface hydrophobicity. Furthermore, these biosurfactants have also emerged as nature's elegant entity in the food and pharmaceutical sectors by exhibiting excellent antimicrobial, antioxidant, anti-inflammatory, and antitumor properties. The ongoing pursuit of research and innovation of these magic molecules assures a paradigm shift toward a greener and more sustainable future.
Collapse
Affiliation(s)
- Smrity Sonbhadra
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Anurag Mishra
- Centre for the Environment, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
- Centre for the Environment, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Iskandar B, Liu TW, Mei HC, Kuo IC, Surboyo MDC, Lin HM, Lee CK. Herbal nanoemulsions in cosmetic science: A comprehensive review of design, preparation, formulation, and characterization. J Food Drug Anal 2024; 32:428-458. [PMID: 39752863 PMCID: PMC11698589 DOI: 10.38212/2224-6614.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 01/07/2025] Open
Abstract
The rapid development of delivery systems for cosmetics has revealed two critical challenges in the field: enhancing the solubility of active ingredients and ensuring the stability of natural materials used in cosmetics. Nanoemulsion technology has emerged as an indispensable solution for addressing these challenges, not only enhancing the stability of cosmetics but also improving the solubility of pharmaceuticals and active ingredients with poor solubility. Nanoemulsion formulations have reinforced stability and amended the bioavailability of hydrophobic drugs. Moreover, nanoemulsion exhibit excellent skin penetration and long-lasting effects, making them particularly appealing to consumers, especially in the cosmetic industry. This article aims to provide an overview of herbal nanoemulsion formulations as cosmetic products, covering formulation, production, and characterization. Herbal nanoemulsions is an effective, stable, and promising option for cosmetic delivery. The nanoemulsions were characterized by their key properties, such as particle size, polydisperse index (PDI), zeta potential, viscosity, stability and others. Techniques like zeta potential measurement, transmission electron microscopy (TEM) and scanning electronmicroscopy (SEM) were used to analyze the surface morphology, whereas stability tests were employed to evaluate nanoemulsion performance. This review also delves into the high-energy and the low-energy methods of manufacturing nanoemulsions. Additionally, we also explore the selection of appropriate surfactants, co-surfactants, and ingredients for creating herbal nanoemulsions with desirable attributes and qualities. Overall, this review consolidates the current knowledge on herbal nanoemulsion formulations for cosmetic preparations, designs, shedding light on their effectiveness, characteristics, and stability. These formulations hold promise in overcoming challenges related to meeting the increasing demand for effective herbal nanoemulsion and high-quality cosmetic products.
Collapse
Affiliation(s)
- Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
- Department of Pharmaceutical Technology, Riau College of Pharmaceutical Sciences (STIFAR), Riau 28292,
Indonesia
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
| | - Hui-Ching Mei
- Department of Science Education, National Taipei University of Education, Taipei 106,
Taiwan
| | - I-Chih Kuo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC,
Canada
| | | | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202,
Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031,
Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031,
Taiwan
| |
Collapse
|
4
|
Ragozzino C, Palma Esposito F, Buonocore C, Tedesco P, Coppola D, Paccagnella D, Ziemert N, Della Sala G, de de Pascale D. Integrated genome and metabolome mining unveiled structure and biosynthesis of novel lipopeptides from a deep-sea Rhodococcus. Microb Biotechnol 2024; 17:e70011. [PMID: 39582288 PMCID: PMC11586506 DOI: 10.1111/1751-7915.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/23/2024] [Indexed: 11/26/2024] Open
Abstract
Microbial biosurfactants have garnered significant interest from industry due to their lower toxicity, biodegradability, activity at lower concentrations and higher resistance compared to synthetic surfactants. The deep-sea Rhodococcus sp. I2R has been identified as a producer of glycolipid biosurfactants, specifically succinoyl trehalolipids, which exhibit antiviral activity. However, genome mining of this bacterium has revealed a still unexplored repertoire of biosurfactants. The microbial genome was found to host five non-ribosomal peptide synthetase (NRPS) gene clusters containing starter condensation domains that direct lipopeptide biosynthesis. Genomics and mass spectrometry (MS)-based metabolomics enabled the linking of two NRPS gene clusters to the corresponding lipopeptide families, leading to the identification of 20 new cyclolipopeptides, designated as rhodoheptins, and 33 new glycolipopeptides, designated as rhodamides. An integrated in silico gene cluster and high-resolution MS/MS data analysis allowed us to elucidate the planar structure, inference of stereochemistry and reconstruction of the biosynthesis of rhodoheptins and rhodamides. Rhodoheptins are cyclic heptapeptides where the N-terminus is bonded to a β-hydroxy fatty acid forming a macrolactone ring with the C-terminal amino acid residue. Rhodamides are linear 14-mer glycolipopeptides with a serine- and alanine-rich peptide backbone, featuring a distinctive pattern of acetylation, glycosylation and succinylation. These molecules exhibited biosurfactant activity in the oil-spreading assay and showed moderate antiproliferative effects against human A375 melanoma cells.
Collapse
Affiliation(s)
- Costanza Ragozzino
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| | - Carmine Buonocore
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| | - Pietro Tedesco
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| | - Daniela Coppola
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| | - Davide Paccagnella
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of TuebingenTuebingenGermany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of TuebingenTuebingenGermany
- German Centre for Infection Research (DZIF)TübingenGermany
| | - Gerardo Della Sala
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| | - Donatella de de Pascale
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton Dohrn, Giardini del MolosiglioNaplesItaly
| |
Collapse
|
5
|
Lin S, Li X, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Zhang L, Fu H. Encapsulation nanoarchitectonics of glabridin with sophorolipid micelles for addressing biofilm hazards via extracellular polymeric substance permeation and srtA gene suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117150. [PMID: 39423506 DOI: 10.1016/j.ecoenv.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Biofilm, a common drug-resistant phenotype of Staphylococcus aureus (S. aureus), demonstrates significant drug resistance and recurrence due to its extracellular polymeric substance (EPS) barrier and subsequent bacterial migration. Hence, there is an urgent need for effective solutions to mitigate the hazards posed by biofilms. RESULT This study developed a stable, low-toxicity multifunctional nanomicelle, GLA@SOL/EYL, by encapsulating glabridin (GLA) using sophorolipid (SOL) and egg yolk lecithin (EYL). Optimizations were performed for the hydration medium, the ratio of carrier materials to GLA, and EYL additions. GLA@SOL/EYL exhibited a particle size of 122.1 ± 0.8 nm and a surface potential of -66.4 ± 1.7 mV, endowing it with the ability to permeate biofilms EPS effectively. GLA@SOL/EYL encapsulated 98.3 ± 1.2 % of GLA and demonstrated a slow-release effect, significantly enhancing the bioavailability of GLA. The addition of EYL reduced the hemolytic toxicity of GLA@SOL/EYL and improved its encapsulation rate and stability. GLA@SOL/EYL reduced the minimum inhibitory concentration of GLA to 8 μg/mL and extended its inhibitory effect at low concentrations by rapidly disrupting the structural integrity of S. aureus. GLA@SOL/EYL may penetrate biofilms to disperse EPS and remove twice as much biofilm as GLA alone, thereby eliminating 99.99 % of S. aureus within biofilms, compared to 99 % bactericidal efficacy of GLA. Additionally, GLA@SOL/EYL inhibited 63.8 ± 1.8 % of biofilm formation by affecting the expression of the srtA gene, thereby reducing the expression of cell wall-anchoring protein genes. In contrast, the biofilm inhibition rates of GLA and blank micelles were less than 10 %. CONCLUSION GLA@SOL/EYL utilizes the nanoparticle effect to penetrate biofilms and deliver antimicrobial GLA. The SOL disperses the biofilm matrix while GLA is released to kill S. aureus, preventing bacterial dissemination and colonization. Thus, GLA@SOL/EYL presents an innovative strategy for effectively eradicating S. aureus biofilms and preventing new hazards in a one-step approach.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
6
|
Thundiparambil Venu A, Vijayan J, Ammanamveetil MHA, Kottekkattu Padinchati K. An Insightful Overview of Microbial Biosurfactant: A Promising Next-Generation Biomolecule for Sustainable Future. J Basic Microbiol 2024; 64:e2300757. [PMID: 38934506 DOI: 10.1002/jobm.202300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/28/2024]
Abstract
Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.
Collapse
Affiliation(s)
- Athira Thundiparambil Venu
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
- CUSAT-NCPOR Centre for Polar Science, Kochi, Kerala, India
| | - Krishnan Kottekkattu Padinchati
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| |
Collapse
|
7
|
Heikal LA, El-Habashy SE, El-Kamel AH, Mehanna RA, Ashour AA. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int J Pharm 2024; 661:124458. [PMID: 38996823 DOI: 10.1016/j.ijpharm.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Bami MS, Khazaeli P, Lahiji SF, Dehghannoudeh G, Banat IM, Ohadi M. Potential of biosurfactant as green pharmaceutical excipients for coating of microneedles: A mini review. AIMS Microbiol 2024; 10:596-607. [PMID: 39219752 PMCID: PMC11362267 DOI: 10.3934/microbiol.2024028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Microneedles, a novel transdermal delivery system, were designed to improve drug delivery and address the challenges typically encountered with traditional injection practices. Discovering new and safe excipients for microneedle coating to replace existing chemical surfactants is advantageous to minimize their side effect on viable tissues. However, some side effects have also been observed for this application. The vast majority of studies suggest that using synthetic surfactants in microneedle formulations may result in skin irritation among other adverse effects. Hence, increasing knowledge about these components and their potential impacts on skin paves the way for finding preventive strategies to improve their application safety and potential efficacy. Biosurfactants, which are naturally produced surface active microbial products, are proposed as an alternative to synthetic surfactants with reduced side effects. The current review sheds light on potential and regulatory aspects of biosurfactants as safe excipients in the coating of microneedles.
Collapse
Affiliation(s)
- Marzieh Sajadi Bami
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Fakhraei Lahiji
- Department of Bioengineering, Biopharmaceutical Research Laboratory, Hanyang University, Seoul, South Korea
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Dias Barroso FD, da Silva LJ, Queiroz HA, do Amaral Valente Sá LG, da Silva AR, da Silva CR, de Andrade Neto JB, Cavalcanti BC, de Moraes MO, Pinazo A, Pérez L, Nobre Júnior HV. Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Staphylococcus aureus. Future Microbiol 2024; 19:667-679. [PMID: 38864708 PMCID: PMC11259079 DOI: 10.2217/fmb-2023-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.
Collapse
Affiliation(s)
- Fatima Daiana Dias Barroso
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Helaine Almeida Queiroz
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Cecília Rocha da Silva
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aurora Pinazo
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants & Nanobiotechnology, IQAC-CSIC, Barcelona, Spain
| | - Hélio Vitoriano Nobre Júnior
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Sundaram T, Govindarajan RK, Vinayagam S, Krishnan V, Nagarajan S, Gnanasekaran GR, Baek KH, Rajamani Sekar SK. Advancements in biosurfactant production using agro-industrial waste for industrial and environmental applications. Front Microbiol 2024; 15:1357302. [PMID: 38374917 PMCID: PMC10876000 DOI: 10.3389/fmicb.2024.1357302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
The adverse effects of waste generation on the environment and public health have raised global concerns. The utilization of waste as a raw material to develop products with enhanced value has opened up novel prospects for promoting environmental sustainability. Biosurfactants obtained from agro-industrial waste are noteworthy due to their sustainability and environmental friendliness. Microorganisms have been employed to generate biosurfactants as secondary metabolites by making use of waste streams. The utilization of garbage as a substrate significantly reduces the expenses associated with the process. Furthermore, apart from reducing waste and offering alternatives to artificial surfactants, they are extensively employed in bioremediation, food processing, agriculture, and various other industrial pursuits. Bioremediation of heavy metals and other metallic pollutants mitigated through the use of bacteria that produce biosurfactants which has been the more recent research area with the aim of improving its quality and environmental safety. Moreover, the production of biosurfactants utilizing agricultural waste as a raw material aligns with the principles of waste minimization, environmental sustainability, and the circular economy. This review primarily focuses on the production process and various types of biosurfactants obtained from waste biomass and feedstocks. The subsequent discourse entails the production of biosurfactants derived from various waste streams, specifically agro-industrial waste.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Vasumathi Krishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Virudhunagar, India
| | - Shankar Nagarajan
- Department of Biomedical Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | | |
Collapse
|